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INSTRUCTIONS  

1. This is a closed book exam, except you are allowed one double-sided 8.5 x 11 inches sheet of information. Do 
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2. Calculators and cell phones are NOT permitted.  
 

3. Make sure you READ CAREFULLY the question before embarking on the solution.  
 

4. Note the value of each question. 
 

5. This exam consists of 12 pages (including the cover page). Please check that all pages are intact and provide all 

your answers on this exam. 
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1. Let  (   )  (          )  (              ) .  

a).  Show that  (   ) is conservative by finding the potential curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b). Calculate ∫     
 

, where C is the curve given by  ( )  (        )    (        )    for   
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2. a). Find curl F and div F, if   (     )                                   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b).  Show that there is no vector field G such that                             . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Math 264   Final   Exam                                               Page 4                                                                 December 6, 2018 

3. If f  is a harmonic function, that is,              , show that the line integral ∫          
 

 is 

independent of path C in any simple region D. 

 

 

 

 

 

 

 

4. Evaluate ∫ √              
 

, where C is the triangle with vertices (0,0), (1,0), (1,3). 
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5. Evaluate ∬       
 

, where  (     )                and S is the part of paraboloid         

below the plane z = 1 with upward orientation.  
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6. Evaluate ∬            
 

, where  (     )                       and S is the part of sphere  

           that lies above the plane     and S is oriented upward. 
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7. Evaluate ∬       
 

, where  (     )                  and S is the surface of the solid bounded 

by the cylinder         and the planes          
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8. a). Find the eigenvalues and eigenvectors:             ( )      ( )     
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8. b). Find the Fourier series for the function   

 ( )  {
           
                       

         (   )   ( )  
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9. Solve the following initial-boundary value problem  

{

                                    

 (   )          (   )                 
 (   )                    [   ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Math 264   Final   Exam                                               Page 11                                                                December 6, 2018 

10. Consider the initial-value problem to the wave equation 

{

                                      

 (   )   ( )                                        

   (   )                                        

 

which can be reduced  to the form       by the change of variables                 

a). Show that the solution can be written as 

 (   )   ( )   ( )   (    )   (    )  

                   where                                      

 ( )   ( )   ( )                  ( )    ( )     
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          10   b). By solving                  )   thereby show the following D’Alembert formula: 

 (   )  
 

 
[ (    )   (    )]  

                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


