
COMMUN. MATH. SCI. c© 2021 International Press

Vol. 19, No. 5, pp. 1207–1231

LARGE-TIME BEHAVIOR OF SOLUTIONS TO
CAUCHY PROBLEM FOR BIPOLAR EULER-POISSON SYSTEM

WITH TIME-DEPENDENT DAMPING IN CRITICAL CASE∗

LIPING LUAN† , MING MEI‡ , BRUNO RUBINO§ , AND PEICHENG ZHU¶

Abstract. This paper is concerned with the Cauchy problem of a bipolar hydrodynamic model
for semiconductor device, a system of one dimensional Euler-Poisson equations with time-dependent
damping effect in the critical case. The global existence and uniqueness of the solutions to the Cauchy
problem are proved by the technical time-weighted energy method, when the initial perturbation around
the constant states are small enough. Particularly, the algebraic time-convergence-rates for the solutions
to their constant states are also derived.
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1. Introduction
Mathematical models. To describe the motion of charged particles such as electrons
and holes in bipolar semiconductor devices, or positively/negatively charged ions in
plasmas, scientists usually employ bipolar hydrodynamic models which are the most
popular models [1, 41, 52, 53] for simulations in semiconductor devices, and those simu-
lation results coincide quite well with the corresponding experimental ones, which are
presented by the (re-scaled) isentropic Euler-Poisson systems with damping:

n1t+J1x= 0,

n2t+J2x= 0,

J1t+
(
J2
1

n1
+p
)
x

=n1Φx− J1
τ ,

J2t+
(
J2
2

n2
+q
)
x

=−n2Φx− J2
τ ,

Φxx=n1−n2−D,

(1.1)

considered in R×(0,T ) for some positive constant T >0. The unknowns n1 =n1(x,t)
and n2 =n2(x,t) stand for the densities of electrons and holes, J1 =J1(x,t) and J2 =
J2(x,t) are the current densities for electrons and holes, respectively. Φ = Φ(x,t) denotes
the electrostatic potential and p=p(x,t) = p̂(n1)(x,t) and q= q(x,t) = q̂(n2)(x,t) are the
pressure functions for electrons and holes, respectively. The given function D=D(x)>0
is the doping profile that is the density of impurities in the semiconductor device. τ >0
is the relaxation-time.
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As mentioned in [32], for different values of the relaxation time τ , the character of
the system (1.1) will be essentially different. In fact, when τ→∞, the damping effects
to the system (1.1) will be vanishing, and the system becomes the pure Euler-Poisson
system. While, when τ→0+, the damping effects to the system will extremely enlarge.
A mathematical concern for both cases as shown in [32] is to set τ =µ−1(1+ t)λ for some
constants λ and µ>0, where, when t→+∞, then τ =µ−1(1+ t)λ→∞ for λ>0 and
τ =µ−1(1+ t)λ→0+ for λ<0. Thus, the damping effects in Euler-Poisson system (1.1)
become time-gradually-degenerate for λ>0 and time-gradually-enhancing for λ<0, and
reads as

n1t+J1x= 0, (1.2)

n2t+J2x= 0, (1.3)

J1t+

(
J2
1

n1
+p

)
x

=n1E−
µ

(1+ t)λ
J1, (1.4)

J2t+

(
J2
2

n2
+q

)
x

=−n2E−
µ

(1+ t)λ
J2, (1.5)

Ex=n1−n2−D, (1.6)

where E := Φx is the electronic field. The initial condition is chosen to meet

(n1,n2,J1,J2) |t=0= (n10,n20,J10,J20)(x)→ (n̄,n̄,J̄ ,J̄) as x→±∞. (1.7)

Here n̄,J̄ are two given constants, for which we assume that n̄>0 and J̄ 6= 0, and without
loss of generality in what follows we may assume that J̄ >0. Technically throughout
this paper we also assume

p̂(s)≡ q̂(s) in R+, (1.8)

p̂(s)>0, p̂′(s)>0 ∀s∈R+, (1.9)

D(x)≡0, (1.10)

λ= 1, µ>2 (critical case), (1.11)

where we used the symbol R+ := (0,+∞).

Remark 1.1.

(1) The assumption (1.8) is just for the sake of simplicity, of course the case with two
different pressures is also interesting and more physical, but more complicated.

(2) The physical meaning of D≡0 is explained as follows: One is that the amplitude of
doping profile is sufficiently small. Another is we define Ê=E+

∫ x
−∞D(y)dy which

is regarded as a fluctuation of the field E. The case for bipolar hydrodynamic
models with D= 0 is also well-studied in [13,21,22,32].

(3) For the critical case of λ= 1 and µ>2, the story comes from what follows. As
clearly shown in [3, 4, 14, 33, 47, 48, 50, 51] for Euler equations with time-dependent
damping: {

vt+ux= 0,

ut+p(v)x=− µ
(1+t)λ

u,

when 0<λ<1 and any µ>0, even the under-damping effect is weaker, but it can
still prevent the singularity formation for the solution like shocks, namely, the
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damped Euler system can possess global-in-time solutions; while, when λ>1 and
any µ>0, the under-damping effect is too weak such that it cannot stop the forma-
tion of shocks, and the system really behaves like the pure Euler system to possess
shocks, namely, the solutions themselves are bounded but their derivatives will blow
up at finite time; moreover, λ= 1 is the critical case for the global existence and
blow-up. This was further clarified in [3,14,48,51] that, the solutions globally exist
for λ= 1 and µ>2, and they blow up in finite time for λ= 1 and 0<µ≤2 due to
the mechanism of the system. Inspired by the above mentioned studies, here for
the bipolar Euler-Poisson equations with time-dependent damping, we are mainly
interested in the critical case with λ= 1 and µ>2 for the global existence. The
opposite case with λ= 1 and µ≤2 for blow-up will be expected in the coming work.

Main results. Let us denote the spatial asymptotic profile of the solutions as follows

f(±∞,t) =f±(t), here f ∈ A :={n1,n2,J1,J2,E}, (1.12)

and assume that

n+(t) =n−(t) = n̄, (1.13)

J+(0) =J−(0) = J̄ . (1.14)

Define

Ĵ = J̄(1+ t)−µm1(x), (1.15)

n̂=
J̄(1+ t)−(µ−1)

µ−1
m′1(x), (1.16)

where

m1(x) =

∫ x

0

m0(y)dy

and m0(x) is odd and satisfies

m0∈C∞0 (R), m0(−x) =−m0(x),

∫ ∞
0

m0(y)dy=

∫ −∞
0

m0(y)dy= 1, (1.17)

which implies

m1(−∞) =m1(∞) = 1.

Let us assume ∫ ∞
−∞

[ni0(x)− n̄(x,0)]dx= 0. (1.18)

Note from (1.16) and (1.17), we have∫ ∞
−∞

n̂(x,0)dx= 0,

which, together with (1.18), gives∫ ∞
−∞

[ni0(x)− n̄(x,0)− n̂(x,0)]dx= 0.
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Therefore, we may denote the initial perturbations as follows:

φi0(x) :=

∫ x

−∞
[ni0(x)− n̄− n̂(x,0)]dx, and ψi0(x) :=Ji0(x)− Ĵ(x,0), for i= 1,2.

(1.19)
We are now able to state our main theorem in this article.

Theorem 1.1. For the critical case λ= 1 and µ>2, let (1.18) hold, and let φi0∈
H2(R) and ψi0∈H1(R) for i= 1,2. There exists a suitably small number δ>0, when

|J̄ |+‖(φ10,φ20)‖H2(R) +‖(ψ10,ψ20)‖H1(R)≤ δ,

then the system (1.2)–(1.11) possesses a unique global-in-time solution (n1,n2,J1,J2,E)
(x,t) satisfying, for l= 0,1,

‖∂lx(n1− n̄− n̂,n2− n̄− n̂)(t)‖L2(R)≤Cδ(1+ t)−
l+1
2 , (1.20)

‖∂lx(J1− Ĵ , J2− Ĵ)(t)‖L2(R)≤Cδ(1+ t)−
l+1
2 , (1.21)

‖∂lxE(t)‖L2(R)≤Cδ(1+ t)−
l+1
2 , (1.22)

and

‖(n1− n̂− n̄,n2− n̂− n̄)(t)‖L∞(R)≤Cδ(1+ t)−
3
4 , (1.23)

‖(J1− Ĵ ,J2− Ĵ)(t)‖L∞(R)≤Cδ(1+ t)−
3
4 , (1.24)

‖E(t)‖L∞(R)≤Cδ(1+ t)−
3
4 . (1.25)

The main difficulties in the proof of this theorem are as follows. The first is that the
system of several unknowns is of hyperbolic type, we make use of the time-dependent
damping term to overcome this difficulty. The second is the decay rates of some terms
are not fast enough in their original form. We deal with those terms by using the
technique of integration by parts due to the property of the asymptotic profiles that
spatial derivatives of those profiles possess the same time-decay rates.

Notations. Throughout this article, C, Cδ, Cε, ·· · denote positive constants, which
are independent of time t, however may depend on parameters (usually small) δ, ε,·· ·,
respectively.

For 1≤p<∞, Lp(R) are the spaces of measurable functions whose p-powers are

integrable on R, with the norm ‖·‖Lp(R) =
(∫

R | · |
pdx
)1/p

. For the case that p= 2, we
simply denote ‖·‖L2(R) by ‖·‖. For p=∞, L∞(R) is the space of bounded measurable
functions on R, with the norm ‖·‖L∞(R) = esssupx∈R| · |. For a nonnegative integer k,

Hk =Hk(R) denotes the Hilbert spaces of order k. We write ‖·‖k for the standard
norm of Hk(R). In addition, we denote by C(0,T ;Hk(R)) (resp. L2(0,T ;Hk(R))) the
space of continuous (resp. square integrable) functions on [0,T ] with values taken in a
Banach space Hk(R).

Literature. There are ever-increasing interests on hydrodynamic models for semicon-
ductor devices, or positively/negatively charged ions in a plasma. We recall mainly the
results the following four categories.

(A) For unipolar isentropic and non-isentropic hydrodynamic semiconductor equa-
tions, the mathematical modelling [29, 41] played an important role in the course of
the study. The papers [5, 11, 12] studied the well-posedness of steady-state solutions
and in [15, 16, 23, 35, 37, 43] they studied the stability of the steady-state solutions.
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In [2, 36, 40, 49, 57], the authors gave the global existence of classical solutions and the
entropy weak solutions, respectively. The large-time behavior of solutions was studied
in [16,21,30,35].

(B) For bipolar hydrodynamic semiconductor equations, in [17,18], Hsiao and Zhang
used the compensated compactness framework to prove the existence of the global en-
tropic weak solutions for the initial-boundary value problem to a bipolar hydrodynamic
semiconductor model. Zhu and Hattori discussed the stability of the steady state so-
lutions for an isentropic hydrodynamic model of semiconductors of two species in [58].
Huang and Li [19] considered the large-time behavior of the entropy solutions of the one-
dimensional bipolar hydrodynamic model. In addition, a general multidimensional non-
isentropic hydrodynamical model for semiconductors with small momentum relaxation
time was investigated in [31] but in the n-dimensional case, the bipolar hydrodynamic
system of semiconductors is never dealt with.

(C) There are some interesting bipolar hydrodynamic models with time-dependent
damping for semiconductors. Physically, the damping term usually causes the dynamical
system to process the nonlinear diffusive phenomena. In system (1.2)–(1.6), Ji/τ (i=1,2)
are the damping effects which effect the regularity of the solutions. As τ→∞ and τ→0
respectively, it is a challenge to study the asymptotic behavior of the solutions. In order
to see the asymptotic behavior of the solutions, Li-Li-Mei-Zhang take τ = (1+ t)λ for
some constant λ in [32]. They studied the one-dimensional Euler-Poisson equations of
bipolar hydrodynamic model for semiconductor devices with time-dependent damping
effect −(1+ t)ν for −1<λ<1 and proved the existence of a unique global smooth solu-
tion for the system. Particularly, λ= 1

7 is the critical point, where the convergence rate
is the fastest.

(D) For one-dimensional compressible Euler equations with time-independent damp-
ing, there are huge amount of results on this topic. We refer the readers, however not
limited, to [20, 24, 38, 39, 42, 44–46]. Particularly, the comprehensive reviews can be
found in the recent interesting papers [3, 14, 25–28, 34, 54–56]. For the other topic on
Euler-Poisson equations with quantum effect, we refer to [6–10].

The rest of this article is organized as follows. In Section 2, we first construct asymp-
totic profiles, and formulate a new problem to simplify the original Cauchy problem.
Then we employ, in Section 3, the time-weighted energy method to establish a priori
estimates for the unknowns E(x,t), ni(x,t) and Ji(x,t), i= 1,2 and for their derivatives.
With the a priori estimates, we complete the proof of the main result, i.e., Theorem 1.1.

2. Reformulation of the problem

2.1. Construction of the asymptotic profiles. Recalling the assumption
(1.13), we heuristically expect

E−(t) =E(−∞,t) = 0. (2.1)

Denoting

E+(t) :=E(+∞,t) =

∫ +∞

−∞
(n1(x,t)−n2(x,t))dx, (2.2)

then, as x→±∞, we further expect to reduce the Equations (1.2)–(1.6) to

d

dt
ni±= 0, (2.3)
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d

dt
Ji±= (−1)i−1n̄E±−

µ

1+ t
Ji±, (2.4)

E(x,t) =

∫ x

−∞
Ex(x,t)dx=

∫ x

−∞
(n1−n2)(x,t)dx. (2.5)

Invoking E−(∞,t) = 0, one obtains from (2.4) that

d

dt
Ji−=− µ

1+ t
Ji−,

Ji−(0) = J̄ ,

which yields

Ji−(t) = J̄(1+ t)−µ. (2.6)

From (2.4) we derive the equations for the difference and the sum of J1± and J2± which,
respectively, read

d

dt
(J1±−J2±) = 2n̄E±−

µ

1+ t
(J1±−J2±), (2.7)

and

d

dt
(J1+ +J2+) =− µ

1+ t
(J1+ +J2+), (2.8)

J1+(0)+J2+(0) = 2J̄ . (2.9)

One obtains from (2.8)–(2.9) that

(J1+ +J2+)(t) = 2J̄(1+ t)−µ. (2.10)

Next from (1.6), invoking (1.2)–(1.3) we get

Ext=n1t−n2t=−(J1−J2)x. (2.11)

Integrating (2.11) with respect to x over (−∞,x) and using (2.6) yield

Et(x,t) =−
∫ x

−∞
(J1−J2)xdx

=−(J1−J2)(x,t)−(J1−−J2−)(t)

=−(J1−J2)(x,t). (2.12)

As x→+∞, (2.12) thus becomes

d

dt
E+(t) =−(J1+−J2+)(t). (2.13)

Inserting (2.13) into (2.7), we arrive at

d2

dt2
E+(t) +

µ

1+ t

d

dt
E+(t)−2n̄E+(t) = 0, (2.14)

E+(0) =

∫ +∞

−∞
(n10−n20)(x)dx= 0, (2.15)
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d

dt
E+(0) = 0. (2.16)

Solving this initial value problem yields the unique solution, that is

E+(t) = 0. (2.17)

Now inserting E+(t) = 0 into equation (2.4), we obtain

Ji+(t) = J̄(1+ t)−µ. (2.18)

Then

ni(±∞,t) = n̄, Ji(±∞,t) = J̄(1+ t)−µ, E(±∞,t) = 0. (2.19)

Remark 2.1. The initial condition E+(0) = 0 is obvious due to (2.1), and (2.16)
follows from (2.13) and (1.7).

Since Ji is not square-summable in the case that J̄ 6= 0, we need to construct the
asymptotic solution (n̂,Ĵ) which guarantees a perturbatuon of Ji summable. We define

Ĵ = J̄(1+ t)−µm1(x). (2.20)

Then, by solving the following equation

n̂t+ Ĵx= 0,

one gets

n̂=
J̄(1+ t)−(µ−1)

µ−1
m0(x). (2.21)

Here we choose m0(x) as

m0∈C∞0 (R), m0(−x) =−m0(x),

∫ ∞
0

m0(y)dy=

∫ −∞
0

m0(y)dy= 1,

and define m1(x) by

m1(x) :=

∫ x

0

m0(y)dy

which implies

m1(−∞) =m1(∞) = 1.

2.2. The reformulated problem. Now we are able to reformulate problem
(1.2)-(1.6). To this end, we introduce new unknowns defined by

φi(x,t) =

∫ x

−∞
(ni(y,t)− n̄− n̂(y,t))dy, (2.22)

ψi(x,t) =Ji(x,t)− Ĵ(x,t), (2.23)

E(x,t) =φ1(x,t)−φ2(x,t), (2.24)
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here and hereafter the subscript i takes values 1,2. Then we arrive at a new system
φit+ψi= 0,

ψit+aiφixx+biψix+
µ

1+ t
ψi+(−1)iniE=Fi, i= 1,2,

E=φ1−φ2,
(φi,ψi)|t=0 = (φi0,ψi0)(x), i= 1,2,

(2.25)

where ai, bi, and Fi are defined by

ai := p̂′(ni)−
J2
i

n2i
, (2.26)

bi :=
2Ji
ni
, (2.27)

Fi :=
J2
i n̂x
n2i
− 2JiĴix

ni
− p̂′(ni)n̂x. (2.28)

For simplicity, we denote

M(t)2 =

∫ t

0

1∑
`=0

(
(1+τ)`‖∂`x(φ1x,φ2x,ψ1,ψ2,E)(τ)‖2

+(1+τ)`−2‖∂`x‖(φ1,φ2)(τ)‖2
)
dτ, (2.29)

N(t)2 = sup
0≤τ≤t

2∑
`=1

(
(1+τ)`‖∂`−1x (φ1x,φ2x,ψ1,ψ2,E)(τ)‖2

+(1+τ)`−2‖∂`−1x ‖(φ1,φ2)(τ)‖2
)
. (2.30)

Theorem 2.1. Assume that (φ10,φ20,ψ10,ψ20)∈H2(R)×H2(R)×H1(R)×H1(R).
There exists a suitably small number δ>0 such that, when

|J̄ |+‖(φ10,φ20)‖H2(R) +‖(ψ10,ψ20)‖H1(R)≤ δ,

then there exists a unique global-in-time solution (φ1,φ2,ψ1,ψ2,E)(x,t) to the system
(2.25) satisfying

N(t)2 +M(t)2≤C
(
|J̄ |+‖(φ10,φ20)‖22 +‖(ψ10,ψ20)‖21

)
, (2.31)

and

‖(φ1,φ2)(t)‖L∞(R)≤Cδ, (2.32)

‖(ψ1,ψ2)(t)‖L∞(R)≤Cδ (1+ t)−
3
4 , (2.33)

‖E(t)‖L∞(R)≤Cδ (1+ t)−
3
4 , (2.34)

‖(φ1,φ2)t(t)‖L∞(R)≤Cδ (1+ t)−
3
4 , (2.35)

‖(φ1,φ2)x(t)‖L∞(R)≤Cδ (1+ t)−
3
4 . (2.36)

We will prove this theorem by employing a standard procedure: the method of
continuation of local solutions. Assuming the initial data are smooth, we thus prove,
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by using the Banach contracting principle, the existence of smooth solutions. We omit
the details for the local existence. The rest of this article is devoted to establishing a
priori estimates.

Proof of Theorem 1.1. Once Theorem 2.1 is proved, Theorem 1.1 is immediately
obtained.

3. A priori estimates

3.1. Basic estimates for φi, ψi and E. In this subsection, we are going to
establish estimates for φi and ψi (i=1,2) and their derivatives of first order.

For the initial data that are smooth, thus the solution is smooth too. For the
existence of weak solutions to the Cauchy problem with initial data in H2×H2×H1×
H1, we apply the density theorem to approximate the original initial data and obtain
smooth solutions, then pass the smooth solution to the limit by using a priori estimates.

Therefore in this section we assume solutions (φ1,φ2,ψ1,ψ2,E) are smooth and there
hold

inf
x∈R

n1>0, inf
x∈R

n2>0,

and

‖(φ1,φ2)‖2 +‖(ψ1,ψ2,E)‖1≤ δ, (3.1)

and it follows from the Sobolev embedding theorem that

‖(φ1,φ2)x‖L∞(R) +‖(ψ1,ψ2,E)‖L∞(R)≤Cδ. (3.2)

By simple computations, we have

ni= n̄+ n̂+φix≥
n̄+ n̂

2
≥ n̄

2
. (3.3)

Next we estimate Fi and rewrite it as follows

Fi =
(ψi+ Ĵ)2n̂x

n2i
− 2(ψi+ Ĵ)Ĵix

ni

−
(
p̂′(ni)− p̂′(n̄)− p̂′′(n̄)(ni− n̄)

)
n̂x−

(
p̂′(n̄)+ p̂′′(n̄)(ni− n̄)

)
n̂x− Ĵt−

µ

1+ t
Ĵ

=

(
(ψ2
i +2ψiĴ)n̂x

n2i
− 2ψiĴix

ni
−
(
p̂′(ni)− p̂′(n̄)− p̂′′(n̄)(ni− n̄)

)
n̂x− p̂′′(n̄)φixn̂x

)

+

(
Ĵ2n̂x
n2i
− 2Ĵ Ĵix

ni
− p̂′′(n̄)n̂n̂x

)
−
(
p̂′(n̄)n̂x

)
=:Fi1 +Fi2 +Fi3. (3.4)

With the help of the mean value theorem, we treat the term of Fi1 as follows

p̂′(ni)− p̂′(n̄)− p̂′′(n̄)(ni− n̄) =
1

2
p̂′′′(ξ)(ni− n̄)2 =

1

2
p̂′′′(ξ)(φix+ n̂)2. (3.5)

Here ξ∈<n̄,n̄+ n̂+φ1x>, we used the notation ξ∈<f,g> to denote that ξ takes a
value between two quantities f and g.
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Recalling m0∈C∞0 (R) and m′1 =m0, one has ‖mj‖L∞(R)≤C for j= 0,1. Thus we
obtain

|Fi1|≤C
(

(ψ2
i + |ψiĴ |)|n̂x|+ |ψiĴix|+(φ2ix+ |φix|+ n̂2)|n̂x|

)
≤C

((
ψ2
i + |ψiĴ |+ |φix|+ n̂2

)
|n̂x|+ |ψiĴix|

)
≤C|Ĵ |

(
(ψ2
i + |φix|)(1+ t)−µ+1 + |ψi|(1+ t)−µ+(1+ t)−3µ+1

)
(3.6)

and

|Fi2|≤C

(
|Ĵ2n̂x|+ |Ĵ Ĵix|+ |Ĵt|+

|Ĵ |
1+ t

+ |n̂n̂x|

)
≤C|J̄ |

(
(1+ t)−3µ+1 +(1+ t)−2µ+(1+ t)−µ−1 +(1+ t)−2µ+2

)
≤C|J̄ |(1+ t)−µ1 , (3.7)

for sufficiently large t, and

µ1 := min{µ+1,2µ−2}>2. (3.8)

Finally Fi3 :=−p̂′(n̄)n̂x will be treated late in the process of deriving the basic
energy estimates, by using the technique of integration by parts.

Lemma 3.1. There exist a constant 0≤κ<1 and a sufficiently small ε1 such that if
|J̄ |+N(t)2<ε1, then there holds

(1+ t)κ+1
(
‖φx‖2 +‖φt‖2 +‖E‖2

)
+(1+ t)κ−1‖φ‖2

+

∫ t

0

(1+τ)κ
(
‖φt‖2 +‖φx‖2 +‖E‖2

)
+(1+τ)κ−2‖φ‖2dτ

≤C
(
‖φ0‖21 +‖φt0‖2 +‖E0‖2 + |J̄ |(N(t)2 +N(t)M(t))+N(t)3

)
. (3.9)

Proof. From (2.25), we get

φ1tt−a1φ1xx+b1φ1tx+
µ

1+ t
φ1t+n1E=F1, (3.10)

φ2tt−a2φ2xx+b2φ2tx+
µ

1+ t
φ2t−n2E=F2, (3.11)

here Fi=−Fi.
Let κ,λ be two positive constants which will be determined later. Multiplying (3.10)

by (1+ t)κ(λφ1 +(1+ t)φ1t), we arrive at

d

dt

(
(1+ t)κ

2

(
a1(1+ t)φ21x+(1+ t)φ21t+2λφ1φ1t+λ(µ−κ)(1+ t)−1φ21

))
+(1+ t)κ

(
(µ−λ− κ+1

2
)φ21t+(λ− κ+1

2
)a1φ

2
1x

)
+(1+ t)κ

(
−λ

2
(µ−κ)(κ−1)(1+ t)−2φ21 +n1(λφ1 +(1+ t)φ1t)E

)
= (1+ t)κ(λφ1 +(1+ t)φ1t)F1 +I1. (3.12)
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Here I1 is given by

I1 :=−(1+ t)κ(a1xφ1x+b1φ1tx)(λφ1 +(1+ t)φ1t)+
(1+ t)κ+1

2
a1tφ

2
1x. (3.13)

In a similar manner, taking (1+ t)κ(λφ2 +(1+ t)φ2t), we have

d

dt

(
(1+ t)κ

2

(
a2(1+ t)φ22x+(1+ t)φ22t+2λφ2φ2t+λ(µ−κ)(1+ t)−1φ22

))
+(1+ t)κ

(
(µ−λ− κ+1

2
)φ22t+(λ− κ+1

2
)a2φ

2
2x

)
+(1+ t)κ

(
−λ

2
(µ−κ)(κ−1)(1+ t)−2φ22−n2(λφ2 +(1+ t)φ2t)E

)
= (1+ t)κ(λφ2 +(1+ t)φ2t)F2 +I2, (3.14)

where

I2 :=−(1+ t)κ(a2xφ2x+b2φ2tx)(λφ2 +(1+ t)φ2t)+
(1+ t)κ+1

2
a2tφ

2
2x. (3.15)

By adding (3.12) to (3.14), we obtain

d

dt

(
(1+ t)κ

2

(
(1+ t)(a1φ

2
1x+a2φ

2
2x)+(1+ t)|φt|2 +2λ(φ,φt)+λ(µ−κ)(1+ t)−1|φ|2

))
+
d

dt

(
n1(1+ t)κ+1

2
E2

)
+(1+ t)κ

(
(µ−λ− κ+1

2
)|φt|2 +(λ− κ+1

2
)(a1φ

2
1x+a2φ

2
2x)

)
+(1+ t)κ

(
−λ

2
(µ−κ)(κ−1)(1+ t)−2|φ|2 +n1(λ− κ+1

2
)E2

)
=: I0 +I1 +I2 +I3, (3.16)

where

I0 := (1+ t)κ
(
λ(φ,F)+(1+ t)(φt,F)

)
, (3.17)

I3 :=
(1+ t)κ+1

2
n1tE

2−(1+ t)κExE(λφ2 +(1+ t)φ2t). (3.18)

Here we used the notations φ= (φ1,φ2)T , F = (F1,F2)T which are two-dimensional vec-
tors, and the notation (f,g) denotes the inner product of the functions f,g∈R2 and
correspondingly |f | is the Euclidean norm of 2-d vector f .

It is easy to see that

a1, a2≥a>0, and n1≥
n̄

2
=:n>0.

Therefore, integrating (3.16) over R× [0,t], we obtain

(1+ t)κ

2

(
a(1+ t)‖φx‖2 +(1+ t)‖φt‖2 +2λ

∫
R

(φ,φt)dx+λ(µ−κ)(1+ t)−1‖φ‖2
)
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+
(1+ t)κ+1

2
n‖E‖2

+

∫ t

0

(1+τ)κ
(

(µ−λ− κ+1

2
)‖φt‖2 +a(λ− κ+1

2
)‖φx‖2

)
dτ

+

∫ t

0

(1+τ)κ
(
λ

2
(κ−µ)(κ−1)(1+τ)−2‖φ‖2 +n(λ− κ+1

2
)‖E‖2

)
dτ

≤ 1

2

(
C‖φx0‖2 +‖φt0‖2 +2λ

∫
R
(φ0,φt0)dx+λ(µ−κ)‖φ0‖2

)
+

1

2
n‖E0‖2

+

∫ t

0

∫
R

(
I0 +I1 +I2 +I3

)
dxdτ. (3.19)

To get the positivity of the terms in the above inequality, we need:

µ−κ>λ, (3.20)

µ− κ+1

2
−λ≥0, (3.21)

λ− κ+1

2
≥0, (3.22)

(κ−µ)(κ−1)≥0, (3.23)

which implies

0≤κ≤1. (3.24)

However to keep the coefficient of the term
∫ t
0
(1+τ)κ‖φ‖2dτ positive, we take

0≤κ<1. (3.25)

Now we are going to deal with Ij term by term for j= 0,1,2,3. Let Î0 (resp. F̂)

be the part of I0 (resp. F̂), in that Fi3 are dropped. Invoking (2.25) and the estimates
(3.6) and (3.7), we have∣∣∣∣∫ t

0

∫
R
Î0dxdτ

∣∣∣∣
≤C

∫ t

0

∫
R

(1+τ)κ
(
λ|(φ,F̂)|+(1+τ)|(φτ ,F̂)|

)
dxdτ

≤C
∫ t

0

(1+τ)κ
(
λ‖φ‖‖F̂‖+(1+τ)‖φτ‖‖F̂‖

)
dτ

≤C|Ĵ |
∫ t

0

(1+τ)κ(‖φ‖+(1+τ)‖φτ‖)

×
(
(‖ψ2

i ‖+‖φix‖)(1+τ)−µ+1 +‖ψi‖(1+τ)−µ+(1+τ)−3µ+1 +(1+τ)−µ1
)
dτ

≤C|Ĵ |
∫ t

0

(1+τ)κ(‖φ‖+(1+τ)‖φτ‖)
(
(‖φτ‖+‖φx‖)(1+τ)−µ+1 +(1+τ)−µ1

)
dτ

≤C|Ĵ |
∫ t

0

(
(1+τ)

κ
2 ‖φ‖·(1+τ)

κ+1
2 (‖φτ‖+‖φx‖)(1+τ)−

1
2

)
(1+τ)−µ+1dτ

+C|Ĵ |
∫ t

0

(1+τ)κ+1(‖φτ‖2 +‖φx‖2)(1+τ)−µ+1dτ
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+C|Ĵ |
∫ t

0

[(1+τ)
κ
2 ‖φ‖(1+τ)

κ
2 +(1+τ)

κ+1
2 ‖φτ‖(1+τ)

κ+1
2 ](1+τ)−µ1dτ

≤C|Ĵ |N(t)2
∫ t

0

(
(1+τ)−µ+1− 1

2 +(1+τ)−µ+1
)
dτ+C|Ĵ |N(t)

∫ t

0

(1+τ)−µ1+
κ+1
2 dτ

≤C|Ĵ |
(
N(t)2 +N(t)

)
, (3.26)

as all integrals in (3.24) are finite for µ>2 and κ≤1. It remains to deal with I0
containing Fi3. We write∫ t

0

∫
R

(I0− Î0)dxdτ =

∫ t

0

∫
R
(1+τ)κ

(
λ(φ,F3)+(1+τ)(φτ ,F3)

)
dxdτ

=

∫ t

0

∫
R
(1+τ)κ

(
λ(φx,F̃3)+(1+τ)(φτx,F̃3)

)
dxdτ. (3.27)

Here F̃3 := p̂′(n̄)n̂e and e is a 2-D vector e= (1,1)T . Thus we arrive at∣∣∣∣∫ t

0

∫
R

(I0− Î0)dxdτ

∣∣∣∣
≤C

∫ t

0

∫
R

(1+τ)κ
(
|φx|+(1+τ)|φτx|

)
n̂dxdτ

≤C|J̄ |
∫ t

0

(1+τ)κ
(
‖φx‖+(1+τ)‖φτx‖

)
(1+τ)−µ+1dτ

≤C|J̄ |
∫ t

0

(1+τ)κ
(
‖φx‖+(1+τ)‖φτx‖

)
(1+τ)−µ+1dτ. (3.28)

For the term of I1, we first calculate

a1x= p̂′(n1)(φ1xx+ n̂1x)− 2J1(ψ1x+ Ĵ1x)

n21
+

2J2
1 (φ1xx+ n̂1x)

n31
, hence

|a1x|≤C
(
|φ1xx|+ |φ1tx|+ |n̂1x|+ |Ĵ1x|

)
, (3.29)

b1 =
2(ψ1 + Ĵ)

n1
, which yields

|b1|≤C(|φ1t|+ |Ĵ |). (3.30)

Thus we have∣∣∣∣∫ t

0

∫
R
I1dxdτ

∣∣∣∣
≤C

∫ t

0

∫
R

(1+τ)κ
(
|a1xφ1x|+ |b1φ1τx|

)(
|φ1|+(1+τ)|φ1τ |

)
dxdτ

≤C
∫ t

0

∫
R

(1+τ)κ
(
|φ1xx|+ |φ1τx|+ |J̄ |(1+τ)−µ+1

)
|φ1x|

(
|φ1|+(1+τ)|φ1τ |

)
dxdτ

+C

∫ t

0

∫
R

(1+τ)κ
(
|φ1τ |+ |J̄ |(1+τ)−µ

)
|φ1τx|

(
|φ1|+(1+τ)|φ1τ |

)
dxdτ. (3.31)

The terms in the above inequality (3.31) may be classified into two types, i.e., one
are cubic terms of the form f ·g ·h where f,g,h are the unknowns φ or its derivatives,
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another one are quadratic terms f ·g ·h in which f,g are φ or its derivatives and h is a
small term with suitable time decay rate.

Noting the assumption about the behavior of the unknowns E,φ at far state, we
are in a position to use interpolation inequality of the following form

‖f‖L∞ ≤C‖f‖
1
2 ‖fx‖

1
2 , (3.32)

where each term in the right-hand side is assumed to be bounded. Using the Hölder
inequality, we get easily that∫ t

0

∫
R

(1+τ)κ
(
|φ1xx|+ |φ1τx|

)
|φ1xφ1|dxdτ

≤
∫ t

0

(1+τ)1
(
‖φ1xx‖+‖φ1τx‖

)
(1+τ)

3
4κ−

1
2 ‖φ1x‖

3
2 (1+τ)

κ
4−

1
2 ‖φ1‖

1
2 dτ

≤N(t)

(∫ t

0

(1+τ)(
3
4κ−

1
2 )·

4
3 ‖φ1x‖2dτ

) 3
4
(∫ t

0

(1+τ)4(
κ
4−

1
2 )‖φ1‖2dτ

) 1
4

≤N(t)N(t)2·
3
4

(∫ t

0

(1+τ)−
5
3 dτ

) 3
4

M(t)
1
2

≤N(t)
5
2M(t)

1
2 . (3.33)

Similarly, however a little easier, we have∫ t

0

∫
R

(1+τ)κ+1
(
|φ1xx|+ |φ1τx|

)
|φ1x||φ1τ |dxdτ

≤C
∫ t

0

(1+τ)κ+1
(
‖φ1xx‖+‖φ1τx‖

)
‖φ1xx‖

1
2 ‖φ1x‖

1
2 ‖φ1τ‖dτ

≤C
∫ t

0

(1+τ)
3
2

(
‖φ1xx‖+‖φ1τx‖

) 3
2 ·(1+τ)

κ+1
4 ‖φ1x‖

1
2

·(1+τ)
κ+1
2 ‖φ1τ‖·(1+τ)

κ+1
4 −

3
2 dτ

≤CN(t)3
∫ t

0

(1+τ)
κ+1
4 −

3
2 dτ

≤CN(t)3. (3.34)

Here the last integral in (3.34) is finite due to κ<1. Also we obtain∫ t

0

∫
R

(1+τ)κ|φ1τ ||φ1τx|
(
|φ1|+(1+τ)|φ1τ |

)
dxdτ ≤CN(t)3. (3.35)

Now we handle terms of another type. First we have∫ t

0

∫
R
|J̄ |(1+τ)−µ+κ+1|φ1x|

(
|φ1|+(1+τ)|φ1τ |

)
dxdτ

≤|J̄ |
∫ t

0

(1+τ)−µ+κ+1‖φ1x‖
(
‖φ1‖+(1+τ)‖φ1τ‖

)
dτ

= |J̄ |
∫ t

0

(
(1+τ)−µ+

1
2 ·(1+τ)

κ+1
2 ‖φ1x‖·(1+τ)

κ
2−1‖φ1‖

+(1+τ)−µ+1 ·(1+τ)
κ+1
2 ‖φ1x‖·(1+τ)

κ+1
2 ‖φ1τ‖

)
dτ
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≤|J̄ |N(t)

(∫ t

0

(1+τ)−2µ+1dτ

) 1
2
(∫ t

0

(1+τ)κ−2‖φ1‖2dτ
) 1

2

+|J̄ |N(t)2
∫ t

0

(1+τ)−µ+1dτ

≤C|J̄ |
(
N(t)M(t)+N(t)2

)
. (3.36)

Similarly, we obtain∫ t

0

∫
R
(1+τ)κ|J̄ |(1+τ)−µ) |φ1τx|

(
|φ1|+(1+τ)|φ1τ |

)
dxdτ

≤C|J̄ |
(
N(t)M(t)+N(t)2

)
. (3.37)

Therefore (3.31) is estimated as∣∣∣∣∫ t

0

∫
R
I1dxdτ

∣∣∣∣≤C(|J̄ |(N(t)M(t)+N(t)2
)

+N(t)3
)
. (3.38)

The term I2 is treated in the same manner as that for I1. It remains to deal with the
term containing I3. We write∣∣∣∣∫ t

0

∫
R
I3dxdτ

∣∣∣∣
≤C

∫ t

0

∫
R

(
(1+τ)κ+1E2(1+τ)−µ+(1+τ)κ|ExE|(|φ2|+(1+τ)|φ2τ |)

)
dxdτ

≤C
∫ t

0

(
(1+τ)κ+1‖E‖2(1+τ)−µ+(1+τ)κ‖φ2‖L∞‖Ex‖‖E‖

+(1+τ)κ+1‖E‖L∞‖Ex‖‖φ2τ‖
)
dτ. (3.39)

Invoking (3.32) and the Hölder inequality, we hence get∣∣∣∣∫ t

0

∫
R
I3dxdτ

∣∣∣∣
≤C|J̄ |N(t)2

∫ t

0

(1+τ)−µdτ

+CN(t)

∫ t

0

(
(1+τ)

κ+θ
2 ‖Ex‖

)(
(1+τ)

κ+1
2 ‖E‖

)
(1+τ)−

θ+1
2 dτ

+C

∫ t

0

(
(1+τ)

1
4 (κ+1)‖E‖ 1

2

)(
(1+τ)

3
4 (κ+θ)‖Ex‖

3
2

)
‖φ2τ‖

×
(

(1+τ)
κ+1
2 ‖φ2τ‖

)
(1+τ)−

3θ+2κ−1
4 dτ

≤C|J̄ |N(t)2
∫ t

0

(1+τ)−µdτ+CN(t)3
∫ t

0

(1+τ)−
θ+1
2 dτ

+CN3(t)

∫ t

0

(1+τ)−
3θ+2κ−1

4 dτ

≤C
(
|J̄ |+N(t)

)
N(t)2. (3.40)
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Here µ>2 is used and we suppose that 3θ+2κ−1>4 which is guaranteed by the condi-
tions κ<1 and θ>1. Whence all integrals in (3.40) are finite. Therefore, from (3.25)–
(3.40) we assert that (3.19) turns out to be

(1+ t)κ+1
(
‖φx‖2 +‖φt‖2 +‖E‖2

)
+(1+ t)κ−1‖φ‖2

+

∫ t

0

(1+τ)κ
(
‖φx‖2 +‖φt‖2 +‖E‖2

)
+(1+τ)κ−2‖φ‖2dτ

≤C(‖φ0‖21 +‖φt0‖2 +‖E0‖2)+C(δ+N(t))N(t)2

+C
(
|J̄ |
(
N(t)M(t)+N(t)2

)
+N(t)3

)
. (3.41)

By using the Young inequality we thus complete the proof of Lemma 3.1.

3.2. Estimates for higher derivatives. In this subsection, we will derive
estimates for higher derivatives of E(x,t) and φi(x,t), ψi(x,t) where the subscript i
takes values of 1,2.

Lemma 3.2. There exists a sufficiently small ε2≤ε1 such that if |J̄ |+N(t)2<ε2, then
there holds

(1+ t)2
(
‖φxx‖2 +‖φxt‖2 +‖Ex‖2

)
+‖φx‖2

+

∫ t

0

(1+τ)
(
‖φxτ‖2 +‖φxx‖2 +‖Ex‖2

)
+(1+τ)−1‖φx‖2dτ

≤C
(
‖φ0‖22 +‖φt0‖21 +‖E0‖21 + |J̄ |(N(t)2 +N(t)M(t))+N(t)3

)
. (3.42)

Proof. Multiplying Equation (3.10) by (1+ t)κ∂2xφ1, we have

d

dt
((1+ t)κφ1xxφ1t)−κ(1+ t)κ−1φ1xxφ1t−(1+ t)κφ1xxtφ1t−a1(1+ t)κφ21xx

+b1φ1tx(1+ t)κφ1xx+µ(1+ t)κ−1φ1xxφ1t+n1(1+ t)κφ1xxE

= (1+ t)κφ1xxF1. (3.43)

Then integrating (3.43) over R× [0,t] and applying the technique of integration by parts,
we get

−
∫
R

(1+ t)κφ1xφ1xtdx−
1

2

∫
R
(µ−κ)(1+ t)κ−1φ21xdx+

∫ t

0

∫
R

(1+τ)κ
(
φ21xτ −a1φ21xx

)
dxdτ

+

∫ t

0

∫
R

(
1

2
(κ−µ)(κ−1)(1+τ)κ−2φ21x+(1+ t)κ (b1φ1txφ1xx+n1φ1xxE)

)
dxdτ

=−
∫
R

(φ1xφ1xt)
∣∣∣
t=0

dx+
1

2

∫
R

(µ−κ)φ21x|t=0dx+

∫ t

0

∫
R

(1+τ)κφ1xxF1dxdτ. (3.44)

We multiply (3.10) by −(1+ t)κ+1∂2xφ1t and integrate the resulting equation over R×
[0,t] to obtain

1

2

∫
R

(1+ t)κ+1φ21xtdx+
1

2

∫
R
a1(1+ t)κ+1φ21xxdx

+(µ− κ+1

2
)

∫ t

0

∫
R

(1+τ)κφ21xτdxdτ

−κ+1

2

∫ t

0

∫
R
a1(1+τ)κφ21xxdxdτ+

∫ t

0

∫
R

(1+τ)κ+1φ1xτ (n1E)xdxdτ
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=
1

2

∫
R

(φ21xt−a1φ21xx)|t=0dx−
∫ t

0

∫
R
(1+τ)κ+1φ1xxτF1dxdτ+J1, (3.45)

where J1 is given by

J1 :=
κ+1

2

∫ t

0

∫
R

(1+τ)κ+1
(
a1tφ

2
1xx−b1xφ21xτ

)
dxdτ. (3.46)

Multiplying (3.44) by −λ and adding the resulting equation to (3.45), we have

1

2

∫
R
λ(µ−κ)(1+ t)κ−1φ21xdx+

∫
R
λ(1+ t)κφ1xφ1xtdx

+
1

2

∫
R

(1+ t)κ+1
(
φ21xtdx+a1φ

2
1xx

)
dx

+

∫ t

0

∫
R

(1+τ)κ
(

(µ− κ+1

2
−λ)φ21xτ +(λ− κ+1

2
)a1φ

2
1xx

)
dxdτ

+

∫ t

0

∫
R

(1+τ)κ+1φ1xτ (n1E)xdxdτ

= ID1 +
λ

2

∫ t

0

∫
R

(κ−µ)(κ−1)(1+τ)κ−2φ21xdxdτ

+λ

∫ t

0

∫
R
(1+τ)κ

(
b1φ1txφ1xx−φ1x(n1E)x

)
dxdτ

+

∫ t

0

∫
R
λ(1+τ)κφ1xxF1dxdτ−

∫ t

0

∫
R

(1+τ)κ+1φ1xxτF1dxdτ+J1. (3.47)

We here used ID1 to denote the initial data terms.
Similar to the process for deriving (3.47), multiplying Equation (3.11) by −(1+

t)κ(λ∂2xφ2 +(1+ t)∂2xφ2t) and integrating the resultant equation over R× [0,t] give

1

2

∫
R
λ(µ−κ)(1+ t)κ−1φ22xdx+

∫
R
λ(1+ t)κφ2xφ2xtdx

+
1

2

∫
R

(1+ t)κ+1φ22xtdx+
1

2

∫
R
a2(1+ t)κ+1φ22xxdx

+

∫ t

0

∫
R
(1+τ)κ

(
(µ− κ+1

2
−λ)φ22xτ +(λ− κ+1

2
)a2φ

2
2xx

)
dxdτ

−
∫ t

0

∫
R
(1+τ)κ+1φ2xτ (n2E)xdxdτ

= ID2 +
λ

2

∫ t

0

∫
R
(κ−µ)(κ−1)(1+τ)κ−2φ22xdxdτ

+λ

∫ t

0

∫
R

(1+τ)κ(b2φ2txφ2xx−φ2x(n2E)x)dxdτ

+

∫ t

0

∫
R
λ(1+τ)κφ2xxF2dxdτ−

∫ t

0

∫
R
(1+τ)κ+1φ2xxτF2dxdτ+J2. (3.48)

Here ID2 denotes the terms of the initial data and J2 is given by

J2 :=
κ+1

2

∫ t

0

∫
R

(1+τ)κ+1
(
a2tφ

2
2xx−b2xφ22xτ

)
dxdτ. (3.49)
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Taking the sum of (3.47) and (3.48), we obtain

1

2

∫
R
λ(µ−κ)(1+ t)κ−1|φx|2dx+λ

∫
R
(1+ t)κ(φx,φxt)dx

+
1

2

∫
R

(1+ t)κ+1|φxt|2dx+
1

2

2∑
i=1

∫
R
ai(1+ t)κ+1φ2ixxdx

+

∫ t

0

∫
R

(1+τ)κ
[
(µ− κ+1

2
−λ)|φxτ |2

+

2∑
i=1

(
(λ− κ+1

2
)aiφ

2
ixx+(−1)i−1(1+τ)φixτ (niE)x

)]
dxdτ

= ID+
1

2

∫ t

0

∫
R
λ(κ−µ)(κ−1)(1+τ)κ−2|φx|2dxdτ

−λ
2∑
i=1

∫ t

0

∫
R

(−1)i−1(1+τ)κφix(niE)xdxdτ+

2∑
i=0

Ji. (3.50)

Here ID := ID1 +ID2 and

J0 : =−λ
2∑
i=1

∫ t

0

∫
R

(−1)i−1(1+τ)κbiφitxφixxdxdτ

+

∫ t

0

∫
R

(1+τ)κ
(
λ(φxx,F)+(1+τ)(φxτ ,Fx)

)
dxdτ. (3.51)

Now we treat (3.50) term by term. Invoking ai≥a, one has

2∑
i=1

aiφ
2
ixx≥a|φxx|2. (3.52)

We rewrite∫ t

0

∫
R

(1+ t)κ+1
2∑
i=1

(−1)i−1φixτ (niE)xdxdτ

=
1

2
(1+ t)κ+1

∫
R
n1E

2
xdx−

1

2

∫
R

(n1E
2
x)|0dx−

κ+1

2

∫ t

0

∫
R

(1+ t)κn1E
2
xdxdτ

−1

2

∫ t

0

∫
R
(1+ t)κ+1

(
n1tE

2
x−2φ2xτ (EEx)x

)
dxdτ, (3.53)

and

λ

2∑
i=1

∫ t

0

∫
R

(−1)i−1(1+τ)κφix(niE)x

)
dxdτ

=λ

∫ t

0

∫
R

(1+τ)κ
(
Ex(n1E)x+φ2x(EEx)x

)
dxdτ

=λ

∫ t

0

∫
R

(1+τ)κn1|Ex|2dxdτ+λ

∫ t

0

∫
R

(1+τ)κ
(
n1xEEx+φ2x(EEx)x

)
dxdτ. (3.54)
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Now we take

κ= 1, µ−1>λ>1,

and see that from (3.52)-(3.54) it follows that (3.50) is changed to

1

2
λ(µ−κ)‖φx‖2 +λ

∫
R

(1+ t)(φx,φxt)dx+
1

2
(1+ t)2

(
‖φxt‖2 +a‖φixx‖2 +n‖Ex‖2

)
+

∫ t

0

∫
R
(1+τ)

(
(µ−1−λ)‖φxτ‖2 +(λ−1)

(
a‖φxx‖2 +n‖Ex‖2

))
dxdτ

≤C
(
‖φ0‖22 +‖ψ0‖21 + |

3∑
i=0

Ji|
)
. (3.55)

Here J3 is defined by

J3 : =
1

2

∫ t

0

∫
R

(1+τ)2
(
n1tE

2
x−2φ2xτ (EEx)x

)
dxdτ

+λ

∫ t

0

∫
R

(1+τ)
(
n1x−φ2xx

)
EExdxdτ. (3.56)

We first deal with J3. Employing the interpolation inequality (3.32) we get

|J3|≤C
∫ t

0

(1+τ)2
(
|J̄ |(1+ t)−µ‖Ex‖2

+(‖φ1xτ‖+‖φ2xτ‖)‖Ex‖L∞‖Ex‖+‖φ2xτ‖‖E‖L∞‖Exx‖
)
dτ

+

∫ t

0

(1+τ)
(
|J̄ |(1+ t)−µ‖Ex‖‖E‖+

(
‖φ1xx‖+‖φ2xx‖

)
‖E‖L∞‖Ex‖

)
dτ

≤C
(
|J̄ |N(t)2 +N(t)3

)
. (3.57)

The term J2 is handled as follows. Recalling the definition ai and bi, one has

ait=

(
p̂′(ni)−

2J2
i

n3i

)
(φitx+ n̂t)+

2(−φit+ Ĵ)
(
−φitt+ Ĵt

)
n2i

, (3.58)

bix=
2(−φitx+ Ĵix)

ni
− 2(−φit+ Ĵ)(φixx+ n̂x)

n2i
. (3.59)

Using (3.10) and (3.11), we can deal with the term φitt as follows

|φitt|≤C(|φixx|+ |φitx|+(1+ t)−1|φit|+ |E|+ |Fi|). (3.60)

Combining this with (3.6)-(3.7), we thus obtain

|J2|≤C
∫ t

0

∫
R
(1+τ)2

(
|φ2tx|+ |n̂t|+(|φ2t|+ |Ĵ |)(|φ2tt|+ |Ĵt|)

)
φ22xxdxdτ

+C

∫ t

0

∫
R

(1+τ)2
(
|φ2tx|+ |Ĵx|+(|φ2t|+ |Ĵ |)(|φ2xx|+ |n̂x|)

)
φ22xτdxdτ

≤C(|J̄ |+N(t)3). (3.61)
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J1 can be estimated in the same way as that for J2. So it remains to deal with J0. To
this end, we compute ∂xFi:

Fix=

(
(ψ2
i +2ψiĴ)n̂x

n2i
− 2ψiĴix

ni
−
(
p̂′(ni)− p̂′(n̄)− p̂′′(n̄)(ni− n̄)

)
n̂x− p̂′′(n̄)φixn̂x

)
x

+

(
Ĵ2n̂x
n2i
− 2Ĵ Ĵix

ni
− Ĵt−

µ

1+ t
Ĵ− p̂′′(n̄)n̂n̂x

)
x

−
(
p̂′(n̄)n̂x

)
x
. (3.62)

Here (
p̂′(ni)− p̂′(n̄)− p̂′′(n̄)(ni− n̄)

)
x

= (p̂′′(ni)− p̂′′(n̄))nix

= p̂′′′(ξi)(φix+ n̂)(φixx+ n̂x). (3.63)

Further we recall the definition of n̂ and Ĵ , and denote their time-decay rates by

r(n̂) := |J̄ |(1+ t)−µ+1, r(Ĵ) := |J̄ |(1+ t)−µ, and r(Ĵ)≤ r(n̂),

respectively. It is easy to see that for any i∈N there hold

r(∂ixf) =O(1)r(f), (3.64)

r(Πm
i=1∂

mi
x f) =O(1)(r(f))m, (3.65)

(r(f))m≤ r(f). (3.66)

for all f ∈{n̂,Ĵ}, mi∈N∪{0}, and
∑m
i=1mi=m where we assume that m∈N. Hence

|Fix−Fi3x|≤C
(

(|ψi|+ |Ĵ |)|ψixn̂x|+ |ψiĴxn̂x|

+(|ψi|+ |Ĵ |)|ψin̂xnix|+ |ψixĴx|+ |ψiĴxx|+ |ψiĴxnix|

+|(ni− n̄)nixn̂x|+ |ni− n̄|2|n̂xx|+ |φixxn̂x|+ |φixn̂xx|
)

+C
(
|Ĵ Ĵxn̂x|+ |Ĵ2n̂xx|+ |Ĵ2n̂xnix|+ Ĵ2

x

+|Ĵ Ĵxx|+ |Ĵ Ĵxnix|+ |(n̂n̂x)x|+ |n̂xx|
)

≤C
(
|φitx|(r(n̂)+r(Ĵ))+ |φit|r(Ĵ)r(n̂)+(|φit|+ |φix|+ |φixx|)r(n̂)

+|φitφixx|r(Ĵ)+r(n̂)2χsupp(n̂)

)
. (3.67)

Here χA denotes the characteristic function of the set A and supp(n̂) is the support of
the function n̂. For the term containing Fi3x, we have∫ t

0

∫
R
(1+τ)2φxτFi3xdxdτ

=−
∫ t

0

∫
R
(1+τ)2φxxτFi3dxdτ

=−
∫ t

0

d

dτ

∫
R
(1+τ)2φxxFi3dxdτ+

∫ t

0

∫
R
2(1+τ)φxxFi3dxdτ+

∫ t

0

∫
R
(1+τ)2φxxFi3τdxdτ

=−
∫
R
(1+τ)2φxxFi3dx

∣∣∣t
0
+

∫ t

0

∫
R
2(1+τ)φxxFi3dxdτ
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+

∫ t

0

∫
R
(1+τ)2φxxFi3τdxdτ. (3.68)

It is easy to show that∣∣∣∣∫
R
(1+ t)2φxxFi3dx

∣∣∣∣≤C∫
R

(1+ t)2|φxxFi3|dx

≤C|J̄ | sup
0≤τ≤t

((1+τ)‖φxx(τ)‖) ·(1+ t)−µ+2

≤CδN(t). (3.69)

For µ>2,∣∣∣∣∫ t

0

∫
R

2(1+τ)φxxFi3dxdτ

∣∣∣∣≤C∫ t

0

(
(1+τ)‖φxx‖

)
‖Fi3‖dτ

≤C
∫ t

0

sup
0≤τ≤t

(
(1+τ)‖φxx‖

)
|J̄ |(1+τ)−µ+1dτ

≤CδN(t), (3.70)

and∣∣∣∣∫ t

0

∫
R

(1+τ)2φxxFi3τdxdτ

∣∣∣∣≤C∫ t

0

(
(1+τ)‖φxx‖

)
‖Fi3τ‖dτ

≤C
∫ t

0

sup
0≤τ≤t

(
(1+τ)‖φxx‖

)(
(1+τ)|J̄ |(1+τ)−µ

)
dτ

≤CδN(t). (3.71)

Then it follows from (3.67)-(3.71) that

|J0|≤C
∫ t

0

∫
R

(1+τ)

2∑
i=1

|biφitxφixx|dxdτ

+C

∫ t

0

∫
R

(1+τ)
∣∣∣λ(φxx,F)+(1+τ)(φxτ ,Fx)

∣∣∣dxdτ
≤C(|J̄ |+N(t))N(t)2 +C|J̄ |N(t). (3.72)

Thus, combining (3.50)-(3.51), we complete the proof of the lemma.

From Lemma 3.1 and Lemma 3.2, we immediately obtain the following a priori
estimates.

Lemma 3.3 (A priori estimates). It holds that

2∑
`=1

(
(1+τ)`‖∂`−1x (φ1x,φ2x,ψ1,ψ2,E)(τ)‖2 +(1+τ)`−2‖∂`−1x ‖(φ1,φ2)(τ)‖2

)
+

∫ t

0

1∑
`=0

(
(1+τ)`‖∂`x(φ1x,φ2x,ψ1,ψ2,E)(τ)‖2 +(1+τ)`−2‖∂`x‖(φ1,φ2)(τ)‖2

)
dτ

≤C(|J̄ |+‖φ0‖22 +‖ψ0‖21) (3.73)

and

‖(φ1,φ2)(t)‖L∞(R)≤C(|J̄ |+‖φ0‖22 +‖ψ0‖21), (3.74)
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‖(ψ1,ψ2)(t)‖L∞(R)≤C(|J̄ |+‖φ0‖22 +‖ψ0‖21) (1+ t)−
3
4 , (3.75)

‖E(t)‖L∞(R)≤C(|J̄ |+‖φ0‖22 +‖ψ0‖21) (1+ t)−
3
4 , (3.76)

‖(φ1,φ2)t(t)‖L∞(R)≤C(|J̄ |+‖φ0‖22) (1+ t)−
3
4 , (3.77)

‖(φ1,φ2)x(t)‖L∞(R)≤C(|J̄ |+‖φ0‖22 +‖ψ0‖21) (1+ t)−
3
4 , (3.78)

provided with |J̄ |+N(t)<ε3 with some 0<ε3≤ε2, where ε2 is given in Lemma 3.2.

Proof. From Lemma 3.1 and Lemma 3.2, we have

2∑
`=1

(
(1+τ)`‖∂`−1x (φ1x,φ2x,ψ1,ψ2,E)(τ)‖2 +(1+τ)`−2‖∂`−1x ‖(φ1,φ2)(τ)‖2

)
+

∫ t

0

1∑
`=0

(
(1+τ)`‖∂`x(φ1x,φ2x,ψ1,ψ2,E)(τ)‖2 +(1+τ)`−2‖∂`x‖(φ1,φ2)(τ)‖2

)
dτ

≤C(|J̄ |+‖φ0‖22 +‖ψ0‖21)

+C(‖φ0‖22 +‖φt0‖21 +‖E0‖21 + |J̄ |(N(t)2 +N(t)M(t))+N(t)3), (3.79)

that is,

(1−C|J̄ |−CN(t))N2(t)+(1−C|J̄ |)M2(t)≤C(|J̄ |+‖φ0‖22 +‖ψ0‖21),

which implies the a priori estimates

N2(t)+M2(t)�C(|J̄ |+‖φ0‖22 +‖ψ0‖21),

provided with

|J̄ |+N(t)�1.

Furthermore, by the interpolation inequality (3.32), we have

‖φ1(t)‖L∞(R)≤C‖φ1(t)‖ 1
2 ‖φ1x(t)‖ 1

2

≤C(|J̄ |+‖φ0‖22 +‖ψ0‖21)
(

(1+ t)−
1
2 (1+ t)

1
2

) 1
2

≤C(|J̄ |+‖φ0‖22 +‖ψ0‖21), (3.80)

and

‖φ1x(t)‖L∞(R)≤C‖φ1x(t)‖ 1
2 ‖φ1xx(t)‖ 1

2

≤C(|J̄ |+‖φ0‖22 +‖ψ0‖21)
(

(1+ t)−
1
2 (1+ t)−1

) 1
2

≤C(|J̄ |+‖φ0‖22 +‖ψ0‖21) (1+ t)−
3
4 . (3.81)

For the rate of ψi, we use the equation φt=−ψi. The other decay properties are obtained
in a similar way.

Therefore the proof is complete.
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