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Abstract

For unipolar hydrodynamic model of semiconductor device represented by Euler-Poisson equations, 
when the doping profile is supersonic, and the boundary data are in subsonic region and supersonic region 
separately, the system possesses the shock transonic steady-states and the smooth transonic steady-states. 
In this paper we study the nonlinear structural stability and the linear dynamic instability of these steady 
transonic solutions. For any relaxation time: 0 < τ ≤ +∞, by means of elaborate singularity analysis, we 
first investigate the structural stability of the C1-smooth transonic steady-states, once the perturbations of 
the initial data and the doping profiles are small enough. We note that, when the C1-smooth transonic 
steady-states pass through the sonic line, they produce singularities for the system, and cause some essen-
tial difficulty in the proof of structural stability. Moreover, when the relaxation time is large enough τ � 1, 
under the condition that the electric field is positive at the shock location, we prove that the transonic shock 
steady-states are structurally stable with respect to small perturbations of the supersonic doping profile. Fur-
thermore, we show the linearly dynamic instability for these transonic shock steady-states provided that the 
electric field is suitable negative. The proofs for the structural stability results are based on singularity anal-
ysis, a monotonicity argument on the shock position and the downstream density, and the stability analysis 
of supersonic and subsonic solutions. The linear dynamic instability of the steady transonic shock for Euler-
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Poisson equations can be transformed to the ill-posedness of a free boundary problem for the Klein-Gordon 
equation. By using a nontrivial transformation and the shooting method, we prove that the linearized prob-
lem has a transonic shock solution with exponential growths. These results enrich and develop the existing 
studies.
© 2022 Elsevier Inc. All rights reserved.

MSC: 35R35; 35Q35; 76N10; 35J70

Keywords: Hydrodynamic model of semiconductors; Euler-Poisson equations; C1-smooth transonic solutions; 
Transonic shock solutions; Structural stability; Linear dynamic instability

Contents

1. Introduction and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
1.1. Modeling equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
1.2. Background of research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
1.3. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
1.4. Strategies for proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

2. Structural stability for steady C1-smooth transonic solutions . . . . . . . . . . . . . . . . . . . . . . . 145
2.1. Case 1. α = 0 (i.e., τ = +∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
2.2. Case 2. α > 0 (i.e., 0 < τ < +∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

3. Structural stability for steady transonic shock solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
3.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
3.2. Structural stability for transonic shock solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4. Linear dynamic instability of transonic shock solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.1. Formulation of the linearized problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.2. Linear dynamic instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

1. Introduction and main results

1.1. Modeling equations

This paper is concerned with the smooth/shock transonic solutions for the one-dimensional 
hydrodynamic model for semiconductors, which is presented as Euler-Poisson equations with 
relaxation effect ⎧⎪⎪⎨

⎪⎪⎩
nt + (nu)x = 0,

(nu)t + (P(n) + nu2
)
x

= nE − nu

τ
,

Ex = n − b(x).

(1.1)

The model describes several physical flows including the propagation of electrons in submi-
cron semiconductor devices [3,6,8,13,22,24,34] and plasmas [40] (hydrodynamic model), and 
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the biological transport of ions for channel proteins [7]. In the hydrodynamic model of semi-
conductor devices or plasma, n, u, P and E represent the electron density, macroscopic particle 
velocity, pressure and the electric field, respectively. The function b = b(x) > 0 is the doping 
profile standing the impurity for the device. The parameter τ > 0 means the momentum relax-
ation time. While, the biological model describes the transport of ions between the extracellular 
side and the cytoplasmic side of membranes [7]. In this case, n, nu and E are the ion concentra-
tion, the ions’ translational mass, and the electric field, respectively, and the doping profile b(x)

represents a background density of charged ions.
For ideal gas law of isentropic case, the pressure function P is physically represented by

P(n) = T nγ ,

where T > 0 is a constant absolute temperature, and γ > 1 represents the adiabatic exponent. In 
this article, we mainly consider the isothermal case, i.e., γ = 1 for simplicity of analysis. The 
case of γ > 1 can be similarly treated.

Using the terminology from gas dynamics, we call c := √
P ′(n) = √

T > 0 the sound speed 
for P(n) = T n. Moreover, if we denote

J := nu, the current density of the flow, (1.2)

and take, without loss of generality,

J > 0 and T = 1,

then the flow is said to be supersonic/sonic/subsonic if the fluid velocity satisfies

fluid velocity : u = J

n
> (or =, or <) c =√P ′(n) = √

T = 1 : sound speed. (1.3)

Thus, it can be identified that the flow is subsonic if n > J , sonic if n = J , and supersonic if 
0 < n < J .

The main issue of the present paper is to study the structural stabilities for C1-smooth 
transonic steady-states and transonic shock steady-states, and the linear dynamic instability 
for the transonic shock steady-states. These steady-states are solutions of the following time-
independent equations

⎧⎪⎪⎨
⎪⎪⎩

(nu)x = 0, i.e., J = nu = constant,(
n + nu2

)
x

= nE − nu

τ
,

Ex = n − b(x).

(1.4)

For convenience, we set

α := 1

τ
, the reciprocal of the relaxation time of the current, (1.5)

thus system (1.4) is reduced to
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⎧⎪⎨
⎪⎩
(

n + J 2

n

)
x

= nE − αJ,

Ex = n(x) − b(x),

(1.6)

equivalently,

⎧⎨
⎩nx = (nE − αJ )n2

n2 − J 2 = n2E

n + J
+ Jn2(E − α)

n2 − J 2 ,

Ex = n − b.

(1.7)

Subjected to the stationary system (1.6) or its equivalent form (1.7), two different problems 
are proposed in this paper. One is the “initial value” problem for the system (1.7) in the half space 
R+:

⎧⎪⎪⎨
⎪⎪⎩

nx = n2E

n + J
+ Jn2(E − α)

n2 − J 2 , x ∈ R+,

Ex = n − b(x), x ∈ R+,

(n,E)|x=0 = (n0,E0),

(1.8)

in which the initial data n0 is considered to be supersonic satisfying

0 < n0 < J

throughout the paper, because the case of the subsonic data n0 > J can be similarly treated.
The other is the boundary value problem in the bounded domain [0, L] with a given number 

L > 0: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
n + J 2

n

)
x

= nE − αJ , 0 < x < L,

Ex = n − b(x), 0 < x < L,

n(0) = nl, n(L) = nr,

(1.9)

where the boundary conditions are considered to be

nl < J < nr

with the supersonic boundary value nl and the subsonic boundary value nr in the paper. The case 
of nl > J > nr with the subsonic boundary value nl and the supersonic boundary value nr can 
be also similarly treated.

The boundary value problem (1.9), by dividing (1.9)1 by n and differentiating it with respect 
to x, is also equivalent to the following system,

⎧⎪⎪⎨
⎪⎪⎩
[(1

n
− 1

n3

)
nx

]
x

+ α
(J

n

)
x

− [n − b(x)] = 0, 0 < x < L

Ex = n − b(x), 0 < x < L,

n(0) = n , n(L) = n .

(1.10)
l r
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The C1-smooth transonic solutions and the shock transonic solutions for the initial value 
problem of system (1.8) or the boundary value problem (1.9) are defined as follows, respectively.

Definition 1.1 (C1-smooth transonic solutions). A pair of (n(x), E(x)) with n(x) > 0 is called a 
C1-smooth transonic solution of the initial value problem (1.8), or the boundary value problem 
(1.9), if (n, E) ∈ C1(I ) × C2(I ) for I := R+ or I := [0, L], and there exists a number x0 > 0
such that

(n,E) =
{

(nsup,Esup)(x), as x ∈ [0, x0],
(nsub,Esub)(x), as x ≥ x0,

where (nsup, Esup)(x) satisfying 0 < nsup(x) < J on (0, x0) is called to be supersonic, and 
(nsub, Esub)(x) satisfying nsub(x) > J for x > x0 is subsonic, both of them are differentiable 
at the sonic line n = J :{

nsup(x0) = nsub(x0) = J, n′
sup(x0) = n′

sub(x0),

Esup(x0) = Esub(x0), E′
sup(x0) = E′

sub(x0). E′′
sup(x0) = E′′

sub(x0).
(1.11)

Definition 1.2 (Shock transonic solutions). A pair of (n(x), E(x)) with n(x) > 0 is called a 
transonic shock solution to problem (1.8) or (1.9), if there exists a point x0 ∈ (0, L), such that

(n,E) =
{ (

nsup,Esup
)
(x), as x ∈ [0, x0),

(nsub,Esub) (x), as x > x0,

satisfies 0 < nsup(x) < J on (0, x0), nsub(x) > J on x > x0, and the entropy condition

0 < nsup(x
−
0 ) < J < nsub(x

+
0 ), (1.12)

and the Rankine-Hugoniot conditions

nsup(x
−
0 ) + J 2

nsup(x
−
0 )

= nsub(x
+
0 ) + J 2

nsub(x
+
0 )

, Esup(x
−
0 ) = Esub(x

+
0 ). (1.13)

1.2. Background of research

Euler-Poisson equations have been an important topic in fluid dynamics and semiconductor 
device industry. One of interesting questions is to investigate their physical solutions such as 
subsonic/supersonic/transonic solutions. When the setting background of the steady-state system 
of Euler-Poisson equations is completely subsonic, namely, subsonic boundary and subsonic 
doping profile, Degond-Markowich [12] first established the existence of the subsonic solution, 
and proved its uniqueness once the steady-state system is strongly subsonic with J 
 1. Since 
then, the steady subsonic flows were studied in great depth with different boundaries as well 
as the higher dimensions case in [2,3,12–14,18,23,33,36], see also the references therein. These 
subsonic steady-states with different settings are then extensively proved to be dynamically stable 
in [18,25,19–21,35,36] and the references there cited, once the initial perturbations around the 
subsonic steady-states are small enough.
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Regarding the steady supersonic flows, the first result on the existence and uniqueness of 
the supersonic steady-states was obtained by Peng-Violet [38], when the doping profile and the 
boundary both are strongly supersonic. See also a recent study on supersonic steady-states for 3D 
potential flows [5], and the structural stability of 2-D supersonic steady-states elegantly proved 
by Bae-Duan-Xiao-Xie [4].

Another interesting issue for Euler-Poisson equations is about the structure of transonic so-
lutions. The first observation on such kind transonic shocks was made by Ascher-Markowich-
Pietra-Schmeiser [1] when the boundary value problem (1.9) is with subsonic boundary data 
but a constant supersonic doping profile, which was then generalized by Rosini [39] for the 
non-isentropic flow. Furthermore, when the doping profile b(x) is nonconstant, Gamba [16] con-
structed 1-D transonic solutions with shocks by the method of vanishing viscosity, then joint 
with Morawetz, they [17] showed the existence of transonic solutions with shocks in 2-D case. 
However, these solutions as the limits of vanishing viscosity yield some boundary layers. Hence, 
the question of well-posedness of the boundary value problem for the inviscid problem couldn’t 
be solved by the vanishing viscosity method. Late then, when Euler-Poisson equations are lack 
of the effect of the semiconductor (the case of τ = ∞), Luo-Xin [32] and Luo-Rauch-Xie-Xin 
[31] studied the structure of transonic steady-states, and showed the existence/nonexistence and 
the uniqueness/nonuniqueness of the transonic solutions, once the stationary Euler-Poisson sys-
tem possesses a constant supersonic/subsonic doping profile, and one supersonic boundary and 
the other subsonic boundary. Some restrictions on the boundary and the domain are also needed. 
These transonic shocks with supersonic doping were proved to be structurally stable [31] when 
the doping profile is a small perturbation of the constant supersonic doping. Under certain re-
strictions, the time-asymptotic stability of the transonic shock profiles was also obtained in [31].

Recently, the study in this topic has made some profound progress [9–11,26,27,41]. For Euler-
Poisson equations with relaxation effect (1.1), when the boundary is subjected to be sonic (the 
critical case), Li-Mei-Zhang-Zhang [26,27] first classified the structure of all type of physical 
solutions. That is, when the doping profile is subsonic, the steady Euler-Poisson system pos-
sesses a unique subsonic solution, at least one supersonic solution, and infinitely many shock 
transonic solutions if the semiconductor effect is weak (τ � 1), and infinitely many C1-smooth 
transonic solutions if the semiconductor effect is strong (τ 
 1); while, when the doping profile 
is supersonic and far from the sonic line, there is no any physical (subsonic/supersolic/transonic) 
solution. The supersonic solution and many shock-transonic solutions exist only when the dop-
ing profile is sufficiently close to the sonic line. Later, when the doping profile is transonic, 
according to two cases of the subsonic-dominated and supersonic-dominated doping profile, 
Chen-Mei-Zhang-Zhang [9] further classified the structure of all subsonic/supersonic/shock-
transonic solutions. Very recently, by using the manifold analysis and singularity analysis near 
the sonic line and the singular point, Wei-Mei-Zhang-Zhang [41] investigated the existence and 
regularity of the smooth transonic steady solutions of Euler-Poisson equations. They gave the 
detailed discussions on the structure of directions of the transonic solutions, and the regular-
ity of the smooth transonic solutions. In particular, when the boundary states are separated in 
the supersonic regime and the subsonic regime, they obtained that the Euler-Poisson system 
with supersonic doping profile possesses two C∞-smooth transonic solutions, where one is from 
supersonic region to subsonic region and the other is of the inverse direction. Moreover, the ex-
istence of 2D and 3D radial subsonic/supersonic/transonic steady-states with the sonic boundary 
conditions were technically proved by Chen-Mei-Zhang-Zhang in [10] and [11], respectively.

Remarkably, when the system (1.9) is lack of the semiconductor effect, namely, the relaxation 
time τ = ∞, i.e., α = 0, Luo-Rauch-Xie-Xin [31] artfully proved that, there exists a unique 
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transonic shock for the system once the doping file is a supersonic constant b = b0 < J , and 
showed its structural stability, namely, there will exist another transonic shock solution for the 
doping profile b(x) as a small perturbation of the supersonic doping b0. Since the transonic 
shocks jump the sonic line from the supersonic regime to the subsonic regime, such that there is 
no singularity for the system (1.9) at the sonic line, namely, n(x) �= J . This is an advantage for 
the proof of the structural stability of the transonic shocks, as we know.

However, for the smooth transonic solutions, they pass through the sonic line n = J , and 
make the system (1.7) to be singular at the sonic line (the denominator of (1.7) becomes zero, 
i.e., n2 −J 2 = 0). Different from the case of transonic shocks, this causes an essential difficulty to 
show the structural stability of the smooth transonic steady-states, and remains this problem to be 
open for any relaxation time 0 < τ ≤ ∞. To answer this question will be one of our main targets 
in the present paper. Here we have a key observation. By taking singularity analysis around 
the sonic line, we can heuristically determine the value of the derivative of the smooth transonic 
solution n(x) at the singular point on the sonic line. This, with some exquisite singularity analysis 
together, can guarantee us to show the structural stability around the singular points, then to 
prove the structural stability of the smooth transonic steady-state for the initial value problem 
(1.8) (also the boundary value problem (1.9)) in the space C1

loc(R+) × C2
loc(R+) (or in the space 

C1[0, L] ×C2[0, L]). In fact, the carried-out analysis around the singular transition points on the 
sonic line is technical and challenging.

Moreover, when τ � 1, we recognize that, the boundary value problem (1.7) and (1.9) possess 
the transonic shocks, once the doping profile is a supersonic constant, and these transonic shocks 
are also structurally stable, when the perturbed doping profile is small enough. Furthermore, 
we prove that these steady transonic shocks are dynamically unstable, when the electric field is 
negative. This part can be regarded as the generalizations of the previous study [31] with τ = ∞
to the case of τ � 1, but with some technical development.

When the boundary is restricted on the sonic line (critical case), the stationary Euler-Poisson 
system may possess many types of physical solutions, including subsonic/supersonic/transonic 
solutions, as we know. The structural stability of these physical steady-states will be more chal-
lenging, see our further study [15] for the case of subsonic steady-state.

For the studies of transonic shock steady-states related to nozzle, we refer to [28,29,42,43].

1.3. Main results

In this subsection, we state our main results on the structural stabilities of smooth transonic 
steady-states and the transonic shock steady-states, respectively, and the linear dynamic instabil-
ity of these transonic shock steady-states.

We first give the existence and uniqueness of C1-smooth transonic steady-states and the tran-
sonic shock steady-states. This can be also seen from the following numerical simulations for 
the phase diagrams of (n, E), for example, by taking b(x) = 0.5, J = 1, and τ = 1 in Figs. 1 and 
2. Here, there are two smooth curves cross the sonic line n = J , namely, two smooth transonic 
steady-states. One smooth transonic curve is from the supersonic regime to the subsonic regime 
(see Fig. 1) by setting either the initial data (n0, E0) to be supersonic n0 < J or the boundary 
data to be nl < J < nr . The other smooth transonic curve is from the subsonic regime to the 
supersonic regime (see Fig. 2) by setting either the initial data (n0, E0) to be subsonic n0 > J or 
the boundary data to be nl > J > nr .

In what follows, we mainly consider the case of transonic steady-states from the supersonic 
regime to the subsonic regime in Theorems 1.1-1.6. Of course, the results presented in Theo-
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Fig. 1. This is the (n, E) portrait diagram by taking b(x) = 0.5, J = 1, and τ = 1. We mark one smooth curve (smooth 
transonic steady-state) passing through the sonic line n = 1 from the supersonic regime to the subsonic regime.

Fig. 2. This is the (n, E) portrait diagram by taking b(x) = 0.5, J = 1, and τ = 1. We mark the other smooth curve 
(smooth transonic steady-state) passing through the sonic line n = 1 from the subsonic regime to the supersonic regime.

rem 1.1-1.6 are also true for the case of transonic steady-states from the supersonic regime to the 
subsonic regime.

Theorem 1.1 (Existence and uniqueness of smooth/shock transonic steady-states). Let the doping 
profile be supersonic such that b(x) ∈ L∞(0, L) and 0 < b(x) < J .

(I) For any relaxation time 0 < τ ≤ +∞, if b(x) = b0 < J is a constant in the supersonic 
regime, then the stationary Euler-Poisson equations with the initial condition (1.8) (or the 
boundary value condition (1.9)) admit a unique C1-smooth transonic solution (n(x), E(x))

passing through the sonic line n(x) = J at a unique point x0 > 0 determined implicitly from 
the system:

(n,E)(x) =
{

(nsup,Esup)(x), x ∈ [0, x0]
(nsub,Esub)(x), x ≥ x0,
138



Y.-H. Feng, M. Mei and G. Zhang Journal of Differential Equations 344 (2023) 131–171
and ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

nsup(x0) = nsub(x0) = J,

n′
sup(x0) = n′

sub(x0),

Esup(x0) = Esub(x0) = α = 1
τ
,

E′
sup(x0) = E′

sub(x0) = J − b0,

E′′
sup(x0) = E′′

sub(x0) = nx(x0).

Here, for the initial value problem (1.8), the initial data (n0, E0) is in the supersonic regime, 
satisfying 0 < n0 < J and E0 < min{ 1

τ
, J

n0τ
} = min{α, αJ

n0
}; while for the boundary value 

problem (1.9), the boundary condition should be suitably selected with 0 < nl < J < nr .
(II) If the relaxation time is sufficiently large, τ � 1, and the doping profile b(x) is sufficiently 

close to the sonic state: |b(x) − J | 
 1, then the initial value problem (1.8) (or the bound-
ary value problem (1.9)) admits the other type of solution, the so-called transonic shock 
steady-state (n, E)(x) satisfying the entropy condition (1.12) and the Rankine-Hugoniot 
jump conditions (1.13) at jump location x0, which is unique at the jump location x0. Here x0
can be uniquely determined when nsub(x

+
0 ) satisfies 

∣∣nsup(x
−
0 ) − nsub(x

+
0 )
∣∣
 1 is fixed.

Remark 1.1.

• It is easy to see that the existence results about the C1-smooth transonic solutions and the 
transonic shock solutions in Theorem 1.1 are a direct corollary of [41] and consequences of 
the pioneering works in [27], respectively. So we omit the details of proof.

• In Part (I), the condition 0 < E0 < min{ 1
τ
, J

n0τ
} = min{α, αJ

n0
} is to guarantee nx(0) > 0 so 

then the trajectory (n(x), E(x)) will pass through the sonic line with n = J and E = α. As 
showed in [41], only for certain given initial data (n0, E0), the initial value problem (1.8)
possesses the unique smooth transonic steady-state.

Next, we are going to state the structural stability of the C1-smooth transonic steady-state for 
the system (1.7) and (1.8) as follows.

Theorem 1.2 (Structural stability of C1-smooth transonic steady-states of (1.8)). Suppose J > 0
to be a constant. For i = 1, 2, let b(x) = bi be two constants satisfying 0 < bi < J and let 
(ni, Ei)(x) be two C1-smooth transonic solutions (showed in Theorem 1.1) to the initial value 
problem (1.8) with respect to the initial data (ni0, Ei0) and the doping profiles bi , and let x =
xi > 0 be the singular locations of the C1-smooth transonic solutions ni(x) cross the sonic 
line n(x) = J , respectively. Then (ni, Ei)(x) are structurally stable in C1

loc(R+) × C2
loc(R+). 

Namely, for any given local interval [0, L] ⊂R+ with L > max{x1, x2}, it holds

‖(n1 − n2) (·)‖C1[0,L] + ‖(E1 − E2)(·)‖C2[0,L] ≤ Cδ0, (1.14)

where C = C(L) > 0 and

δ0 := |b1 − b2| + |n10 − n20| + |E10 − E20| . (1.15)

Similarly, the structural stability of smooth transonic steady-states for the boundary value 
problem (1.9) holds as follows.
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Theorem 1.3 (Structural stability of C1-smooth transonic steady-states of (1.9)). Suppose J > 0
to be a constant. For i = 1, 2, let bi be two constants satisfying 0 < bi < J and let (ni, Ei)(x)

be two C1-smooth transonic solutions (showed in Theorem 1.1) to the boundary problem (1.9)
with the boundary data (nil, nir ) corresponding to the doping profiles bi , and let x = xi > 0 be 
the singular locations of the C1-smooth transonic solutions ni(x) cross the sonic line n(x) = J , 
respectively. Then (ni, Ei)(x) for i = 1, 2 are structurally stable in C1[0, L] ×C2[0, L]. Namely, 
it holds

‖(n1 − n2) (·)‖C1[0,L] + ‖(E1 − E2)(·)‖C2[0,L] ≤ Cδ0, (1.16)

where

δ0 := |b1 − b2| + |n1l − n2l | + |n1r − n2r | . (1.17)

Remark 1.2.

• To our best knowledge, Theorem 1.2 and Theorem 1.3 are the first results to show the struc-
tural stability for the smooth transonic steady-states.

• As showed in [41], the smooth transonic steady-states can be C∞. By the same fashion as in 
Theorem 1.2 and Theorem 1.3, in fact, we can similarly prove their structural stability in the 
sense of C∞. For the simplicity, we omit it.

Inspired by the study [31] on the structural stability of steady transonic shocks for the case 
with τ = ∞ (i.e., α = 0) in (1.7), we can further show the structural stability in the case with 
τ �= ∞ but τ � 1 as follows.

Theorem 1.4 (Structural stability of transonic shock steady-states of (1.9)). Assume J > 0 is 
a constant, the relaxation time is τ � 1, and the doping profile is 0 < b(x) = b0(x) < J and 
|b0(x) − J | 
 1 for x ∈ [0, L]. Let (n(0), E(0))(x) be the unique transonic shock solution to the 
boundary value problem (1.9) with a single transonic shock located at x = x0 ∈ (0, L) satisfying 
the entropy condition (1.12) and the Rankine-Hugoiot condition (1.13) with Esub(x

+
0 ) > 0. Then, 

for a given doping profile b(x) as the small perturbation around b0(x), namely, there is ε0 > 0
such that if

‖b − b0‖C0[0,L] =: ε ≤ ε0, (1.18)

the boundary value problem (1.9) with b(x) has a unique transonic shock solution (ñ, Ẽ)(x), 
where the single transonic shock located at a point x̃0 ∈ [x0 − Cε, x0 + Cε] for some constant 
C > 0, namely, x̃0 is a small perturbation of x0.

The structural stability of the transonic shock steady-states (Theorem 1.4) is also true for the 
initial value problem (1.8).

Theorem 1.5 (Structural stability of transonic shock steady-states of (1.8)). Assume J > 0 is 
a constant, the relaxation time is τ � 1, and the doping profile is 0 < b(x) = b0(x) < J

and |b0(x) − J | 
 1 for x ∈ [0, L], where [0, L] ⊂ R+ is an any given subset of R+. Let 
(n(0), E(0))(x) be the unique transonic shock solution to the initial value problem (1.8) with a 
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single transonic shock located at x = x0 with 0 < x0 < L satisfying the entropy condition (1.12)
and the Rankine-Hugoiot condition (1.13) with Esub(x

+
0 ) > 0. Then, for a given doping profile 

b(x) as the small perturbation around b0(x), namely, there is ε0 = ε0(L) > 0 such that if

‖b − b0‖C0[0,L] =: ε ≤ ε0, (1.19)

the initial value problem (1.8) with b(x) has a unique transonic shock solution (ñ, Ẽ)(x), where 
the single transonic shock located at a point x̃0 ∈ [x0 − Cε, x0 + Cε] for some constant C > 0, 
namely, x̃0 is a small perturbation of x0.

Next, we are going to state the linear dynamic instability of the steady transonic shock solu-
tions.

For a given function b(x) satisfying 0 < b(x) < J for x ∈ [0, L], and a constant J̄ > 0, let

(n̄, ū, Ē)(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
n̄−,

J̄

n̄−
, Ē−
)

(x), as x ∈ (0, x0),(
n̄+,

J̄

n̄+
, Ē+
)

(x), as x ∈ (x0,L),

(1.20)

be a steady transonic shock solution of (1.4) which satisfies the boundary conditions

(n̄, Ē)(0) = (nl,El), n̄(L) = nr, (1.21)

where Ē(0) = El is determined by the boundary value system (1.9), and (n̄, ū, Ē)(x) is super-
sonic as x ∈ [0, x0), and subsonic as x ∈ (x0, L], i.e.,{

n̄−(x) < J̄ , as x ∈ [0, x0),

n̄+(x) > J̄ , as x ∈ (x0,L], (1.22)

and (n̄, ū, Ē)(x) satisfies the Rankine-Hugoniot conditions at x = x0,

(
n̄− + J̄ 2

n̄−

)
(x0) =

(
n̄+ + J̄ 2

n̄+

)
(x0), and Ē−(x0) = Ē+(x0). (1.23)

Throughout the paper, we also assume that the system is away from vacuum

inf
x∈[0,1] n̄(x) > 0. (1.24)

Obviously, by using the extension Theorem of solutions for ordinary differential equations 
[37], we can extend (n̄−, Ē−) to be a smooth supersonic solution of (1.4) on [0, x0 + δ] for some 
δ > 0, which coincides with (n̄−, Ē−) on [0, x0]. In the sequel, we still use (n̄−, Ē−) to stand for 
this extended solution. In the same way, we shall denote (n̄+, Ē+) to be a subsonic solution of 
(1.4) on [x0 − δ, L] for some δ > 0, which coincides with (n̄+, Ē+) in (1.20) on [x0, L].

Let us consider the initial boundary value problem of system (1.1) with the initial data

(n,u,E) (0, x) = (n0, u0,E0) (x), (1.25)
141



Y.-H. Feng, M. Mei and G. Zhang Journal of Differential Equations 344 (2023) 131–171
and the boundary conditions

(n,u,E) (t,0) =
(

nl,
J̄

nl

,El

)
, n(t,L) = nr, (1.26)

where nl, El and nr are the same as that in (1.21).
We suppose that the initial values are of the form

(n0, u0) (x) =
{

(n0−, u0−) (x), as x ∈ (0, x̃0),

(n0+, u0+) (x), as x ∈ (x̃0,L),
(1.27)

and

E0(x) = El +
x∫

0

(n0(y) − b(y)) dy, (1.28)

which is a small perturbation of (n̄, ū, Ē) in the sense that

|x0 − x̃0| + ‖(n0+, u0+) − (n̄+, ū+)‖Hs
([

x̌0,1
]) + ‖(n0−, u0−) − (n̄−, ū−)‖Hs

([
0,x̂0
]) < ε,

(1.29)
for some small ε > 0, and some integer s suitably large, where x̌0 = min{x0, x̃0} and x̂0 =
max{x0, x̃0}. Simultaneously, we assume that (n0, u0, E0) satisfies the Rankine-Hugoniot condi-
tions at x = x̃0,(

n0+ + n0+u2
0+ − n0− − n0−u2

0−
)

(n0+ − n0−) (x̃0) = (n0+u0+ − n0−u0−)2 (x̃0). (1.30)

In advance of declaring our dynamic linear instability results, we give the definition of piece-
wise smooth entropy solutions to the Euler-Poisson equations with relaxation effect (1.1) as 
follows.

Definition 1.3. If (n−, u−, E−)(x, t) and (n+, u+, E+)(x, t) are C1 smooth solutions of Euler-
Poisson equations with relaxation effect (1.1) in the regions {(t, x)|t ≥ 0, 0 ≤ x ≤ s(t)} and 
{(t, x)|t ≥ 0, s(t) ≤ x ≤ L}, respectively. Then

(n,u,E) (x, t) =
{

(n−, u−,E−) (x, t), as x ∈ (0, s(t)),

(n+, u+,E+) (x, t), as x ∈ (s(t),L),
(1.31)

is said to be a piecewise smooth entropy solution of (1.1) at x = s(t) if (n, u, E) satisfies the 
Rankine-Hugoniot conditions

⎧⎪⎨
⎪⎩
(
n + nu2

)
(t, s(t)+) − (n + nu2

)
(t, s(t)−) = (nu(t, s(t)+) − nu(t, s(t)−)

)
s′(t),(

nu(t, s(t)+) − nu(t, s(t)−)
)= (n(t, s(t)+) − n(t, s(t)−)

)
s′(t),

E(t, s(t)+) = E(t, s(t)−),

(1.32)

and the Lax geometric entropy condition
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(u − 1) (t, s(t)−) > s′(t) > (u − 1) (t, s(t)+), and (u + 1) (t, s(t)+) > s′(t).

Now the linear dynamic instability theorem in this paper is declared as follows.

Theorem 1.6 (Linearly dynamic instability of transonic shock steady-states). Let (n̄, ū, Ē)(x) be 
a transonic shock steady-state to system (1.1) satisfying (1.20)-(1.24). There exists δ > 0 such 
that if

Ē−(x0) = Ē+(x0) < −δ, (1.33)

then the linearized problem corresponding to the initial boundary problem (1.1) and (1.25)-(1.30)
admits a linearly unstable transonic shock solution (n, u, E)(x, t) which is time-exponentially 
growing away from the transonic shock steady-state (n̄, ū, Ē)(x).

Remark 1.3. There is an essential difficulty that the problem involves a free boundary (shock) 
on the left of the subsonic region. To overcome this embarrassment, the key idea is to introduce 
a nontrivial transformation to reformulate the problem on the fixed domain [x0, L].

1.4. Strategies for proofs

In this subsection, we are going to state the ideas and strategies for proving Theorems 1.2-1.6.
For the structural stability of the smooth transonic steady-states stated in Theorem 1.2 and 

Theorem 1.3, the key steps are to carry out the singular analysis around the singular points when 
the smooth transonic steady-states cross the sonic line. Since there are some singularities for 
Euler-Poisson equation (1.7) around the singular point, a suitable setting and re-organizing for 
the working system in [J − ε∗, J + ε∗] are quite technical and artful. The total procedure of 
proof will be divided in two cases α = 0 (i.e., τ = ∞) and α > 0 (i.e., τ �= ∞), and use six 
steps represented by six lemmas (see Lemmas 2.1-2.6). We first treat the easy case of α = 0. In 
fact, when α = 0, problem (1.8) is reduced to a variable separable ordinary differential equation, 
and then we get the explicit formula of the corresponding trajectory (see (2.8) for E(n) = (n −
J )W(n, b)). Furthermore, with the help of the property on W(n, b) obtained in Lemma 2.1, we 
successfully overcome the difficulty caused by the singularity and obtain the stability result in the 
first case of Theorem 1.2. When α > 0, the task becomes very difficult. Different from the case of 
α = 0, there is no any explicit formula for W̃(n, b) since problem (1.8) can’t turn into a variable 
separable ordinary differential equation. We first introduce a transformation Ẽ = E − αJ

n
, and 

then get the corresponding trajectory equation (see (2.25)) to the reduced problem for (1.8). 
After that, we study the properties of Ẽ

n−J
= W̃ (n, b) with respect to variable n and parameter 

b in Lemma 2.4 and Lemma 2.5, respectively. Next, we set M = n(L) and translate the domain 
x ∈ [0, L] into the targeted domain n ∈ [n∗, M]. Late then, we split the targeted domain [n∗, M]
into three parts [n∗, J − ε∗] ∪ [J − ε∗, J + ε∗] ∪ [J + ε∗, M], where [J − ε∗, J + ε∗] is the 
singular domain including the singular points n = J , and [n∗, J − ε∗] ∪ [J + ε∗, M] are the 
non-singular domains. The crucial process is to evaluate the difference of two smooth transonic 
steady-states |(n1 − n2)(x)| + |(E1 − E2)(x)| and |(n1 − n2)x(x)| + |(E1 − E2)xx(x)| near the 
singular point in [J − ε∗, J + ε∗]. We use the difference scheme and the manifold analysis 
near the singularity point n = J to remove the singular property of W̃(n, b). By the method 
of proof by contradiction, we can fix a positive constant ε∗ = min{ε+, ε−} suitably small, and 
prove that P admits both the upper bound l − δ∗ and the lower bound l + δ∗ on the domain 
n−J
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n ∈ [J −ε∗, J +ε∗]. Next, due to the fact that there is no singularity on the domain [n∗, J −ε∗] ∪
[J + ε∗, M], we easily obtain 

∣∣∣ P
n−J

∣∣∣< C over the targeted domain n ∈ [n∗, M]. Furthermore, by 

combining the well-established estimates, we obtain that W̃(n, b) is Lipschitz continuous with 
respect to the parameter b. Finally, by combining Lemmas 2.3-2.5, we prove Lemma 2.6 which 
contains the structural stability of C1-smooth transonic steady-states of (1.8) for the second case 
of Theorem 1.2.

For the structural stability of steady transonic shocks stated in Theorem 1.4 and Theorem 1.5, 
the main idea is based on a monotonic dependence of the shock location as a function of down-
stream density and the a priori estimates for supersonic and subsonic solutions. First, by the 
entropy condition and the Rankine-Hugoniot condition, we connect a supersonic state (n, E)

satisfying n < J to a unique subsonic state (S (n); E) via a transonic shock. Next, with the help 
of the positive electric field condition E(2)

sup(x1) > 0 and the comparison principles for ordinary 
differential equations, we establish the monotonic relation for the transonic shock solutions (see 
Lemma 3.1). Then, by using the multiplier method, we establish the a priori estimates for super-
sonic and subsonic flows, which yield the existence of supersonic, subsonic, and transonic shock 
solutions (see Lemma 3.2). After that, we start to prove Theorem 1.4. Based on the fact that 
the boundary value problem (1.9) has a unique transonic shock solution (n(0), E(0)) for the case 
when b(x) = b0(x)(x ∈ [0, L]) with a single transonic shock located at x = x0 ∈ (0, L), we con-
struct two different transonic shock solutions whose subsonic solutions (nr

i , E
r
i )(x), (i = 1, 2) on 

the interval x ∈ [xi, L], in which shock locations are x1 = x0 − δ and x2 = x0 + δ, respectively. 
Therefore, it follows from Lemma 3.1 that nr

2(L) < nr < nr
1(L). Late then, based on 

(
nr

1,E
r
1

)
and 
(
nr

2,E
r
2

)
, we further define two transonic solutions (n̂(i), Ê(i))(x), (i = 1, 2), as b is a small 

perturbation of b0. And then, by Lemma 3.2, we obtain 
∣∣n̂r

i (L) − nr
i (L)
∣∣ ≤ Cε, (i = 1, 2). Fi-

nally, the desiring stability result in Theorem 1.4 follows by combining the above estimates and 
a monotonicity argument. We find that the boundary problem (1.9) admits a unique transonic 
shock solution (ñ, Ẽ) with a single transonic shock located at some point x̃0 ∈ (x1, x2).

Now, let us explain the key difference between the proofs of Theorem 1.2 (similarly The-
orem 1.3) and Theorem 1.4 (similarly Theorem 1.5). Since the solutions considered in Theo-
rem 1.4 are the transonic shocks, which jump from the supersonic region to the subsonic region, 
and do not directly cross the sonic line. So there is no singularity for the system near the sonic 
line. This is a kind of advantage in the proof of structural stability. However, for Theorem 1.2
and Theorem 1.3, the smooth transonic steady-states pass through the sonic line, which cause 
the working system (1.7) to be singular. This is essentially different and also challenging in the 
proofs.

In what follows, we talk about the strategy for the proof of the linear dynamic instabil-
ity in Theorem 1.6. Although the idea comes from the previous study in [31], it is still not 
straightforward. First, by the Rankine-Hugoniot conditions and the implicit function Theorem, 
we formulate an initial boundary value problem in the region {(t, x)|t > 0, x > s(t)}. Next, we 
introduce a nontrivial transformation to reformulate this free boundary problem into a fixed 
boundary problem. After that, we get the linearized initial boundary value problem (4.23) for 
consideration. Hence, in view of problem (4.23) resembles a Klein-Gordon equation, we prove 
that it admits a transonic shock solution with exponential growths by the shooting method.

We end this section by stating the arrangement of the rest of this paper. In Section 2, we 
establish the structural stability for the steady C1-smooth transonic solution, by carrying out 
the singular analysis near the sonic line. In Section 3, we show the structural stability of the 
steady transonic shock solutions. We first give two useful lemmas which include the monotonic 
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relations for the transonic shock solutions and the a priori estimates for supersonic and subsonic 
flows. Then, we use three steps to complete the proof of the Theorem 1.4. In the last section, 
we study the linear dynamic instability of transonic shock solutions. We formulate the linearized 
problem, and then construct a shock solution with exponential growths to complete the proof of 
Theorem 1.6.

2. Structural stability for steady C1-smooth transonic solutions

This section is to devoted to the proof of structural stability of smooth transonic steady-states 
stated in Theorem 1.2 and Theorem 1.3. Here we mainly give the detailed proof to Theorem 1.2, 
because Theorem 1.3 can be similarly done. The proof is divided into two cases: α = 1

τ
= 0 and 

α = 1
τ

> 0. We first investigate the structural stability of the smooth transonic steady-states in 
the easy case of α = 0. The advantage in this case is that the electric field E = E(n) can be 
explicitly expressed, which makes the singularity analysis to be simple and direct, and can help 
us to build up the structural stability. Secondly, we treat the case of α > 0. Since the relationship 
of E = E(n) is implicit, the singularity for the system of equations for (n, E) crossing the sonic 
line n = J causes us an essential difficulty. So, some technical analysis around the singular points 
needs to be artfully carried out. This will be the crucial step for the proof of the structural stability 
of the smooth transonic steady-states.

2.1. Case 1. α = 0 (i.e., τ = +∞)

For α = 0, problem (1.8) becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
n + J 2

n

)
x

= nE,

Ex = n(x) − b,

(n,E)|x=0 = (n0,E0).

(2.1)

When n �= J , problem (2.1) is equivalent to

⎧⎪⎪⎨
⎪⎪⎩

nx = n3E

n2 − J 2 ,

Ex = n − b,

(n,E)|x=0 = (n0,E0).

(2.2)

Then the trajectory for the equations of problem (2.2) is

EdE =
(
n2 − J 2

)
(n − b)

n3 dn.

Integrating it, we have

1

2
E2 = n − b lnn + J 2

n
− bJ 2

2n2 + C0,

where C0 is a constant to be determined by
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Fig. 3. The trajectory of E and n.

C0 = b lnJ + b

2
− 2J,

due to the fact that the curve of the C1-smooth transonic solution must pass through the point 
(n, E) = (J, 0).

Thus, we have

E2 = 2n − 2b lnn + 2J 2

n
− bJ 2

n2 + 2C0
�= g(n), (2.3)

with g(n∗) = 0, where 0 < n∗ < n < +∞.
Let us use E(n) to denote the trajectory which is from the supersonic region to the subsonic 

region, and use F(n) to stand for the other which has a reverse direction (see Fig. 3). In the fol-
lowing, we only consider the C1-smooth transonic solution corresponding to E(n). For this end, 
we want to investigate the properties of E(n) to remove the singularity of the targeted equations.

Obviously, from (2.3), we have

E(n) =
{−√g(n), n ≤ J,√

g(n), n ≥ J.
(2.4)

Here g(n) satisfies g(J ) = 0 and

dg

dn

∣∣∣∣
n=J

=
(

2 − 2b

n
− 2J 2

n2 + 2
bJ 2

n3

)
n=J

= 0, (2.5)

d2g

dn2

∣∣∣∣
n=J

=
(

2b

n2 + 4J 2

n3 − 6
bJ 2

n4

)
n=J

= 4

J

(
1 − b

J

)
> 0, (2.6)

and

d3g

dn3 (n) = − 4

n3

(
b + 3J 2

n
− 6bJ 2

n2

)
�= h(n, b), (2.7)

where we have used the supersonic doping profile condition b < J .
Then it follows from the facts g(n) ∈ C∞(n∗, ∞), (2.5)-(2.7) and the Taylor’s formula with 

the integral remainder, that
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g(n) = g(J ) + (n − J )
dg

dn

∣∣∣∣
n=J

+ (n − J )2

2

d2g

dn2

∣∣∣∣
n=J

+ (n − J )3

2

1∫
0

(1 − t)2 d3g

dn3 (J + t (n − J ))dt

= (n − J )2

2

4

J

(
1 − b

J

)
+ (n − J )3

2

1∫
0

(1 − t)2 d3g

dn3 (J + t (n − J ))dt

= (n − J )2

⎛
⎝ 2

J

(
1 − b

J

)
+ n − J

2

1∫
0

(1 − t)2h(J + t (n − J ), b)dt

⎞
⎠ ,

which implies

E(n)
�= (n − J )W(n,b), (2.8)

where

W(n,b) =

√√√√√ 2

J

(
1 − b

J

)
+ n − J

2

1∫
0

(1 − t)2h(J + t (n − J ), b)dt. (2.9)

It is easy to see that W(n, b) has the following properties.

Lemma 2.1. For M > n∗ and 0 < ε < J , there exist positive constants C1 and C2 depend only 
on ε and M such that

0 < C1 < W(n,b) < C2, f or n ∈ (n∗,M) and b ∈ (ε, J ). (2.10)

Moreover, it holds

W(n,b) ∈ C∞((n∗,M) × (ε, J )),

and

|∂nW(n,b)| < C, |∂bW(n,b)| < C, f or n ∈ (n∗,M), and b ∈ (ε, J ).

Now, we are going to investigate the structural stability of the C1-smooth transonic steady-
states.

For i = 1, 2, let (ni, Ei) be the two C1-smooth transonic steady-states satisfying⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nix = n3
i

ni + J

Ei

ni − J
= n3

i

ni + J
W(ni, bi),

Eix = ni − bi, x ∈ [0,L],
n (0) = n , E (0) = E ,

(2.11)
i i0 i i0
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where 0 < ni0 < J, Ei0 = E(ni0).

Lemma 2.2. There exists a constant C > 0 such that

‖n1(·) − n2(·)‖C1[0,L] + ‖E1(·) − E2(·)‖C2[0,L] ≤ Cδ0, (2.12)

where δ0 is the same meaning as that in (1.15).

Proof. By making difference of (2.11) with respect to n1 and n2, we get

⎧⎪⎨
⎪⎩

(n1 − n2)x = n3
1

n1 + J
W(n1, b1) − n3

2

n2 + J
W(n2, b2),

(n1 − n2) (0) = n10 − n20, x ∈ [0,L].
Then, by Lemma 2.1, we have

(n1 − n2)x =
(

n3
1

n1 + J
− n3

2

n2 + J

)
W(n1, b1) + n3

2

n2 + J
(W(n1, b1) − W(n2, b2))

≤C |n1 − n2| + C |b1 − b2| ,
(2.13)

which implies

d (n1 − n2)
2

dx
≤ C
(
|n1 − n2|2 + |b1 − b2|2

)
,

where the Cauchy-Schwarz inequality was used. Following the same way, we find that (2.13) is 
also true for n2 − n1. Therefore, it follows that

(n1 − n2)
2 ≤ C
(
|n10 − n20|2 + |b1 − b2|2

)
, x ∈ [0,L], (2.14)

namely

|n1 − n2| ≤ C (|n10 − n20| + |b1 − b2|) x ∈ [0,L]. (2.15)

This together with (2.13) yields

|(n1 − n2)x | ≤ C (|n10 − n20| + |b1 − b2|) , x ∈ [0,L]. (2.16)

On the other hand, from the second equation of (2.11), we obtain

Ei(x) = Ei0 +
x∫

0

(ni(y) − bi) dy, i = 1,2. (2.17)

Then it follows that
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|E1(x) − E2(x)| ≤ |E10 − E20| +
x∫

0

|n1(y) − n2(y)|dy + x |b1 − b2| (2.18)

≤|E10 − E20| + C sup
y∈[0,L]

|n1(y) − n2(y)| + |b1 − b2|

≤Cδ0, x ∈ [0,L],
|E1x(x) − E2x(x)| = |n1(x) − n2(x) − (b1 − b2)| ≤ Cδ0, x ∈ [0,L], (2.19)

and

|E1xx(x) − E2xx(x)| = |n1x(x) − n2x(x)| ≤ Cδ0, x ∈ [0,L]. (2.20)

Therefore, by combining (2.15)- (2.16) and (2.18)- (2.20), we obtain

‖n1(·) − n2(·)‖C1[0,L] + ‖E1(·) − E2(·)‖C2[0,L] ≤ Cδ0.

The proof of Lemma 2.2 is completed. �
2.2. Case 2. α > 0 (i.e., 0 < τ < +∞)

In this subsection, we continue to study the following problem with α > 0⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
n + J 2

n

)
x

= nE − αJ, x ∈ [0,L],
Ex = n − b, x ∈ [0,L],
(n,E)|x=0 = (n0,E0).

(2.21)

Obviously, the first equation of (2.21) can be rewritten as

(n − J )(n + J )

n2 nx = nE − αJ
�= nẼ, (2.22)

where

Ẽ = Ẽ(n, b) := E − αJ

n
.

In view of (2.22) and

Ẽx = Ex + αJ

n2 nx = n − b + αJ

n2 nx, (2.23)

it follows that the unknowns (n, Ẽ) satisfy

⎧⎪⎪⎨
⎪⎪⎩

nx = n3

n + J

Ẽ

n − J
,

Ẽx = n − b + αJ
nx.

(2.24)
n2
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Then the corresponding trajectory equation to system (2.24) is

dẼ

dn
= (n + J )(n − b)(n − J )

n3Ẽ
+ αJ

n2 = (n + J )(n − b)

n3

1
Ẽ

n−J

+ αJ

n2 . (2.25)

It follows from [41] that Euler-Poisson system (2.24) or (2.25) possesses two C∞-smooth 
transonic solutions. One is denoted by Ẽ(n) which is from supersonic region to subsonic region, 
and the other is F̃(n) which has the inverse direction. In the following, we only consider the 
C1-smooth transonic solution Ẽ(n). Let Ẽ = Ẽ(n) = Ẽ(n, b) be the trajectory corresponding to 
Ẽ(n). Then from [41], the property of Ẽ(n, b) is stated as follows.

Lemma 2.3. Ẽ(n, b) is smooth respect to n, and is continuous about b. Namely,

Ẽ(n, b) ∈ C∞(n∗,∞) × C0(0, J ),

where n∗ satisfies Ẽ(n∗, b) = 0 and 0 < n∗ < J .

Set

lim
n→J

dẼ(n)

dn
= k.

By (2.25) and the Hospital’s rule, we have

k = 2(J − b)

J 2

1

k
+ α

J
,

which implies that

k = k± = 1

2

(
α

J
±
√(α

J

)2 + 8(J − b)

J 2

)
. (2.26)

Since the targeted trajectory is Ẽ(n) and b < J , we get k = k+ > 0.
In order to prove the stability of C1-smooth transonic solution, the analysis of properties of 

Ẽ
n−J

is crucial due to (2.24). Particularly, we have to investigate the property of Ẽ
n−J

about the 
parameter b.

In what follows, let us denote

Ẽ

n − J
= W̃ (n, b).

Then, in the similar fashion in [41], we have

Lemma 2.4. For 0 < b < J , W̃ (n, b) is smooth respect to n, and is continuous about b. Moreover, 
there exist constants M = n(L) > n∗ and C = C(M, b) > 0 such that

|W̃ (n, b)| < C, ∀n ∈ [n∗,M],
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and ∣∣∣∣∣dW̃(n, b)

dn

∣∣∣∣∣< C, ∀n ∈ [n∗,M],

where n∗ is the same meaning as that in Lemma 2.3.

Remark 2.1. To prove the property of W̃(n, b) about the parameter b is key but difficult. In 
the case of α = 1

τ
= 0, the proof of the property about W(n, b) is easy since it has an explicit 

formula. However, W̃ (n, b) doesn’t have the explicit representation due to the fact that (2.25) is 
not separated type.

Next, we begin to establish some necessary estimates and to prove that W̃(n, b) is Lipschitz 
continuous with respect to the parameter b as follows,

Lemma 2.5. For 0 < b1, b2 < J , there exists constant C > 0 such that∣∣∣W̃ (n, b1) − W̃ (n, b2)

∣∣∣≤ C|b1 − b2|, ∀n ∈ [n∗,M]. (2.27)

Proof. For h > 0, by choosing b1 = b + h and b2 = b, it follows from (2.25) that

dẼ(n, b + h)

dn
= (n + J ) (n − (b + h)) (n − J )

n3Ẽ(n, b + h)
+ αJ

n2 ,

and

dẼ(n, b)

dn
= (n + J ) (n − b) (n − J )

n3Ẽ(n, b)
+ αJ

n2 .

By taking difference of the above two equations, we have

d

dn
(Ẽ(n, b + h) − Ẽ(n, b)) (2.28)

=
(

(n + J ) (n − (b + h)) (n − J )

n3Ẽ(n, b + h)
− (n + J ) (n − b) (n − J )

n3Ẽ(n, b + h)

)

+
(

(n + J ) (n − b) (n − J )

n3Ẽ(n, b + h)
− (n + J ) (n − b) (n − J )

n3Ẽ(n, b)

)

= n + J

n3

1
Ẽ(n,b+h)

n−J

(−h) + (n + J ) (n − b)

n3

(
n − J

Ẽ(n, b + h)
− n − J

Ẽ(n, b)

)

= n + J

n3

1
Ẽ(n,b+h)

n−J

(−h) + (n + J ) (n − b)

n3

(n − J )2

Ẽ(n, b + h)Ẽ(n, b)

Ẽ(n, b) − Ẽ(n, b + h)

n − J

= n + J

n3

1
Ẽ(n,b+h)

(−h) + (n + J ) (n − b)

n3

1
Ẽ(n,b+h) Ẽ(n,b)

Ẽ(n, b) − Ẽ(n, b + h)

n − J
.

n−J n−J n−J
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Dividing (2.28) by h, and letting

Ẽ(n, b + h) − Ẽ(n, b)

h

�= �b
hẼ(n, b),

we obtain

d
(
�b

hẼ(n, b)
)

dn

�= f (n, b,h) − g(n, b,h)
�b

hẼ(n, b)

n − J
,

where

f (n, b,h) = −n + J

n3

1
Ẽ(n,b+h)

n−J

, g(n, b,h) = (n + J )(n − b)

n3

1
Ẽ(n,b)
n−J

1
Ẽ(n,b+h)

n−J

.

Set

�b
hẼ(n, b) = Ph(n, b) = P,

then it follows

dP
dn

�= f (n, b,h) − g(n, b,h)
P

n − J
. (2.29)

We also deduce from Ẽ(n, b)

∣∣∣
n=J

= 0 and Ẽ(n, b + h)

∣∣∣
n=J

= 0 that

P|n=J = Ph(n, b)|n=J = 0. (2.30)

Now, we formally suppose that

lim
n→J

dP
dn

= l,

then by the Hospital’s rule in form, we have

l = f (J, b,h) − g(J, b,h)l.

It is easy to see that

l = f (J, b,h)

1 + g(J, b,h)
< 0,

and

l → l0
�= f (J, b)

, as h → 0.

1 + g(J, b)
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Fig. 4. Sketched graph of P and n near the singular point.

On the other hand, by (2.26) we obtain

f (n, b,h) → f (J, b,h) < 0, as n → J,

g(n, b,h) → g(J, b,h), as n → J,
(2.31)

and

f (n, b,h) → f (n, b,0) < 0, as h → 0,

g(n, b,h) → g(n, b,0), as h → 0,

g(J, b,h) > C > 0, g(n, b,h) > C > 0.

Next we make singularity analysis on problem (2.29)-(2.29) with respect to n in a small neigh-
borhood around the singularity point n = J . With the help of the same methods in [41], we want 
to prove that P

n−J
has not only an upper bound but also a lower bound.

We claim that there exist two positive constants ε∗ and δ∗ independent of b such that

l − δ∗ <
P

n − J
< l + δ∗, ∀n ∈ [J − ε∗, J + ε∗].

Indeed, we let 
+, 
 and 
− be three rays which pass through the point (J, 0) with the slope 
values l + δ∗, l and l − δ∗, respectively. We use �ε to stand for the triangle area bounded by rays 

+, 
− and the straight line n = J + ε (see Fig. 4). We would like to show that there exists a 
positive constant ε+ suitable small such that P must be in �ε+ as n ∈ [J, J + ε+].

We use the method of proof by contradiction. For any n0 ∈ [J, J + ε], we assume that there 
always exists one point (n0, P) which is lying above the triangle area �ε.

At n = n0, it follows from (2.29) that

dP
dn

= f (n, b,h) − g(n, b,h)
P

n − J
.

This together with P > l + δ∗ gives

n−J
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dP
dn

(n0) =f (n0, b,h) − g(n0, b,h)
P

n0 − J

≤f (n0, b,h) − g(n0, b,h)(l + δ∗)

≤f (J, b,h) − g(J, b,h)l

=l < l + δ∗.

This deduces that the trajectory passes through (n0, P(n0)) will intersect with the n− axis before 
n = J . However, this yields a contradiction with P(J ) = 0. Therefore, we obtain that there must 
exist constant ε+ > 0 such that (n, P) ∈ �ε+ for any n ∈ [J, J + ε+]. Furthermore,

P
n − J

∈ [l − δ∗, l + δ∗], ∀n ∈ [J,J + ε+].

Obviously, the above process holds independent of b and provided that h > 0 is suitable small. 
Similarly, we can prove that there must exist constant ε− > 0 suitable small such that (n, P) ∈
�ε− for any n ∈ [J − ε−, J ], which implies, P

n−J
∈ [l − δ∗, l + δ∗], ∀n ∈ [J − ε−, J ].

By letting

ε∗ = min{ε+, ε−},
we obtain

l − δ∗ ≤ P
n − J

≤ l + δ∗, ∀n ∈ [J − ε∗, J + ε∗].

On the other hand, since (2.29) has no singularity on the domain [n∗, J − ε∗] ∪ [J + ε∗, M], 
it is easy to get ∣∣∣∣ P

n − J

∣∣∣∣< C, ∀n ∈ [n∗, J − ε∗] ∪ [J + ε∗,M].

Hence, it follows that ∣∣∣∣ P
n − J

∣∣∣∣< C, ∀n ∈ [n∗,M],

which implies that ∣∣∣∣∣�
b
hẼ(n, b)

n − J

∣∣∣∣∣< C, ∀n ∈ [n∗,M],

namely, ∣∣∣∣∣ Ẽ(n, b + h) − Ẽ(n, b)

n − J

∣∣∣∣∣< Ch, ∀n ∈ [n∗,M],

which gives (2.27). The proof of Lemma 2.5 is completed. �
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Based on the primary works above, we begin to prove the stability of the C1-smooth transonic 
solution as follows.

Lemma 2.6. There exists a constant C > 0 such that

‖n1(·) − n2(·)‖C1[0,L] + ‖E1(·) − E2(·)‖C2[0,L] ≤ Cδ0. (2.32)

Proof. By plugging (n, Ẽ, b) = (n1, Ẽ(n1, b1), b1) and (n, Ẽ, b) = (n2, Ẽ(n2, b2), b2) into 
(2.24), respectively. And taking difference of the resulted equations, we have

(n1 − n2)x = n3
1

n1 + J

Ẽ(n1, b1)

n1 − J
− n3

2

n2 + J

Ẽ(n2, b2)

n2 − J

= n3
1

n1 + J

Ẽ(n1, b1)

n1 − J
− n3

2

n2 + J

Ẽ(n1, b1)

n1 − J
+ n3

2

n2 + J

Ẽ(n1, b1)

n1 − J
− n3

2

n2 + J

Ẽ(n2, b2)

n2 − J

= Ẽ(n1, b1)

n1 − J

(
n3

1

n1 + J
− n3

2

n2 + J

)
+ T (n1, n2, b1, b2),

where

T (n1, n2, b1, b2) = n3
2

n2 + J

(
Ẽ(n1, b1)

n1 − J
− Ẽ(n2, b1)

n2 − J
+ Ẽ(n2, b1)

n2 − J
− Ẽ(n2, b2)

n2 − J

)
.

By using Lemma 2.4 and the estimate (2.27) in Lemma 2.5, we have

T (n1, n2, b1, b2) = n3
2

n2 + J

⎛
⎝d
(

Ẽ(n1,b1)
n1−J

)
n

(n = ξ)(n1 − n2) + Ẽ(n2, b1) − Ẽ(n2, b2)

(n2 − J )(b1 − b2)
(b1 − b2)

⎞
⎠

≤C |n1 − n2| + C |b1 − b2| ,
where ξ is a number between n1 and n2.

Then, by Lemma 2.4 again, we have

|n1 − n2|x ≤ Ẽ(n1, b1)

n1 − J

(
n3

1

n1 + J
− n3

2

n2 + J

)
+ C |n1 − n2| + C |b1 − b2|

≤C |n1 − n2| + C |b1 − b2| ,
which implies

d (n1 − n2)
2

dx
≤ C
(
|n1 − n2|2 + |b1 − b2|2

)
,

where the Cauchy-Schwarz inequality was used. Therefore, it follows that

(n1 − n2)
2 ≤ C
(
|n10 − n20|2 + |b1 − b2|2

)
, x ∈ [0,L],
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i.e.

|n1 − n2| ≤ C (|n10 − n20| + |b1 − b2|) x ∈ [0,L].

On the other hand, from the second equation of (2.21), we obtain

Ei(x) = E(ni, bi) = Ei0 +
x∫

0

(ni(y) − bi) dy, i = 1,2.

Then it follows that (2.18)- (2.20) are also true for α > 0. Namely, we prove

‖n1(·) − n2(·)‖C1[0,L] + ‖E1(·) − E2(·)‖C2[0,L] ≤ Cδ0.

The proof of Lemma 2.6 is completed. �
Finally, by combining Lemma 2.2 and Lemma 2.6, we immediately prove the structural sta-

bility of C1-smooth transonic steady-states of (1.8) on [0, L] in Theorem 1.2.

3. Structural stability for steady transonic shock solutions

In this section, we mainly prove Theorem 1.4 and establish the structural stability for steady 
transonic shock solutions. Since Theorem 1.5 can be similarly obtained, we omit its proof.

3.1. Preliminaries

First, we prove the monotonic relation between the shock position and the downstream density 
and a priori estimates for the steady flows, which play a crucial role for the proof of Theorem 1.4. 
For any supersonic state (n, E) satisfying n < J , we can connect it to a unique subsonic state 
(S (n), E) via a transonic shock. Here S (n) is determined by the entropy condition and the 
Rankine-Hugoniot condition

S (n) + J 2

S (n)
= n + J 2

n
, and S (n) > J. (3.1)

By differentiating (3.1) with respect to n, we have

dS (n)

dn
=

1 − J 2

n2

1 − J 2

S 2(n)

. (3.2)

This together with (1.6) gives

dS (n(x))

dx
= nE − αJ

1 − J 2

2

. (3.3)
S (n)
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Lemma 3.1 (Monotonic relation for the transonic shock solutions). Let (n(1), E(1)) and 
(n(2), E(2)) be two transonic shock solutions of (1.6), and (n(i), E(i)) (i = 1, 2) are defined 
by

(n(i),E(i)) =
{

(n
(i)
sup,E

(i)
sup)(x), as x ∈ (0, xi),

(n
(i)
sub,E

(i)
sub)(x), as x ∈ (xi,L),

where

n(i)
sup < J < n

(i)
sub, f or i = 1,2.

They satisfy the same upstream boundary conditions

n(1)(0) = n(2)(0) = nl, E(1)(0) = E(2)(0) = El.

Then, if b < J, x1 < x2 and E(2)
sup(x1) > 0, we have

n(1)(L) > n(2)(L).

Proof. For x ∈ [0, x1), due to the fact that both (n(1)
sup,E

(1)
sup) and (n(2)

sup,E
(2)
sup) satisfy ordinary 

differential equations (1.6) and the same initial data, we obtain

(n(1)
sup,E

(1)
sup) = (n(2)

sup,E
(2)
sup), as x ∈ [0, x1).

For x ∈ [x1, x2], we define a function E as follows

⎧⎨
⎩

dE

dx
= S (n(2)

sup) − b, as x ∈ [x1, x2],
E (x1) = E

(1)
sub(x1) = E

(1)
sup(x1) = E

(2)
sup(x1).

In view of n(2)
sup < J < S (n

(2)
sup), by using the comparison principles for ordinary differential 

equations [37], we get E(2)
sup(x) < E (x) as x ∈ (x1, x2]. This, together with (3.3), gives

dS (n
(2)
sup)

dx
= n

(2)
supE

(2)
sup − αJ

1 − J 2

S 2(n
(2)
sup)

<
n

(2)
supE (x) − αJ

1 − J 2

S 2(n
(2)
sup)

.

On the other hand, it follows from E (x1) = E
(2)
sup(x1) > 0 and b < J < S (n

(2)
sup) that E (x) > 0 as 

x ∈ (x1, x2], which furthermore gives
157



Y.-H. Feng, M. Mei and G. Zhang Journal of Differential Equations 344 (2023) 131–171
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS (n
(2)
sup)

dx
<

S (n
(2)
sup)E (x) − αJ

1 − J 2

S 2(n
(2)
sup)

,

dE

dx
= S (n(2)

sup) − b,

S (n
(2)
sup)(x1) = n

(1)
sub(x1),E (x1) = E

(1)
sub(x1).

Then, by using the comparison principles for ordinary differential equations again, we have

S
(
n(2)

sup

)
(x2) < n

(1)
sub(x2), E (x2) < E

(1)
sub(x2).

In view of E(2)
sup(x2) < E (x2), we obtain

E
(2)
sub(x2) = E(2)

sup(x2) < E (x2) < E
(1)
sub(x2).

Recall that (n(1)
sub,E

(1)
sub) and (n(2)

sub,E
(2)
sub) solve the same ordinary differential equations on 

[x2, L], by the comparison principle for ordinary differential equations once more, we get

n
(1)
sub(L) > n

(2)
sub(L), and E

(1)
sub(L) > E

(2)
sub(L).

The proof of Lemma 3.1 is completed. �
Next, by using the multiplier method, we establish the a priori estimates for supersonic and 

subsonic flows, which yield the existence of supersonic, subsonic, and transonic shock solutions.
It follows from (1.6) that n satisfies

d

dx

(
f(n)nx + α

J

n

)
= n − b, (3.4)

in which f(n) = n2 − J 2

n3 .

Let (n0, E0) be a supersonic or subsonic solution of (1.6) with the doping profile b0 and with 
initial data (nI , EI ), i.e.,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d

dx

(
f(n)nx + α

J

n

)
= n − b0,

n(a) = nI , nx(a) =
EI − α

J

nI

f(nI )
.

(3.5)

In the following lemma, we give the stability estimates for both the supersonic and the sub-
sonic solutions of (1.6), which are small perturbations of the solutions to the problem (3.5).

Lemma 3.2. For any interval [a, l] ⊆ [0, x0) ∪ (x0, L], suppose (n0, E0) to be a supersonic or 
subsonic solution to the problem (3.5). Then there is ε > 0 such that if
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‖b(x) − b0‖C0[a,l] + |ñI | +
∣∣∣ẼI

∣∣∣< ε, (3.6)

then, for x ∈ [a, l], there exists a unique supersonic or subsonic solution (n, E)(x) to the problem 
(1.6) with initial conditions

n(a) = nI + ñI , E(a) = EI + ẼI . (3.7)

Furthermore, (n, E) satisfies

‖n − n0‖C1[a,l] < CeγLε, (3.8)

where constants C > 0 and γ > 0.

Proof. The proof is given only for the case when n0 is supersonic on [a, l] (the case when n0 is 
subsonic is quite similar). When n0 is supersonic on [a, l], there exist constants c0 > 0, c1 > 0
and c2 > 0 such that

f (n0) (x) > c0, c1 < n0(x) < J, and

∣∣∣∣ ddx
n0(x)

∣∣∣∣≤ c2, as x ∈ [a, l]. (3.9)

First, we prove the results by assuming that

f (n) (x) >
c0

2
,

1

2
c1 < n(x) < J, and

∣∣∣∣ ddx
n(x)

∣∣∣∣≤ 2c2, as x ∈ [a, l]. (3.10)

If we get the estimate (3.8), then the lemma can be proved by using the local existence theory 
of ordinary differential equations and the standard continuation argument.

Set ñ = n − n0 and b̃ = b − b0. Then from (3.4)-(3.5), we obtain

d

dx

(
f(n)ñx + F1(n0, ñ)ñ

dn0

dx
+ F2(n0, ñ)ñ

)
− ñ = −b̃, (3.11)

where

F1(n0, ñ) =
L∫

0

d

dn
f(n0 + θñ)dθ and F2(n0, ñ) = αJ

L∫
0

−1

(n0 + θñ)2 dθ.

For constant μ > 0, we define a multiplier K(x) := e−μ(x−a), and then multiply both sides of 
(3.11) by K(x)(ñx + ñ). By an integration by parts, we have
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−
l∫

a

b̃K(x)(ñx + ñ)dx

=
l∫

a

K(x)

((μ
2

− 1
)
f(n) + 1

2

d

dx
f(n) + F1(n0, ñ)

dn0

dx
+ F2(n0, ñ)

)
(ñx)

2dx

+
l∫

a

K(x)

(
μ2

2
f(n) − μ

2

d

dx
f(n) + d

dx

(
F1(n0, ñ)

dn0

dx

)
− 1 + d

dx
F2(n0, ñ)

)
(ñ)2dx

+
l∫

a

K(x)

(
d

dx

(
F1(n0, ñ)

dn0

dx

)
+ F1(n0, ñ)

dn0

dx
− 1 + F2(n0, ñ) + d

dx
F2(n0, ñ)

)
ññxdx

+K(l)

[
f(n)

(ñx)
2

2
+ f(n)ññx + μf(n)

(ñ)2

2

]
x=l

−
[
f(n)

(ñx)
2

2
+ f(n)ññx + μf(n)

(ñ)2

2

]
x=a

.

It follows from (3.10) that we can choose μ large enough such that

l∫
a

μe−μ(x−a)
(
μñ2 + (ñx)

2
)

dx + e−μ(l−a)
(
μñ2 + (ñx)

2
)

(l) (3.12)

≤C

l∫
a

e−μ(x−a)b̃2dx + C
(
μñ2

I + Ẽ2
I

)
.

On the other hand, from (3.6), we get

l∫
a

e−μ(x−a)b̃2dx + C
(
μñ2

I + Ẽ2
I

)
≤ Cε2.

This, together with (3.12), yields

l∫
a

(
ñ2 + (ñx)

2
)

dx ≤ Ceμ(l−a)ε2 ≤ Ceμε2.

By Sobolev embedding Theorem, it further gives

‖ñ‖C0[a,l] ≤ ‖ñ‖H 1[a,l] ≤ CeγLε,

where γ = μ

2
. Then it follows from (3.11) that

‖ñx‖C0[a,l] ≤ CeγLε.
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Hence, (3.8) follows by combining the above two inequalities. The proof of the Lemma 3.2 is 
completed. �
3.2. Structural stability for transonic shock solutions

In this subsection, we begin to prove Theorem 1.4 and establish the structural stability for 
transonic shock solutions to the boundary value problem (1.6) and (1.9).

Proof of Theorem 1.4. The proof is divided into three stepsn.
Step 1. For b(x) = b0(x) and i = 1, 2, we prove that there exist transonic shock solutions 

(ni, Ei)(x) with the shock location at xi such that x2 > x1, and nr
2(L) < nr < nr

1(L).
By the conditions stated in Theorem 1.4 on the unperturbed transonic shock solution 

(n(0), E(0)) for the case when b(x) = b0(x)(x ∈ [0, L]), there is a constant δ > 0 which satis-
fies [x0 − δ, x0 + δ] ⊂ (0, L), such that the ordinary differential equations

d

dx

(
n + J 2

n

)
= nE − αJ, Ex = n − b0, (3.13)

with the initial condition

(n,E) | x=0 = (nl,El), (3.14)

have a unique smooth solution (nl, El)(x) on the interval x ∈ [0, x0 + δ] which satisfies 0 <
nl(x) < J for x ∈ [0, x0 + δ] and

El(x) > 0, for x ∈ [x0 − δ, x0 + δ], (3.15)

where x0 is the shock location for (n(0), E(0)) for the case when b(x) = b0(x ∈ [0, L]). Fur-
thermore, it follows from the uniqueness for the initial value problems of ordinary differential 
equations that

(nl,El)(x) = (n(0),E(0))(x), as x ∈ [0, x0).

Set x1 = x0 −δ and x2 = x0 +δ. Then for x ∈ [xi, L], let 
(
nr

i ,E
r
i

)
(x)(i = 1, 2) be the solution 

of the ordinary differential equations (3.13) with the initial conditions

(nr
i ,E

r
i )|x=xi

= (S (nl(xi)),E
l(xi)), for i = 1,2.

We obtain from Lemma 3.2 that there is a unique smooth subsonic solution (nr
i , E

r
i )(x) on the 

interval x ∈ [xi, L] satisfying nr
i (x) > ns and Er

i (x) > El(xi) > 0 as x ∈ (xi, L](i = 1, 2). Fur-
thermore, Lemma 3.1 together with x2 > x1 yield

nr
2(L) < nr < nr

1(L). (3.16)
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Step 2. When b is a small perturbation of b0, we prove that there exist two transonic shock 
solutions (n̂(1), Ê(1))(x) and (n̂(2), Ê(2))(x) with the shock location at x1 and x2, respectively, 
such that n̂r

2(L) < nr < n̂r
1(L).

For the case that b is a small perturbation of b0, we define two transonic solutions based on (
nr

1,E
r
1

)
and 
(
nr

2,E
r
2

)
. Let

(n̂(i), Ê(i))(x) =
{

(n̂l
i , Ê

l
i )(x), as x ∈ [0, xi),

(n̂r
i , Ê

r
i )(x), as x ∈ (xi,L],

for i = 1, 2, where (n̂l
i , Ê

l
i )(x) is the solution of the ordinary differential equations

d

dx

(
n + J 2

n

)
= nE − αJ, Ex = n − b(x), (3.17)

on the region [0, xi] with the initial data (3.14) and (n̂r
i , Ê

r
i ) is the solution of the ordinary 

differential equations (3.17) on [xi, L] with the initial data

(n̂r
i , Ê

r
i )|x=xi

= (S (n̂l
i (xi−)), Êl

i (xi)).

By Lemma 3.2 and (1.19), we obtain that (n̂l
i , Ê

l
i ) and (n̂r

i , Ê
r
i ) are well-defined and satisfy

sup
x∈[0,xi )

∣∣∣(n̂l
i , Ê

l
i ) − (nl

i ,E
l)

∣∣∣≤ Cε, sup
x∈(xi ,L]

∣∣∣(n̂r
i , Ê

r
i ) − (nr

i ,E
r
i )

∣∣∣≤ Cε, for i = 1,2.

Furthermore, we have

∣∣n̂r
i (L) − nr

i (L)
∣∣≤ Cε, for i = 1,2.

This, together with (3.16), yields that

n̂r
2(L) < nr < n̂r

1(L),

provided that ε > 0 is small enough.
Step 3. We prove that there exists a unique transonic shock solution (ñ, Ẽ) with a single 

transonic shock located at a point x̃0 ∈ (x1, x2).
The results established in steps 1-2 show that the boundary problem (1.6) and (1.9) admits 

a unique transonic shock solution (ñ, Ẽ) with a single transonic shock located at some point 
x̃0 ∈ (x1, x2) by a monotonicity argument as follows: for x ∈ [x1, x2], we define a function 
M(x) = n(L) where n is a transonic shock solution of the system (1.6) satisfying (3.14) with 
shock located at x. By Lemmas 3.1-3.2, we obtain that M(x) is continuous strictly decreas-
ing on [x1, x2]. Furthermore, it follows from the stability estimate (3.8) in Lemma 3.2 that 
x̃0 ∈ [x0 − Cε, x0 + Cε]. We have completed the proof of Theorem 1.4. �
4. Linear dynamic instability of transonic shock solutions

In this section, we study the linear dynamic instability of transonic shock solutions for the 
Euler-Poisson equations with relaxation effect (1.1).
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4.1. Formulation of the linearized problem

Let (n̄, ū, Ē) be a steady transonic shock solution of the form (1.20) which satisfies (1.33). 
Assume that the initial values (n0, u0, E0) satisfy (1.29) and the compatibility conditions. From 
[30], we obtain that there is a piecewise smooth solution containing a single shock x = s(t) (with 
s(0) = x̃0) which satisfies the Rankine-Hugoniot conditions (1.32) and the Lax geometric shock 
condition, of the Euler-Poisson equations with relaxation effect on [0, T̄ ] for some T̄ > 0, which 
can be written in the following form

(n,u,E)(t, x) =
{

(n−, u−,E−), as x ∈ (0, s(t)),

(n+, u+,E+), as x ∈ (s(t),L).
(4.1)

By noting that, when t > T0 for some T0 > 0, (n−, u−, E−) will depend only on the boundary 
values at x = 0. Furthermore, when ε is small, by the standard lifespan argument in [30], we get 
T0 < T̄ . Hence,

(n−, u−,E−) = (n̄−, ū−, Ē−) as t > T0. (4.2)

In what follows, we set T0 = 0 for convenience. We would like to extend the local-in-time 
solution to all t > 0. Note (4.2), we need only to establish uniform estimates in the region 
{(t, x)|t > 0, x > s(t)}. To this end, let us formulate an initial boundary value problem in this 
region. Obviously, the Rankine-Hugoniot conditions for (4.1) are

[nu] = [n]s′(t),
[
n + nu2

]
= [nu]s′(t), (4.3)

where [g] = g
(
t, s(t)+

)− g
(
t, s(t)−

)
is the jump of g(t, x) at x = s(t).

From (4.3), we have 
[
n + nu2

]× [n] = [nu]2. That is

(
n+ + J 2+

n+
− n− − J 2−

n−

)
(n+ − n−) (t, s(t)) = (J+ − J−)2 (t, s(t)) ,

where J = nu, J+ = n+u+ and J− = n−u−. By noting (4.2), we get

J
(
t, s(t)−

)= J̄ . (4.4)

Therefore, we obtain

(n+ (t, s(t)) − n− (s(t)))

×
(

n+ (t, s(t)) + J 2+ (t, s(t))

n+ (t, s(t))
− n̄+ (s(t)) − J̄ 2

n̄+
(s(t)) + n̄+ (s(t)) + J̄ 2

n̄+
(s(t))

− n̄− (s(t)) − J̄ 2

n̄−
(s(t))

)

= (J (t, s(t)) − J̄
)2

.
+
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By the Rankine-Hugoniot conditions (1.23) and Taylor expansions, we have

(
n+ (t, s(t)) − n̄+ (s(t)) − ū2+ (s(t)) (n+ (t, s(t)) − n̄+ (s(t)))

+ 2ū+ (s(t))
(
J+ (t, s(t)) − J̄

)+ ∂x

(
n̄+ + J̄ 2

n̄+

)
(x0) (s(t) − x0)

−∂x

(
n̄− + J̄ 2

n̄−

)
(x0) (s(t) − x0) +R

)
× (n̄+ (x0) − n̄− (x0) +R)

= (J+ (t, s(t)) − J̄
)2

,

where

R= O(1)
(
(n+ (t, s(t)) − n̄+ (s(t)))2 + (J+ (t, s(t)) − J̄

)2 + (s(t) − x0)
2
)

.

From now on, we usually use R to stand for those quadratic terms with different O(1) coeffi-
cients. Then it follows from the implicit function Theorem that

(
J+ − J̄

)
(t, s(t)) = M1 ((n+ − n̄+) (t, s(t)) , s(t) − x0) , (4.5)

where M1 satisfies

M1 (0,0) = 0,
∂M1

∂ (n+ − n̄+)
= −1 − ū2+

2ū+
(x0),

∂M1

∂ (s(t) − x0)
= − (n̄+ − n̄−) Ē+

2ū+
(x0).

By plugging (4.5) into (4.3)1, we get

s′(t) = M2 ((n+ − n̄+) (t, s(t)) , s(t) − x0) , (4.6)

where M2 satisfies

M2 (0,0) = 0,
∂M2

∂ (n+ − n̄+)
= ū2+ − 1

2ū+ (n̄+ − n̄−)
(x0),

∂M2

∂ (s(t) − x0)
= − Ē+

2ū+
(x0).

From (1.1)3, we obtain

E+(t, x) = El +
s(t)∫
0

(n− − b) (z)dz +
x∫

s(t)

(n+ − b) (z)dz, as x ∈ (s(t),L].

It follows from (1.1)1 and the Rankine-Hugoniot conditions (4.3) that

∂tE+ = nlul − n+u+(t, x) = J̄ − J+(t, x).

Let V = E+(t, x) − Ē+(x), then
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Vt = J̄ − J+, Vx = n+ − n̄+.

Hence, from the momentum equation in the Euler-Poisson equations with relaxation effect (1.1), 
we have

(
E+ − Ē+

)
t t

+ ∂x

(
n̄+ + J̄ 2

n̄+
− n+ − J 2+

n+

)
+ n+E+ − n̄+Ē+ − α

(
J+ − J̄

)= 0.

Then

Vt t + ∂x

(
n̄+ + J̄ 2

n̄ +
− (n̄+ + Vx) −

(
J̄ − Vt

)2
n̄+ + Vx

)
+ Ē+Vx + n̄+V + VVx + αVt = 0. (4.7)

We set η = (η0, η1) = (t, x), ∂i = ∂

∂ηi

and ∂ij = ∂2

∂ηi∂ηj

for i, j = 0, 1. Then (4.7) can be 

rewritten as follows∑
0≤i,j≤1

μ̄ij (x,Vt ,Vx) ∂ijV +
∑

0≤i≤1

β̄i (x,Vt ,Vx) ∂iV + ζ̄ (x,Vt ,Vx)V = 0, (4.8)

where μ̄ij , β̄i and ζ̄ are smooth functions of their variables, and satisfy

L0V =
∑

0≤i,j≤1

μ̄ij (x,0,0) ∂ijV +
∑

0≤i≤1

β̄i (x,0,0) ∂iV + ζ̄ (x,0,0)V (4.9)

=Vt t − ∂x

((
1 − ū2+

)
Vx

)
+ ∂x (2ū+Vt ) + Ē+Vx + n̄+V + αVt .

Moreover, we rewrite the Rankine-Hugoniot conditions (4.5)-(4.6) as

Vt = −M1 (Vx, s(t) − x0) , (4.10)

and

s′(t) = M2 (Vx, s(t) − x0) , (4.11)

respectively. Furthermore, by a straightforward computation, we have

V (t, s(t)) =E+ (t, s(t)) − Ē+ (s(t))

=E− (t, s(t)) − Ē+ (s(t))

=Ē− (s(t)) − Ē+ (s(t))

=Ē− (s(t)) − Ē− (x0) + Ē+ (x0) − Ē+ (s(t))

= (∂xĒ− (x0) − ∂xĒ+ (x0)
)
(s(t) − x0) +R.

This together with (1.1)3 implies that
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s(t) − x0 = M3 (V (t, s(t))) , (4.12)

where

M3 (0) = 0, and
∂M3

∂V = 1

n̄−(x0) − n̄+(x0)
.

By combining (4.10) and (4.12), we get

∂tV = M4 (Vx,V) , at x = s(t), (4.13)

where

M4 (0,0) = 0,
∂M4

∂Vx

= 1 − ū2+
2ū+

(x0),
∂M4

∂V = − Ē+
2ū+

(x0).

By noting that on the right boundary, x = L, V satisfies

∂xV = 0, at x = L. (4.14)

We would like to obtain uniform estimates for V and s which satisfy (4.8) and (4.12)-(4.14).
In order to reformulate the problem to the fixed domain [x0, L], let us introduce the transfor-

mation

t ′ = t, x′ = (L − x0)
x − s(t)

L − s(t)
+ x0, σ

(
t ′
)= s(t) − x0,

and let

p1
(
x′, σ
)= L − x′

L − x0 − σ (t ′)
, p2 (σ ) = L − x0

L − x0 − σ (t ′)
. (4.15)

Then (4.7) turns into the following form

Vt ′t ′ + p2∂x′

(
J̄ 2

n̄+
− p2Vx′ −

(
J̄ − Vt ′ + σ ′ (t ′)p1Vx′

)2
n̄+ + p2Vx′

)
− 2p1σ

′ (t ′)Vx′t ′

+ (σ ′ (t ′)p1
)2Vx′x′

+ p2VVx′ − 2

(
σ ′ (t ′))2p1

1 − x0 − σ (t ′)
Vx′ − ασ ′ (t ′)p1Vx′ + p2Ē+Vx′ + αVt ′ + n̄+V

=p1σ
′′ (t ′)Vx′ .

By a direct calculation, the equation (4.12) turns into

σ
(
t ′
)= M3

(
V
(
t, x′ = x0

))
, (4.16)
166



Y.-H. Feng, M. Mei and G. Zhang Journal of Differential Equations 344 (2023) 131–171
and (4.11) changes into

dσ

dt ′
= M2
(
p2(σ )Vx′ , σ (t ′)

)
. (4.17)

By using (4.17) to denote the quadratic terms for σ in terms of V , we get, at x′ = x0,

dσ

dt ′
=M2 (0,0) + ∂M2

∂Vx

p2(σ )Vx′ + ∂M2

∂(s(t) − x0)
σ (t ′) +R

= ū2+ − 1

2 (n̄+ − n̄−) ū+
(x0)p2(σ )Vx′ − Ē+

2ū+
(x0)σ (t ′) +R,

which further implies

dσ

dt ′
+ Ē+

2ū+
(x0)σ = N2 (Vx′ ,V) , (4.18)

where N2 satisfies∣∣∣∣∣N2 (Vx′ ,V) + 1 − ū2+
2 (n̄+ − n̄−) ū+

(x0)p2(σ )Vx′

∣∣∣∣∣= |R| ≤ C
(
V2

x′ + V2
)

.

Obviously, in view of (4.16) and (4.17), both σ and σ ′ can be denoted in terms of V and its 
derivatives at x′ = x0. Then, after handling (4.13) with (4.16) and (4.17), we obtain

Vt ′ = N1 (Vx′ ,V) , at x′ = x0. (4.19)

Equivalently, with the help of the implicit function Theorem once more, we get

Vx′ = N3 (Vt ′ ,V) , at x′ = x0, (4.20)

where

N3 (Vt ′ ,V) =N3 (0,0) + ∂N3

∂Vt ′
Vt ′ + ∂N3

∂V V +R

= 2ū+
1 − ū2+

(x0)Vt ′ + Ē+
1 − ū2+

(x0)V +R.

Or, equivalently,

∣∣∣∣∣N3 (Vt ′ ,V) − 2ū+
1 − ū2+

(x0)Vt ′ − Ē+
1 − ū2+

(x0)V
∣∣∣∣∣= |R| ≤ C

(
V2

t ′ + V2
)

.

Next, we still use x and t to denote x′ and t ′, respectively, for convenience. The problem 
becomes
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩
L(x,V, σ )V = σ ′′(t)p1∂xV, (t, x) ∈ R+ × [x0,L],
∂xV = ξ1 (Vt ,V)Vt + ω1 (Vt ,V)V, at x = x0,

∂xV = 0, at x = L,

σ(t) = M3 (V(t, x0)) ,

(4.21)

where, by using η0 and η1 to stand for t and x, respectively,

L(x,V, σ )U =
1∑

i,j=0

μij

(
x,V,∇V, σ, σ ′) ∂ijU +

1∑
i=0

βi

(
x,V,∇V, σ, σ ′) ∂iU

+ ζ
(
x,V,∇V, σ, σ ′)U ,

with

ξ1 (Vt ,V) =
1∫

0

∂N3

∂Vt

(θVt , θV) dθ, ω1 (Vt ,V) =
1∫

0

∂N3

∂V (θVt , θV) dθ.

Moreover, we have L(x, 0, 0)U = L0U , and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ00
(
x,V,∇V, σ, σ ′)= 1, μ11(x,0,0,0,0) = ū2+ − 1,

μ01(x,0,0,0,0) = μ10(x,0,0,0,0) = ū+,

β0(x,0,0,0,0) = α + 2∂x (ū+) , β1(x,0,0,0,0) = ∂x

(
ū2+
)+ Ē+,

ζ(x,0,0,0,0) = n̄+, ξ1(0,0) = 2ū+
1−ū2+

(x0), ω1(0,0) = Ē+
1−ū2+

(x0).

(4.22)

Then the linearized problem is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L(x,0,0)V = 0, (t, x) ∈ R+ × [x0,L],
∂xV = 2ū+

1−ū2+
(x0)Vt + Ē+

1−ū2+
(x0)V at x = x0,

∂xV = 0, at x = L

V(0, x) = h1(x), Vt (0, x) = h2(x), x ∈ (x0,L).

(4.23)

4.2. Linear dynamic instability

Let x0 ∈ [0, L) be the shock location for the steady transonic shock solution, we investigate 
the linear dynamic instability for the steady transonic shock solutions when Ē(x0) < −δ, where 
δ > 0 is a constant. We rewrite the linearized problem (4.23) as

⎧⎪⎨
⎪⎩
Vt t − ∂x

((
1 − ū2+

)
Vx

)+ 2∂x (ū+Vt ) + n̄+V + Ē+Vx + αVt = 0, (t, x) ∈R+ × (x0,L),

Vt = 1−ū2+
2ū+ (x0)Vx − Ē+

2ū+ (x0)V, at x = x0,

∂xV = 0, at x = L.

(4.24)
It follows from (1.33) that
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Ē+ (x0) < −δ. (4.25)

In order to prove the linear instability, we look for solutions to the problem (4.24) of the form 
V(t, x) = eνtU(x). A direct computation gives

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 − ū2+

)
Uxx − (∂x

(
ū2+
)+ 2νū+ + Ē+

)
Ux − (ν2 + 2ν∂xū+ − αν + n̄+

)
U = 0,

(t, x) ∈R+ × (x0,L),

Ux = 2ū+
1−ū2+

(x0)
(

Ē+
2ū+ (x0) + ν

)
U , at x = x0,

Ux = 0, at x = L.

(4.26)

For a fixed parameter U(x0) = γ > 0, let us consider

⎧⎪⎪⎨
⎪⎪⎩
(
1 − ū2+

)
Uxx − (∂x

(
ū2+
)+ 2νū+ + Ē+

)
Ux − (ν2 + 2ν∂xū+ − αν + n̄+

)
U = 0,

as x ∈ (x0,+∞),

U(x0) = γ > 0, Ux(x0) = 2ū+
1−ū2+

(x0)
(

Ē+
2ū+ (x0) + ν

)
U .

(4.27)

By noting that 0 < ū+ < 1 and (4.25), it follows that if ν = 0, then Ux(x0) < 0. Hence, there 

exists ς1 > x0 such that Ux(x) < 0 as x ∈ [x0, ς1]. On the other hand, if ν = − Ē+
ū+ (x0), then 

Ux(x0) > 0. We obtain that there is ς2 > x0 such that Ux(x) > 0 for x ∈ [x0, ς2].
Let ς = min{ς1, ς2}. By the continuous dependence of the ordinary differential equations 

with respect to the initial data and the parameters, there exists a number ν ∈ (0, − Ē+
ū+ (x0)) such 

that the problem (4.27) has a solution U = U(x) satisfying Ux(ς) = 0 which is a solution of 
(4.26) on [x0, ς]. This shows that the linearized problem (4.24) or (4.23) can have exponentially 
growing solutions. The proof of Theorem 1.6 has been finished. �
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