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Abstract
In this paper, we consider the compressible Navier–Stokes–Maxwell equations with a
non-constant background density inR3. We first show the existence and uniqueness of
the non-trivial equilibrium (steady-state) of the system when the background density
is a small variation of certain constant state, then we prove the asymptotic stability
of the steady-state once the initial perturbation around the steady-state is small. Fur-
thermore, by establishing the time-decay estimates for the corresponding linearized
homogeneous equations, we artfully derive the time-algebraic convergence rates. The
proof is based on the time-weighted energy method but with some new developments
on the weight settings.
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1 Introduction andmain results

1.1 Introduction

This paper is concerned with the compressible Navier–Stokes–Maxwell equations,
where the background density nb is a function of spatial variable and the electrons
flow is isentropic (see Duan (2012) where nb = const .). This system of dynamical
equations represents the model of plasma dynamics for the electric contact flows and
ionized gases Krall and Trivelpiece (1986); Nicholson (1983), and it usually presents
in the form of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t n + div (nu) = 0,

∂t u + u · ∇u + 1

n
∇ p = − (E + u × B) + 1

n
�u,

∂t E − ∇ × B = nu,

∂t B + ∇ × E = 0,

divE = nb − n,

divB = 0,

(1.1)

for (t, x) ∈ [0,+∞) × R
3. Here, n = n (t, x) > 0 is the electron density, u =

u (t, x) ∈ R
3 is the electron velocity, E = E (t, x) ∈ R

3, B = B (t, x) ∈ R
3, for

t > 0, x ∈ R
3, denote electronic and magnetic fields, respectively. The pressure

function p (·) of the flow depends only on the density and satisfies the power law
p (n) = nγ and γ > 1. nb (x) stands for the equilibrium background ion density
satisfying

nb (x) → 1, as |x | → ∞.

System (1.1) is supplemented with the initial condition

(n, u, E, B)|t=0 = (n0, u0, E0, B0), x ∈ R
3, (1.2)

which satisfies the compatibility conditions

divE0 = nb (x) − n0, divB0 = 0, x ∈ R
3. (1.3)

Different from the previous study Duan (2012) with the constant background den-
sity nb, our background density is variable in x , so the expected steady states of
system (1.1) should be non-trivial rather than the constant states (1, 0, 0, 0). Here,
the equilibrium equations to the initial value problem (1.1)-(1.2) targeted in this
paper are (n∗, u∗, E∗, B∗)(x) with u∗ = 0, B∗ = 0, but n∗(x) �≡ constant ,
E∗(x) �≡ constant , satisfying
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⎧
⎪⎨

⎪⎩

∇ p (n∗) = −n∗E∗,
∇ × E∗ = 0,

divE∗ = nb (x) − n∗, x ∈ R
3.

(1.4)

The existence of the equilibrium solutions to problem (1.1)–(1.2) was addressed in
Liu and Zhu (2013).

Lemma 1.1 (see Theorem 1 in Liu and Zhu (2013)) For integers m ≥ 2 and k ≥
0, suppose that ‖nb − 1‖Wm,2

k
is small enough. Then, the equilibrium problem (1.4)

admits a unique solution (n∗ − 1, E∗) ∈ Wm,2
k × Wm−1,2

k which satisfies

‖n∗ − 1‖Wm,2
k

≤ C ‖nb − 1‖Wm,2
k

, ‖E∗‖Wm−1,2
k

≤ C ‖nb − 1‖Wm,2
k

, (1.5)

for some constant C, where the weighted norm ‖·‖Wm,2
k

is defined by

‖g‖Wm,2
k

=
⎛

⎝
∑

|α|≤m

∫

R3
(1 + |x |)k |∂α

x g(x)|2dx
⎞

⎠

1
2

.

Navier–Stokes–Maxwell equations have been one of the interesting topics and
extensively studied. For incompressible Navier–Stokes–Maxwell equations, bymeans
of the Fujita-Kato’s method in l1-based functional spaces, Ibrahim-Yoneda Ibrahim
and Yoneda (2012) showed the local existence of unique solution and loss of smooth-
ness of the velocity and magnetic field for periodic problem. Later, Ibrahim-Keraani
Ibrahim and Keraani (2011) proved the existence of global small mild solutions in
3 dimensions and the same results in a space ‘close’ to the energy space in two
dimensions. By using the a priori L2

t (L
∞
x )-estimates for solutions of the forced

Navier–Stokes equations, Germain-Ibrahim-Masmoudi Germain et al. (2014) showed
the local existence of mild solutions for arbitrarily large data in a space similar to the
scale invariant spaces classically used for Navier–Stokes equations and refined the
results in Ibrahim and Keraani (2011). With the help of Littlewood–Paley analysis,
Yue-Zhong Yue and Zhong (2016) established the global well-posedness of solutions
in the Besov spaces B1/22,1 × B3/22,1 × B3/22,1 provided that the initial data are
sufficiently small.

For the compressible Navier–Stokes–Maxwell equations, Fan-Li-Nakamura Fan
et al. (2016) showed the convergence of the non-isentropic equations to the incom-
pressibleMHD equations in a bounded domain. By using the Green’s function method
and energy estimates, DuanDuan (2012) andChen-Li-ZhangChen et al. (2016) further
proved the large time decay rates of global smooth solutions near a constant steady-
state for one-fluid isentropic model. By use of the weighted energy methods and the
techniques of symmetrizer, Wang-Xu Wang and Xu (2015) generalized their results
to the non-isentropic models. Recently, Feng-Li-Mei-Wang Feng et al. (2021) studied
the large time decay rates of global smooth solutions near a constant steady-state for
the two-fluid models.

123



    2 Page 4 of 32 Journal of Nonlinear Science             (2022) 32:2 

When we neglect the friction forces in charged fluids, the Navier–Stokes–Maxwell
equations become the Euler–Maxwell equations. By using the fractional Godunov
scheme as well as the compensated compactness argument, Chen-Jerome-Wang Chen
et al. (2000) proved global existence of weak solutions to the initial-boundary value
problem in one space dimension for arbitrarily large initial data in L1. Jerome Jerome
(2003) provided a local smooth solution theory for the Cauchy problem over R3 by
adapting the classical semigroup-resolvent approach of Kato Kato (1975). Peng-Wang
Peng and Wang (2008) established convergence of the compressible Euler–Maxwell
system to the incompressible Euler system forwell-prepared smooth initial data.Much
more studies have been made for the Euler–Maxwell equations in all kinds of cases;
see Hajjej and Peng (2012); Wasiolek (2016); Yang and Wang (2011); Yang and Hu
(2019); Zhao (2021); Deng et al. (2017); Guo et al. (2016); Germain and Masmoudi
(2014); Duan (2011); Feng et al. (2014); Peng et al. (2011); Ueda et al. (2012); Xu
(2011); Liu and Zhu (2013); Peng (2015); Dumas et al. (2021) and references therein
for discussion and analysis of the different issues such as the asymptotic limits on
small physical parameters Hajjej and Peng (2012); Wasiolek (2016); Yang and Wang
(2011); Yang and Hu (2019); Zhao (2021), the existence of global smooth irrotational
flow Deng et al. (2017); Guo et al. (2016); Germain and Masmoudi (2014), longtime
behavior of global solutions near a constant equilibrium state Duan (2011); Feng et al.
(2014); Peng et al. (2011); Ueda et al. (2012); Xu (2011), large time-decay rates
of small non-constant steady-state solutions Liu and Zhu (2013), stability of large
non-constant equilibrium solutions Peng (2015) and the instability of WKB solution
Dumas et al. (2021).

Note that, in the previous studies mentioned above, they focus on the case of
nb = const . However, the physical case for the dynamic system is with non-constant
equilibrium background nb(x). The natural but also challenging question is how the
solutions to problem (1.1)–(1.2) behave in large time, provided that nb depends on x?
This will be the main target of the present paper.

Before stating the main results, let us introduce some notations.
Notations. For a multi-index α = (α1, α2, α3) ∈ N

3, we denote

∂α = ∂α1
x1 ∂α2

x2 ∂α3
x3 = ∂

α1
1 ∂

α2
2 ∂

α3
3 , with |α| = α1 + α2 + α3.

For α = (α1, α2, α3) and β = (β1, β2, β3) ∈ N
3, β ≤ α stands for β j ≤ α j for

j = 1, 2, 3, and β < α stands for β ≤ α and β �= α.
C denotes some positive (generally large) constant and λ denotes some positive

(generally small) constant, where both C and λ may take different values in different
places. For two quantities a and b, a ∼ b means λa ≤ b ≤ 1

λ
a for a generic constant

0 ≤ λ ≤ 1.We use 〈·, ·〉 to denote the inner product over theHilbert space L2(R3), i.e.,

〈 f , g〉 =
∫

R3
f (x)g(x)dx, ∀ f = f (x), g = g(x) ∈ L2(R3).

For all integer s ∈ N, we denote by Hs , L2 and L∞ the usual Sobolev spaces
Hs(R3), L2(R3) and L∞(R3), and by ‖ · ‖s , ‖ · ‖ and ‖ · ‖L∞ the corresponding
norms, respectively.
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Now we are stating the main result.

Theorem 1.1 Let integer s ≥ 4. Assume that ‖nb − 1‖Ws+1,2
0

is sufficiently small and

(1.3) holds. There exist two constants δ0 > 0 and C0 > 0 such that, if

‖(n0 − n∗, u0, E0 − E∗, B0)‖s ≤ δ0,

then problem (1.1)-(1.2) admits a unique global solution (n, u, E, B)(t, x) which
satisfies

(n − n∗, u, E − E∗, B) ∈ C([0,∞); Hs(R3)),

n − n∗ ∈ L2((0,∞); Hs(R3)), ∇u ∈ L2((0,∞); Hs(R3)),

∇ (E − E∗) ∈ L2((0,∞); Hs−2(R3)), ∇2B ∈ L2((0,∞); Hs−3(R3))

and

sup
t≥0

‖(n − n∗, u, E − E∗, B)‖s ≤ C0‖(n0 − n∗, u0, E0 − E∗, B0)‖s .

Furthermore, there exist δ1 > 0 and C1 > 0 such that, if

‖(n0 − n∗, u0, E0 − E∗, B0)‖s+2 + ‖(n0 − n∗, u0, E0 − E∗, B0)‖L1 ≤ δ1

and ‖nb − 1‖Ws+3,2
0

is small enough, then the solution (n, u, E, B)(t, x) satisfies that,

for any t ≥ 0,

‖(n − n∗, u, E − E∗, B)‖s ≤ C1(1 + t)−
3
8 , (1.6)

‖∇(n − n∗, u, E − E∗, B)‖s−1 ≤ C1(1 + t)−
5
8 . (1.7)

More precisely, if

‖(n0 − n∗, u0, E0 − E∗, B0)‖6 + ‖(n0 − n∗, u0, E0 − E∗, B0)‖L1 ≤ δ1

and ‖nb − 1‖W 7,2
0

is small enough, then we have

‖(n − n∗, u)‖ ≤ C1(1 + t)−
5
8 . (1.8)

Remark 1.1 In the proof of the global existence of Theorem 1.1, we modify the energy
estimates by choosing a weight function 1 + σ∗ + 
(σ∗) which plays a vital role in
closing the energy estimates.

Remark 1.2 We only capture the same time decay properties of u and B as that in Duan

(2012) except both n − n∗ and E − E∗ decay as (1 + t)− 5
8 in a slower way, because

the nonhomogeneous terms containing ρ∗ decay at most the same as
(
Eh
s (·)
) 1
2 .
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Remark 1.3 In the process of establishing the timedecay rates of the perturbed solution,
the main difficulty is to deal with these linear nonhomogeneous terms containing ρ∗,
which cannot bring good enough time decay rates as expected, whereas in Duan
(2012), the nonhomogeneous terms are at least quadratically nonlinear. In order to
remove this obstacle, we make iteration for inequalities (4.8) and (4.9) together.

The proof of Theorem1.1 is based on the classical energymethod butwith somenew
developments. We proceed first by using the time-weighted energy estimates, and then
by combining themwith the dissipation time-decay bounds for the linearized equation.
In particular, we choose a new time-weight function 1 + σ∗ + 
(σ∗) to establish the

energy estimates and introduce two new functions Y(t) = sup
0≤τ≤t

(1 + τ)
5
4Eh

s (V (τ ))

andF0(t) = sup
0≤τ≤t

(1+τ)
5
4 ‖(ρ, u)‖2 to obtain the time decay rates for each component

of the solution to problem (1.1)–(1.2).
Regarding the othermodels involving a non-constant background density, for exam-

ple, the Vlasov–Poisson–Boltzmann equations and the non-isentropic compressible
Navier–Stokes–Maxwell equations, there are also some significant contributions, see
Duan and Yang (2009); Duan and Strain (2011); Duan et al. (2007a, b); Feng et al.
(2021) and the references therein. In Duan and Yang (2009), by using the combination
of Fourier analysis and energy estimates, Duan andYang considered the stability of the
equilibrium states whichwere given by an elliptic equation. InDuan and Strain (2011),
Duan and Strain obtained the optimal time decay of the Vlasov–Poisson–Boltzmann
system in R

3. The optimal convergence rates for the compressible Navier–Stokes
equations with potential forces were obtained by Duan-Ukai-Yang-Zhao Duan et al.
(2007a) and Duan-Liu-Ukai-Yang Duan et al. (2007b), respectively. Recently, for the
non-isentropic compressible Navier–Stokes–Maxwell equations, Feng-Li-Wang Feng
et al. (2021) proved the global existence of smooth solutions once the size of the non-
constant equilibrium states is small enough, and the initial perturbations around the
equilibrium states are also small enough.

In what follows, let us state the main idea for the proof of Theorem 1.1 and the vital
difference of the study on the time decay rates between the Euler–Maxwell equations
and the Navier–Stokes–Maxwell equations. The key point is to establish the a priori
estimates

Es(V (t)) + λ

∫ t

0
Ds(V (s))ds ≤ Es(V 0),

where V (t) is the perturbation of solutions, and Es(·), Ds(·) denote the energy func-
tional and energy dissipation rate functional. Here, if we make the energy estimates
like what Duan did in Duan (2012), it is difficult to control the highest-order derivative
of E because of the regularity-loss type in the sense that (E, B) is time-space inte-
grable up to s − 1 order only. We overcome this difficulty by looking at the evolutions
of several different quantities (i.e., quadratic forms of the unknown functions) which
have different gains and losses, and construct the energy functional as a suitable linear
combination of them. Specifically, we introduce the weight function 1 + σ∗ + 
(σ∗)
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which plays a key role in closing the energy estimates (see (3.1) and (3.2)). Fur-
thermore, for the time decay rates of perturbed solutions in Theorem 1.1, we cannot
analyze the corresponding linearized homogeneous system of (1.1) around the steady
state (n∗, 0, E∗, 0) directly. In this case, the Fourier transform doesn’t work due to the
fact that the coefficients are no longer invariant. Here, the main idea follows from Liu
and Zhu (2013) by combining energy estimates with the linearized results in Duan
(2012). However, the techniques used here are different from Liu and Zhu (2013).
For instance, in order to estimate ‖B‖, Liu-Zhu Liu and Zhu (2013) introduce two
functions

Es,∞(V̄ (t)) = sup
0≤s≤t

{(1 + s)
3
2 Es(V̄ (s)) + (1 + s)

5
2 Eh

s (V̄ (s))}

and

L0(t) = sup
0≤s≤t

(1 + s)
5
2

(
‖ρ̄‖2L2(R3)

+ ‖ū‖2L2(R3)

)
.

Since the function Es,∞(V̄ (t)) contains both Es and Eh
s , they have to consider two

cases, namely, 1 < l < 2 and 2 < l < 3. Hence, the regularity of the initial data are
needed to be s+4. However, for the Navier–Stokes–Maxwell equations, we introduce

Y(t) = sup
0≤s≤t

(1 + s)
5
4Eh

s (V (s)), F0(t) = sup
0≤s≤t

(1 + s)
5
4 ‖(ρ, u)‖2

to estimate ‖B‖. The regularity of the initial data is lower than that in Liu and Zhu
(2013), s + 2 is enough. This is based on the fact that the function Y(t) contains
only Eh

s . Indeed, after carefully carrying out the estimates, we obtain that both Y(t)
and F0(t) can be controlled by C‖V 0‖2L1∩Hs+2 . Therefore, it follows that ‖(ρ, u)‖ ≤
C(1 + t)− 5

8 ‖V 0‖L1∩Hs+2 , the details can be seen in Sect. 4.
We end this section by stating the arrangement of the rest of this paper. In the next

section, we give a useful lemma and the transformation of the initial value problem.
In Sect. 3, we show the detailed estimates for the proof of the global existence of
solutions. In the last section, we study the time decay rates of global smooth solutions
by combining the L p −Lq time decay property of the linearized homogeneous system
with time-weighted estimate and complete the proof of Theorem 1.1.

2 Preliminaries

First of all, let us recall the following Moser-type calculus inequalities, which will be
often used later for energy estimates.

Lemma 2.1 (Moser-type calculus inequalities, see Klainerman and Majda (1981);
Majda (1984).) Let s ≥ 3 be an integer. Suppose u ∈ Hs,∇u ∈ L∞, v ∈ Hs−1 ∩ L∞
and f is a smooth function. Then, for all multi-index α with 1 ≤ |α| ≤ s, one has
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∂α(uv) − u∂αv ∈ L2 and

‖∂α(uv) − u∂αv‖ ≤ C
(‖∇u‖L∞‖D|α|−1v‖ + ‖D|α|u‖‖v‖L∞

)
,

∥
∥∂α f (u)

∥
∥ ≤ C(1 + ‖u‖s)s−1‖u‖s,

where the constant C may depend on ‖u‖L∞ and s, and

‖Ds′u‖ =
∑

|α|=s′
‖∂αu‖.

Next we are going to reduce system (1.1)-(1.2) by introducing a suitable transfor-
mation. Suppose (n, u, E, B) to be a smooth solution to system (1.1) with the initial
condition (1.2) which satisfies (1.3). We introduce the transformation

⎧
⎪⎪⎨

⎪⎪⎩

σ (t, x) = 2(γ − 1)−1

(
(
n
(
γ − 1

2 t, x
)) γ−1

2 − 1

)

, v = γ −1u
(
γ − 1

2 t, x
)

,

Ẽ = γ − 1
2 E
(
γ − 1

2 t, x
)

, B̃ = γ − 1
2 B
(
γ − 1

2 t, x
)

.

(2.1)

Then, Eq. (1.1) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tσ +
(

γ − 1

2
σ + 1

)

divv + v · σ = 0,

∂tv + v · ∇v +
(

γ − 1

2
σ + 1

)

∇σ

= −
(
γ − 1

2 Ẽ + v × B̃
)

+ γ − 1
2

�v


 (σ) + σ + 1
,

∂t Ẽ − γ − 1
2 ∇ × B̃ = γ − 1

2 v + γ − 1
2 (
 (σ) + σ) v,

∂t B̃ + γ − 1
2 ∇ × Ẽ = 0,

divẼ = −γ − 1
2 (
 (σ) + σ) + γ − 1

2 (nb (x) − 1) , divB̃ = 0, t > 0, x ∈ R
3,

(2.2)

supplemented with the initial condition

V |t=0 = (σ, v, Ẽ, B̃)|t=0 = V0 := (σ0, v0, Ẽ0, B̃0), x ∈ R
3, (2.3)

which satisfies the compatibility condition

divẼ0 = −γ − 1
2 (
 (σ0) + σ0) + γ − 1

2 (nb (x) − 1) , divB̃0 = 0, x ∈ R
3. (2.4)

Here 
(·) is defined by


(σ) = (
γ − 1

2
σ + 1)

2
γ−1 − σ − 1, (2.5)
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and V0 = (σ0, v0, Ẽ0, B̃0) is given from (n0, u0, E0, B0) according to transformation
(2.1).

Moreover, we also introduce the transformation

σ∗ = 2

γ − 1

(
n∗ (x)

γ−1
2 − 1

)
, Ẽ∗ = γ − 1

2 E∗ (x) , (2.6)

then the equilibrium Eqs. (1.4) turn into

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
γ − 1

2
σ∗ + 1

)

∇σ∗ = −γ − 1
2 Ẽ∗,

∇ × Ẽ∗ = 0,

divẼ∗ = γ − 1
2 (nb (x) − 1) − γ − 1

2 (
(σ∗) + σ∗).

(2.7)

Based on the existence result in Lemma 1.1, we want to investigate the stability
of the equilibrium state (σ∗, 0, Ẽ∗, 0). Let us introduce the perturbations (σ , v, E, B)

by

σ = σ − σ∗, v = v, E = Ẽ − Ẽ∗, B = B̃.

It follows from (2.2) and (2.7) that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tσ +
(

γ − 1

2
σ + 1

)

∇ · v + v · σ + v · σ∗ + γ − 1

2
σ∗divv = 0,

∂tv + v · ∇v +
(

γ − 1

2
σ + 1

)

∇σ + γ − 1

2
σ∇σ∗ + γ − 1

2
σ∗∇σ

= −
(
γ − 1

2 E + v × B
)

+ γ − 1
2

�v


 (σ + σ∗) + σ + σ∗ + 1
,

∂t E − γ − 1
2 ∇ × B = γ − 1

2 v + γ − 1
2 (
 (σ + σ∗) + σ + σ∗) v,

∂t B + γ − 1
2 ∇ × E = 0,

divE = −γ − 1
2 (
 (σ + σ∗) − 
(σ∗)) − σ , divB = 0, t > 0, x ∈ R

3,

(2.8)

supplemented with the initial condition

V |t=0 = (σ , v, E, B)|t=0 = V 0 := (σ0 − σ∗, v0, Ẽ0 − Ẽ∗, B̃0), (2.9)

which satisfies the compatibility condition

divE0 = −γ − 1
2 (
 (σ 0 + σ∗) − 
(σ∗)) − σ0, divB0 = 0, x ∈ R

3. (2.10)

Notice that system (2.8) is quasi-linear symmetric hyperbolic–parabolic, then the
local existence of smooth solutions to the initial value problem (2.8)–(2.9) can be
obtained from the classical results of Kato Kato (1975) and the pioneering work of
Matsumura-Nishida Matsumura and Nishida (1979, 1980).
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3 Stability of equilibrium solution

In the following, we assume the integer s ≥ 4. Meanwhile, for V = (σ , v, E, B), let
us define the full instant energy functional Es(V (t)) and the high-order instant energy
functional Eh

s (V (t)) by

Es(V (t)) =
∑

|α|≤s

〈1 + σ∗ + 
(σ∗), |∂ασ |2 + |∂αv|2〉 + ‖(E, B)‖2s

+ K1

∑

|α|≤s−1

〈
∂αv,∇∂ασ

〉+ K2

∑

|α|≤s−2

〈
∂α∇ × E, ∂α∇ × v

〉

+ K3

∑

1≤|α|≤s−2

〈
∂α(−∇ × B), ∂αE

〉
,

(3.1)

and

Eh
s (V (t)) =

∑

1≤|α|≤s

〈1 + σ∗ + 
(σ∗), |∂ασ |2 + |∂αv|2〉 + ‖∇(E, B)‖2s−1

+ K1

∑

1≤|α|≤s−1

〈
∂αv, ∂α∇σ

〉+ K2

∑

1≤|α|≤s−2

〈
∂α∇ × E, ∂α∇ × v

〉

+ K3

∑

2≤|α|≤s−2

〈
∂α(−∇ × B), ∂αE

〉
,

(3.2)

respectively, where 0 < K3 � K2 � K1 � 1 are small positive constants to be
chosen later. Notice that since all constants Ki (i = 1, 2, 3) are small enough, we have

Es(V (t)) ∼ ‖(σ , v, E, B)‖2s , Eh
s (V (t)) ∼ ‖∇(σ , v, E, B)‖2s−1.

We further define the dissipation rates Ds(V (t)),Dh
s (V (t)) by

Ds(V (t)) ∼ ‖σ‖2s + ‖∇v‖2s + ‖∇E‖2s−2 + ‖∇2B‖2s−3 (3.3)

and

Dh
s (V (t)) ∼ ‖∇σ‖2s−1 + ‖∇2v‖2s−1 + ‖∇2E‖2s−3 + ‖∇3B‖2s−4. (3.4)

Then, concerning the transformed initial value problem (2.8)-(2.9), we get the
following global existence result.

Proposition 3.1 Assume that ‖nb − 1‖Ws+1,2
0

is sufficiently small and (2.10) holds.

There exist Es(·) and Ds(·) in the form of (3.1) and (3.3) such that, if Es(V 0) > 0
is sufficiently small, then problem (2.8)-(2.9) admits a unique global solution V =
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(σ − σ∗, v, Ẽ − Ẽ∗, B̃) which satisfies, for any t ≥ 0,

V ∈ C([0,∞); Hs(R3)),

σ − σ∗ ∈ L2((0,∞); Hs(R3)), ∇v ∈ L2((0,∞); Hs(R3)),

∇ Ẽ − ∇ Ẽ∗ ∈ L2((0,∞); Hs−2(R3)), ∇2 B̃ ∈ L2((0,∞); Hs−3(R3)),

(3.5)

and

Es(V (t)) + λ

∫ t

0
Ds(V (s))ds ≤ Es(V 0). (3.6)

3.1 The a priori estimates

In the following, we prove that the equilibrium solution obtained in Lemma 1.1 is
asymptotic stable under small initial perturbation. We start to use the classical energy
method but with some new developments to establish the a priori estimates for smooth
solutions to problem (2.8)-(2.9). For this purpose, we introduce

δ = ‖σ ∗‖Ws+1,2
0

=
√
√
√
√

∑

|α|≤s+1

∫

R3
|∂α

x σ∗|2dx (3.7)

for convenience. By (2.6), direct computation gives

σ∗ = 2

γ

Q∗
(
γ−1
γ

Q∗ + 1)
1
2 + 1

∼ Q∗,

which implies that δ ≤ C‖Q∗‖Ws+1,2
0

≤ C‖nb − 1‖Ws+1,2
0

is small enough. Here, Q∗
is defined by

(γ − 1)Q∗ = γ (nγ−1∗ − 1).

The main task of this subsection is to prove

Theorem 3.1 (The a priori estimates). Suppose 0 < T ≤ ∞ to be given. Assume that
V = (σ , v, E, B) ∈ C([0, T ); Hs(R3)) is smooth for T > 0 with

sup
0≤t<T

‖V (t)‖s ≤ 1 (3.8)

and suppose that V solves system (2.8) for t ∈ (0, T ). Then, there exist Es(·) and
Ds(·) in the form of (3.1) and (3.3) such that, for any 0 ≤ t < T ,

d

dt
Es(V (t)) + λDs(V (t)) ≤ C

(
Es(V (t))

1
2 + δ

)
Ds(V (t)). (3.9)
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Proof We use five steps to complete the proof.
Step 1. It holds that

1

2

d

dt

⎛

⎝
∑

|α|≤s

〈1 + σ∗ + 
(σ∗), |∂ασ |2 + |∂αv|2〉 + ‖(E, B)‖2s
⎞

⎠

+ γ − 1
2
∑

|α|≤s

‖∇∂αv‖2

≤ C
(
‖V ‖s + δ‖σ , v]‖s + δ)(‖∇v‖2s + ‖σ‖2s + ‖∇E‖2s−2

)
.

(3.10)

In fact, for α ∈ N
3 with |α| ≤ s, applying ∂α to the first two equations of (2.8) and

taking the inner product of them with (1+σ∗ +
(σ∗))∂ασ and (1+σ∗ +
(σ∗))∂αv

in L2(R3), respectively, and then using integration by parts, we have

1

2

d

dt
〈1 + σ∗ + 
(σ∗), |∂ασ |2 + |∂αv|2〉 + γ − 1

2
〈
∂αE, (1 + σ∗ + 
(σ∗))∂αv

〉

− γ − 1
2

〈

(1 + σ∗ + 
(σ∗))∂αv,
�∂αv

1 + σ∗ + σ + 
(σ∗ + σ)

〉

= I1(t) +
∑

β<α

Cβ
α

〈
(1 + σ∗ + 
(σ∗))∂αv, ∂α−β

(
1

1 + σ∗ + σ + 
(σ∗ + σ)

)

�∂βv

〉

−
∑

β<α

Cβ
α I

(σ )
α,β (t) −

∑

β<α

Cβ
α I

(v)
α,β(t),

(3.11)

where

I1(t) = 1

2

〈
∇ · v, (1 + σ∗ + 
(σ∗))(|∂ασ |2 + |∂αv|2)

〉

+γ − 1

2

〈∇σ · ∂αv, (1 + σ∗ + 
(σ∗))∂ασ
〉

− 〈v × ∂αB, (1 + σ∗ + 
(σ∗))∂αv
〉

+γ − 1

2

〈∇σ∗∂αv, (1 + σ∗ + 
(σ∗))∂ασ
〉

−γ − 1

2

〈
σ∂α∇σ∗, (1 + σ∗ + 
(σ∗))∂αv

〉

− 〈v · ∂α∇σ∗, (1 + σ∗ + 
(σ∗))∂ασ
〉

+
〈

(
γ − 1

2
σ + 1)∂αv,∇(1+ σ∗+ 
(σ∗))∂ασ

〉

+γ − 1

2

〈
σ∗∂αv,∇(1+ σ∗ + 
(σ∗))∂ασ

〉

+γ − 1

2

〈
v,∇(1 + σ∗ + 
(σ∗))(|∂ασ |2 + |∂αv|2)

〉
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�
9∑

j=1

I1, j (t),

I (σ )
α,β (t) = 〈∂α−βv · ∇∂βσ , (1+σ∗+
(σ∗))∂ασ

〉

+γ − 1

2

〈
∂α−βσ∂β∇ · v, (1+σ∗+
(σ∗))∂ασ

〉

+γ −1

2

〈
∂α−βσ∗∇ · ∂βv, (1+σ∗+
(σ∗))∂ασ

〉

+〈∂α−βv∂β∇ · σ∗, (1+σ∗+
(σ∗))∂ασ
〉
,

and

I (v)
α,β(t) = 〈∂α−βv · ∇∂βv, (1 + σ∗ + 
(σ∗))∂αv

〉

+ γ − 1

2

〈
∂α−βσ∇∂βσ , (1 + σ∗ + 
(σ∗))∂αv

〉

+ γ − 1

2

〈
∂α−βσ∗∇∂βσ , (1 + σ∗ + 
(σ∗))∂αv

〉

+ 〈∂α−βv × ∂βB, (1 + σ∗ + 
(σ∗))∂αv
〉

+ γ − 1

2

〈
∂α−βσ∇∂βσ∗, (1 + σ∗ + 
(σ∗))∂αv

〉
.

First, for the second term on the right-hand side of (3.11), we have

∑

β<α

Cβ
α

〈

(1 + σ∗ + 
(σ∗))∂αv, ∂α−β

(
1

1 + σ∗ + σ + 
(σ∗ + σ)

)

�∂βv

〉

≤ C
∑

β<α

Cβ
α

〈
∣
∣∂αv

∣
∣ ,

∣
∣
∣
∣∂

α−β

(
1

1 + σ∗ + σ + 
(σ∗ + σ)

)

�∂βv

∣
∣
∣
∣

〉

≤ C‖∂α−βσ‖L3‖�∂βv‖‖∂αv‖L6 + C‖∂α−βσ∗‖L3‖�∂βv‖‖∂αv‖L6

≤ C(‖σ‖s + δ)‖∇v‖2s .

Similarly, for the last term on the left-hand side of (3.11), we obtain

− γ − 1
2

〈

(1 + σ∗ + 
(σ∗))∂αv,
�∂αv

1 + σ∗ + σ + 
(σ∗ + σ)

〉

= γ − 1
2 ‖∇∂αv‖2 −

〈

(σ∗) − σ − 
(σ∗ + σ)

1 + σ∗ + σ + 
(σ∗ + σ)
∂αv, ∂α�v

〉

≥ γ − 1
2 ‖∇∂αv‖2 − C‖σ‖s‖∇∂αv‖2.
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Then, it follows that

1

2

d

dt

〈
1+σ∗+
(σ∗), |∂ασ |2+|∂αv|2

〉
+γ − 1

2 ‖∇∂αv‖2

+γ − 1
2
〈
∂αE, (1+σ∗+
(σ∗))|∂αv|〉

≤ C(‖σ‖s + δ)‖∇v‖2s + I1(t) −
∑

β<α

Cβ
α I

(σ )
α,β (t) −

∑

β<α

Cβ
α I

(v)
α,β(t).

(3.12)

We estimate the term I1(t) on the right-hand side as follows. When |α| = 0,

I1(t) ≤C‖∇ · v‖(‖σ‖‖σ‖L∞ + ‖v‖‖v‖L∞)

+ C‖∇σ‖L3‖v‖‖σ‖L6 + C‖v‖2L∞‖B‖‖1 + σ∗ + 
(σ∗)‖
+ C‖∇σ∗‖‖v‖L∞‖σ‖ + C‖∇σ∗‖‖v‖L6‖σ‖L3

+ C‖σ‖‖v‖L∞‖σ‖ + C‖∇σ∗‖‖v‖L6‖σ‖L3

+ C‖∇σ∗‖‖v‖L6‖σ‖L3‖σ∗‖L∞ + C‖∇σ∗‖‖v‖L6‖σ‖L3‖σ‖L∞

+ C‖v‖L6‖∇σ∗‖‖v‖L3‖v‖L∞

≤C(‖(σ , v, B)‖s + δ + δ‖v‖)(‖σ‖2s + ‖∇v‖2s ),

which will be further bounded by the right-hand side of (3.10).
When |α| ≥ 1, we get

I1,4(t) + I1,7(t) + I1,8(t) + I1,9(t)

≤ C‖∇σ∗‖L∞‖∂αv‖‖1 + σ∗ + 
(σ∗)‖L∞‖∂ασ‖ + C‖∂αv‖‖∂ασ‖‖∇σ∗‖L∞

+ C‖∇σ∗‖L∞‖∂αv‖‖σ‖L∞‖∂ασ‖ + C‖∇σ∗‖L∞‖∂αv‖‖σ∗‖L∞‖∂ασ‖
+ C‖v‖L∞‖∇σ∗‖L∞‖∇(σ , v)‖2s−1

≤ C(δ + δ‖(σ , v)‖s)(‖σ‖2s + ‖∇v‖2s ),
I1,1(t) + I1,2(t) ≤ C‖(σ , v)‖s‖∇(σ , v)‖2s−1,

and

I1,3(t) + I1,5(t) + I1,6(t) ≤ C(‖B‖s + δ)‖∇(σ , v)‖2s−1.

By combining the above three estimates, we have

I1(t) ≤ C(‖(σ , v, B)‖s + δ + δ‖(σ , v)‖s)(‖σ‖2s + ‖∇v‖2s ),

which is bounded by the right-hand side terms of (3.10). On the other hand, since each
term in I (σ )

α,β (t) and I (v)
α,β(t) is the integration of the four-terms product in which there

is at least one term containing the derivative, we get
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−
∑

β<α

Cβ
α I

(σ )
α,β (t) −

∑

β<α

Cβ
α I

(v)
α,β(t)

≤ C‖σ‖s(‖σ‖2s + ‖∇v‖2s ) + Cδ(‖σ‖2s + ‖∇v‖2s )
+ C‖v‖s‖∇v‖2s + C‖B‖s‖∇v‖2s

≤ C(‖(σ , v, B)‖s + δ)(‖σ‖2s + ‖∇v‖2s ),

which is also bounded by the right-hand side of (3.10).
From (2.8), standard energy estimates on ∂αE and ∂αB with |α| ≤ s give

1

2

d

dt
‖∂α(E, B)‖2 − γ − 1

2
〈
(1 + σ∗ + 
(σ∗))∂αv, ∂αE

〉

= γ − 1
2
〈
∂α((
(σ + σ∗) − 
(σ∗))v), ∂αE

〉+ γ − 1
2
〈
∂α(σv), ∂αE

〉

+ γ − 1
2
∑

β<α

Cβ
α

〈
∂α−β(1 + σ∗ + 
(σ∗)∂βv, ∂αE

〉

�
2∑

j=1

I2, j (t) +
∑

β<α

Cβ
α I2,β(t).

(3.13)

In a similar way as before, when |α| = 0, it suffices to estimate

2∑

j=1

I2, j (t) ≤ C‖E‖1‖∇v‖‖σ‖.

When |α| ≥ 1, these terms can be estimated as

2∑

j=1

I2, j (t) ≤ C‖E‖s‖∇v‖s−1‖∇σ‖s−1,

and

∑

β<α

Cβ
α I2,β(t) ≤ Cδ‖∇v‖s−1‖∇E‖s−2 ≤ Cδ‖∇v‖2s−1 + Cδ‖∇E‖2s−2.

which will be further bounded by the right-hand side of (3.10).
Then, (3.10) follows by the summation of (3.12) and (3.13) over |α| ≤ s. Then,

the time evolution of the full instant energy ‖V (t)‖2s has been obtained but its dissipa-
tion rate only contains ∇v. By introducing the interactive functionals as follows, the
dissipation from contributions of the rest components σ , E , and B can be obtained in
turn.
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Step 2. It holds that

d

dt

∑

|α|≤s−1

〈
∂αv,∇∂ασ

〉+ λ‖σ‖2s ≤ C(‖(σ , B)‖s + δ)(‖∇v‖2s + ‖σ‖2s ) + ‖∇v‖2s .

(3.14)

In fact, the first two equations of (2.8) can be rewritten as

∂tσ + ∇ · v = R1 (3.15)

and

∂tv + ∇σ + γ − 1
2 E − γ − 1

2
�v

1 + σ∗ + σ + 
(σ∗ + σ)
= R2. (3.16)

Here

⎧
⎪⎨

⎪⎩

R1 = −v · ∇σ − γ − 1

2
σ∇ · v − v · ∇σ∗ − γ − 1

2
σ∗∇ · v,

R2 = −v · ∇v − γ − 1

2
σ∇σ − v × B − γ − 1

2
σ∗∇σ − γ − 1

2
σ∇σ∗.

(3.17)

For α ∈ N
3 with |α| ≤ s − 1, applying ∂α to (3.16), taking the inner product of the

resulting equation with ∂α∇σ in L2(R3), and then using integration by parts and also
the final equation of (2.8), replacing ∂t σ̄ from (3.15) imply that

d

dt

〈
∂α∇v,∇∂α∇σ

〉+ ‖∇∂α∇σ‖2 + γ −1‖∂α∇σ‖2

= −γ −1 〈∂α(
(σ + σ∗) − 
(σ∗)), ∂ασ
〉+ 〈∂αR2,∇∂ασ

〉+ ‖∇ · ∂αv‖2

− 〈∂αR1,∇ · ∂αv
〉+ γ − 1

2

〈

∂α(
�v

1 + σ∗ + σ + 
(σ∗ + σ)
),∇∂ασ

〉

.

Then, by the Cauchy–Schwarz inequality, we get

d

dt

〈
∂α∇v,∇∂α∇σ

〉+ λ(‖∇∂ασ‖2 + ‖∂α∇σ‖2)
≤ C(‖(σ , B)‖s + δ)(‖∇v‖2s + ‖σ‖2s ) + C‖∇v‖2s ,

which implies (3.14) by taking summation of it over |α| ≤ s − 1.
Step 3. It holds that

d

dt

∑

|α|≤s−2

〈
∂α∇ × v, ∂α∇ × E

〉+ λ
∑

|α|≤s−2

‖∂α∇E‖2

≤ C
(
‖∇v‖2s + δ‖∇E‖2s−2 + ‖σ‖2s + ‖∇2B‖2s−3

)

+ C(‖(σ , v, B)‖s + δ)(‖∇v‖2s + ‖∇E‖2s−2).

(3.18)
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Taking the rotation of the equation of (3.16), we have

∂t∇ × v + γ − 1
2 ∇ × E = ∇ × R2 + γ − 1

2 ∇ ×
(

�v

1 + σ∗ + σ + 
(σ∗ + σ)

)

.

For α ∈ N
3 with |α| ≤ s − 2, applying ∂α to the equation above, taking the inner

product of the resulted equation with ∂α∇ × E in L2(R3), using integration by parts
and replacing ∂t E from the third equation of (2.8) yield

d

dt

〈
∂α∇ × v, ∂α∇ × E

〉+ γ − 1
2 ‖∂α∇ × E‖2

= γ − 1
2 〈∂α∇ × v, ∂α∇ × ∇ × B〉 + γ − 1

2 ‖∂α∇ × v‖2
+ 〈∂α∇ × R2, ∂

α∇ × E〉
+ γ − 1

2

〈

∂α∇ ×
(

�v

1 + σ∗ + σ + 
(σ∗ + σ)

)

, ∂α∇ × E

〉

+ γ − 1
2
〈
∂α∇ × v, ∂α∇ × ((
(σ∗ + σ) + σ∗ + σ)v)

〉
,

which together with the Cauchy–Schwarz inequality further implies

d

dt

〈
∂α∇ × v, ∂α∇ × E

〉+ γ − 1
2 ‖∂α∇ × E‖2

≤ C(‖ (σ , v, B
) ‖s + δ)

(
‖∇v‖2s + ‖∇E‖2s−2

)

+ C(‖∇v‖2s + δ‖∇E‖2s−2 + ‖σ‖2s + ‖∇2B‖2s−3).

Thus, (3.18) follows by the last equation in (2.8) and taking summation of these
estimates over |α| ≤ s − 2.

Step 4. It holds that

d

dt

∑

1≤|α|≤s−2

〈
(−∂α∇ × B), ∂αE

〉+ λ
∑

1≤|α|≤s−2

‖∂α∇B‖2

≤ C(‖σ‖s + δ)(‖∇v‖2s + ‖∇2B‖2s−3) + C‖∇E‖2s−2.

(3.19)

In fact, for α ∈ N
3 with 1 ≤ |α| ≤ s−2, applying ∂α to the third equation of (2.8),

taking the inner product of the resulted equation with −∂α∇ × B in L2(R3), and then
using integration by parts and replacing ∂t B from the fourth equation of (2.8), we get

d

dt

〈
∂α(−∇ × B), ∂αE

〉+ γ − 1
2 ‖∂α∇ × B‖2

= γ − 1
2 ‖∂α∇ × E‖2 − γ − 1

2
〈
∂α∇ × B, ∂αv

〉

−γ − 1
2 〈∂α∇ × B, ∂α ((
(σ + σ∗) − 
(σ∗))v)〉

−γ − 1
2
〈
∂α∇ × B, ∂α ((1 + σ∗ + 
(σ∗))v)

〉− γ − 1
2 〈∂α∇ × B, ∂α(σv)〉
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+γ − 1
2 〈∂α∇ × B, ∂αv〉,

which gives (3.19) by further usingCauchy–Schwarz inequality and taking summation
over 1 ≤ |α| ≤ s − 2, where we also used

‖∂α∂i B‖ = ‖∂i�−1∇ × (∇ × ∂αB)‖ ≤ ‖∇ × ∂αB‖,

for each 1 ≤ i ≤ 3, due to the fact ∂i�−1∇ is bounded from L p to itself for 1 < p <

∞.
Step 5. Now, following the four steps above, we are ready to prove (3.9). For

Es(V (t)) =
∑

|α|≤s

〈1 + σ∗ + 
(σ∗), |∂ασ |2 + |∂αv|2〉 + ‖(E, B)‖2s

+ K1

∑

|α|≤s−1

〈
∂αv,∇∂ασ

〉+ K2

∑

|α|≤s−2

〈
∂α∇ × E, ∂α∇ × v

〉

+ K3

∑

1≤|α|≤s−2

〈
∂α(−∇ × B), ∂αE

〉
,

where constants 0 < K3 � K2 � K1 � 1 to be determined. Notice that as long as
0 < Ki � 1 is small enough for i = 1, 2, 3, and σ∗ + 
(σ∗) depending only on x is
sufficiently small compared with 1, then Es(V (t)) ∼ ‖V (t)‖2s holds true. Moreover,

letting 0 < K3 � K2 � K1 � 1 with K
3/2
2 � K3, the sum of (3.14) ×K1, (3.18)

×K2, (3.19) ×K3 implies that there are λ > 0, C > 0 such that (3.9) holds true with
Ds(·). Here, we have used the following Cauchy–Schwarz inequality:

2K2‖v‖s‖∇B‖s−2 ≤ K
1/2
2 ‖v‖2s + K

3/2
2 ‖∇B‖2s−2

Due to K
3/2
2 � K3, both terms on the right-hand side of the above inequality can be

controlled. This completes the proof of Theorem 3.1. ��
Since system (2.8) is quasi-linear symmetric hyperbolic–parabolic, the local time

existence can be obtained as that in Feng et al. (2021). From Theorem 3.1 and the
continuity argument, it is easy to see thatEs(V (t)) is bounded uniformly in time under
the assumptions that Es(V 0) > 0 and ‖nb −1‖Ws+1,2

0
are small enough. Therefore, the

global existence of solutions satisfying (3.5) and (3.6) follows in the standard way;
see also Duan (2012). This completes the proof of Proposition 3.1, namely, the global
existence result in Theorem 1.1. ��

4 Decay in time for the nonlinear system

In the following, we continue to study the time decay rate of the smooth solution which
convergence to the steady state (n∗, 0, E∗, 0). For this goal, let us introduce

ρ = n − n∗, u = u, E1 = E − E∗, B1 = B, ρ∗ = n∗ − 1,
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then U = (ρ, u, E1, B1) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tρ + divu = g1,

∂t u + E1 + γ∇ρ − �u = g2,

∂t E1 − ∇ × B1 − u = g3,

∂t B1 + ∇ × E1 = 0,

divE1 = −ρ̄, divB1 = 0, t > 0, x ∈ R
3,

(4.1)

with the initial condition

U |t=0 = U0 := (ρ0, u0, E1,0, B1,0
) = (n0 − n∗, u0, E0 − E∗, B0) , x ∈ R

3,

(4.2)

which satisfies the compatibility conditions

divE1,0 = −ρ0, divB1,0 = 0, x ∈ R
3. (4.3)

Here the nonlinear source terms are

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

g1 = −div ((ρ + ρ∗) u) ,

g2 = −u · ∇u − u × B1 − γ
(
(ρ + ρ∗ + 1)γ−2 − 1

)
∇ρ

− γ
(
(ρ + ρ∗ + 1)γ−2 − (ρ∗ + 1)γ−2

)
∇ρ∗ −

(

1 − 1

ρ + ρ∗ + 1

)

�u,

g3 = (ρ + ρ∗) u.

(4.4)

Next, we investigate the linearized homogeneous equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tρ + divu = 0,

∂t u + E + γ∇ρ − �u = 0,

∂t E − ∇ × B − u = 0,

∂t B + ∇ × E = 0,

divE = −ρ, divB = 0, t > 0, x ∈ R
3,

(4.5)

with the initial condition

U |t=0 = U0 := (ρ0, u0, E1,0, B1,0
)
, x ∈ R

3, (4.6)

also satisfying the compatibility conditions (4.3).
For the above linearized equations, the L p − Lq time decay property was proved

by Duan Duan (2012). We list only some special L p − Lq time decay properties in
the following Proposition.
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Proposition 4.1 Assume that U (t) = etLU 0 is the solution to the initial value problem
with the initial data U 0 = (

ρ0, u0, E1,0, B1,0
)
which satisfies (4.3). Then, U =

(ρ, u, E, B) satisfies the following time decay property:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖ρ(t)‖ ≤ C(1 + t)−
5
4 ‖(ρ0, u0)‖L1∩L2 ,

‖u(t)‖ ≤ C(1+t)−
5
4 ‖ρ0‖L1∩L2 +C(1+t)−

3
4 ‖(u0, E1,0)‖L1∩L2

+C(1+t)−
5
8 ‖B1,0‖L1∩L2 ,

‖E(t)‖ ≤ C(1 + t)−
3
4 ‖u0‖L1∩L2 + C(1 + t)−

3
4 (‖E1,0‖L1∩L2 + ‖∇2E1,0‖)

+ C(1 + t)−
9
8 (‖B1,0‖L1∩L2 + ‖∇3B1,0‖),

‖B(t)‖ ≤ C(1 + t)−
5
8 ‖u0‖L1∩L2 + C(1 + t)−

9
8 (‖E1,0‖L1∩L2 + ‖∇3E1,0‖)

+ C(1 + t)−
3
8 (‖B1,0‖L1∩L2 + ‖∇B1,0‖),

‖∇B(t)‖ ≤ C(1+t)−
7
8 ‖u0‖L1∩L2 +C(1+t)−

5
8 (‖(E1,0, B1,0)‖L1∩L2

+‖∇3(E1,0, B1,0)‖).

(4.7)

In the sequence, due to the fact that we shall apply the linear L p − Lq time decay
property of the homogeneous system, the mild form of the nonlinear initial value
problem is needed here. From now on, we usually denote U = (ρ, u, E1, B1) as the
solution to the nonlinear initial value problem. Therefore, by the Duhamel’s principle,
the solution U can be formally written as

U (t) = etLU 0 +
∫ t

0
e(t−τ)L (g1(τ ), g2(τ ), g3(τ ), 0) dτ,

where etLU 0 denotes the solution to the linearized homogeneous initial value problem.
For establishing the time decay rates of the perturbed solution, the vital task lies

in dealing with the linear nonhomogeneous terms. In order to solve this problem, we
make iteration for the following two lemmas which give the full and high-order energy
estimates.

Lemma 4.1 Suppose V = (σ , v, E, B) to be the solution of problem (2.8)-(2.9) with
initial data V 0 = (σ 0, v0, E0, B0) which satisfies (2.10). If Es(V 0) and ‖nb(x) −
1‖Ws+1,2

0
are sufficiently small, then

d

dt
Es(V (t)) + λDs(V (t)) ≤ 0, (4.8)

holds for any t > 0, where Es(V (t)),Ds(V (t)) are defined in the form of (3.1) and
(3.3), respectively.

Proof It can be seen directly from the proof of Theorem 3.1. ��
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Lemma 4.2 Assume that V = (σ , v, E, B) is the solution to problem (2.8)-(2.9) with
initial data V 0 = (σ 0, v0, E0, B0) satisfying (2.10). IfEs(V 0) and ‖nb(x)−1‖Ws+1,2

0

are small enough, then there exist the high-order instant energy functional Eh
s (·) and

the corresponding dissipation rate Ds(·) such that, for any t > 0,

d

dt
Eh
s (V (t)) + λDh

s (V (t)) ≤ 0. (4.9)

Proof The proof can be done by slightly modifying the proof of Theorem 3.1. In
fact, by letting the energy estimates made only on the high-order derivatives, then
corresponding to (3.10), (3.14), (3.18) and (3.19). we get

1

2

d

dt

⎛

⎝
∑

1≤|α|≤s

〈1+σ∗+
(σ∗), |∂ασ |2+|∂αv|2〉+‖∇(E, B)‖2s−1

⎞

⎠

+γ − 1
2
∑

1≤|α|≤s

‖∇∂αv‖2

≤ C(‖∇(σ , v)‖s−1 + δ)(‖∇2v‖2s−1 + ‖σ‖2s−1)

+ C(‖∇(v, E, B)‖s−1 + δ)‖∇(σ , v, B)‖2s−1,

d

dt

∑

1≤|α|≤s−1

〈
∂αv,∇∂ασ

〉+ λ‖∇σ‖2s−1

≤ C(‖∇ (σ , v) ‖s−1 + δ)(‖∇2v‖2s−1 + ‖σ‖2s−1)

+ C‖σ‖s−1‖v‖s−1‖B‖s−1 + C‖∇2v‖2s−1,

d

dt

∑

1≤|α|≤s−2

〈
∂α∇ × v, ∂α∇ × E

〉+ λ‖∇2E‖2s−3

≤ C(‖ (σ , v, B
) ‖s−1 + δ)(‖∇2v‖2s−1 + ‖∇σ‖2s−1 + ‖∇2E‖2s−3)

+ C‖∇v‖s−1‖∇B‖s−1‖∇E‖s−1

+ C‖∇3B‖2s−4 + Cδ‖∇v‖2s−1

and

d

dt

∑

2≤|α|≤s−2

〈
(−∂α∇ × B), ∂αE

〉+ λ‖∇3B‖2s−4

≤ C(‖ (σ , v) ‖s−1 + δ)(‖∇σ‖2s−1 + ‖∇3B‖2s−4 + ‖∇2v‖2s−1)

+ C(1 + δ)(‖∇2v‖2s−1 + ‖∇2E‖2s−3).

Here, the details of proof are omitted for simplicity. Now, similar to (3.1), set

Eh
s (V (t)) =

∑

1≤|α|≤s

〈1 + σ∗ + 
(σ∗), |∂ασ |2 + |∂αv|2〉 + ‖∇ (E, B
) ‖2s−1
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+K1

∑

1≤|α|≤s−1

〈
∂αv, ∂α∇σ

〉+ K2

∑

1≤|α|≤s−2

〈
∂α∇ × E, ∂α∇ × v

〉

−K3

∑

2≤|α|≤s−2

〈
∂α(−∇ × B), ∂αE

〉
. (4.10)

Similarly, due to the fact that σ∗ + 
(σ∗) depending only on x is sufficiently small
compared with 1, we choose 0 < K3 � K2 � K1 � 1 with K

3/2
2 � K3 such that

Eh
s (V (t)) ∼ ‖∇V (t)‖2s−1. Furthermore, the linear combination of previously obtained

four estimates with coefficients corresponding to (4.10) yields (4.9) with Dh
s (·). This

completes the proof of Lemma 4.2. ��
Recalling the definition of g1, g2, g3, we have

⎧
⎪⎨

⎪⎩

g1 = −div ((ρ + ρ∗) u) ,

g2 ∼ u · ∇u + u × B1 + ρ · ∇ρ + ρ∗∇ρ + ρ∇ρ∗ + ρ�u + ρ∗�u,

g3 = (ρ + ρ∗) u.

Webeginwith the time-weighted estimate and iteration for the Lyapunov inequality.
To this end, let us define

X(t) = sup
0≤τ≤t

(1 + τ)
3
4Es(V (τ )), t ≥ 0.

In fact, we have

Lemma 4.3 If ‖V 0‖L1∩Hs+1 is sufficiently small, then

sup
t≥0

X(t) ≤ C‖V 0‖2L1∩Hs+1 . (4.11)

Proof By using the smallness assumption of ‖V 0‖L1∩Hs+1 , we have

d

dt
Es(V (t)) + λDs(V (t)) ≤ 0,

for any t ≥ 0. This is the beginning point to deduce (4.11). In fact, fix a constant ε > 0
small enough. Then, the further time weighted estimate on (4.8) gives

(1 + t)
3
4+εEs(V (t)) + λ

∫ t

0
(1 + τ)

3
4+εDs(V (τ ))dτ ≤ Es(V 0)

+
(
3

4
+ ε

)∫ t

0
(1 + τ)−

1
4+εEs(V (τ ))dτ.

It follows from

Es(V ) ∼ ‖V ‖2s ≤ Ds+1(V ) + ‖(v, E, B)‖2 + ‖∇B‖2
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and

∫ t

0
Ds+1(V (τ ))dτ ≤ CEs(V 0)

that

(1 + t)
3
4+εEs(V (t)) + λ

∫ t

0
(1 + τ)

3
4+εDs(V (τ ))dτ

≤ Es(V 0) + C
∫ t

0
(1 + τ)−

1
4+εDs+1(V (τ ))dτ

+ C
∫ t

0
(1 + τ)−

1
4+ε‖(v, E, B)(τ )‖2dτ

+ C
∫ t

0
(1 + τ)−

1
4+ε‖∇B(τ )‖2dτ

≤ Es+1(V 0) + C
∫ t

0
(1 + τ)−

1
4+ε‖(v, E, B)(τ )‖2dτ

+ C
∫ t

0
(1 + τ)−

1
4+ε‖∇B(τ )‖2dτ.

(4.12)

Due to Proposition 4.1, we have

‖B1‖ ≤C(1 + t)−
3
8
(‖u0‖L1∩L2 + ‖E1,0‖L1∩L2∩Ḣ3 + ‖B1,0‖L1∩H1

)

+C
∫ t

0
(1+ t− τ)−

5
8 ‖g2(τ )‖L1∩L2dτ

+ C
∫ t

0
(1+ t− τ)−

9
8 (‖g3(τ )‖L1∩L2 + ‖∇3g3(τ )‖)dτ,

‖E1‖ ≤C(1 + t)−
3
4
(‖u0‖L1∩L2 + ‖E1,0‖L1∩L2∩Ḣ2 + ‖B1,0‖L1∩L2∩Ḣ3

)

+C
∫ t

0
(1+ t− τ)−

3
4 ‖g2(τ )‖L1∩L2dτ

+ C
∫ t

0
(1+ t− τ)−

3
4 (‖g3(τ )‖L1∩L2 + ‖∇2g3(τ )‖)dτ,

‖u‖ ≤C(1 + t)−
5
8 ‖U 0‖L1∩L2 + C

∫ t

0
(1 + t − τ)−

5
4 ‖g1(τ )‖L1∩L2dτ

+ C
∫ t

0
(1 + t − τ)−

3
4 ‖(g2(τ ), g3(τ ))‖L1∩L2dτ
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and

‖∇B1‖ ≤C(1+ t)−
5
8
(‖u0‖L1∩L2 +‖(E1,0, B1,0)‖L1∩L2∩Ḣ3

)

+C
∫ t

0
(1+ t− τ)−

7
8 ‖g2(τ )‖L1∩L2dτ

+ C
∫ t

0
(1 + t − τ)−

5
8 (‖g3(τ )‖L1∩L2 + ‖∇3g3(τ )‖)dτ.

It is straightforward to verify

∥
∥(g1(τ ), g2(τ ), g3(τ ))‖L1∩L2 + ‖g3(τ )

∥
∥
3 ≤ CδE

1
2
s (U ) + CEs(U ).

In view of

Es(U (τ )) ≤ CEs(V (γ
1
2 τ)),

we have

Es(V (γ
1
2 τ)) ≤ (1 + γ

1
2 τ)−

3
4X(γ

1
2 t).

Then, it follows that

‖(g1(τ ), g2(τ ), g3(τ ))‖L1∩L2 + ‖g3(τ )‖3 ≤ Cδ(1 + γ
1
2 τ)−

3
8X

1
2 (γ

1
2 t)

+ C(1 + γ
1
2 τ)−

3
4X(γ

1
2 t).

Then, ‖B1‖ is estimated by

‖B1‖ ≤C(1 + t)−
3
8 ‖(u0, E1,0, B1,0)‖L1∩H3

+ C
∫ t

0
(1 + t − τ)−

5
8 (1 + γ

1
2 τ)−

3
4 dτX(γ

1
2 t)

+ Cδ

∫ t

0
(1 + t − τ)−

5
8 (1 + γ

1
2 τ)−

3
8 dτX

1
2 (γ

1
2 t)

≤C(1 + t)−
3
8

(
‖(u0, E1,0, B1,0)‖L1∩H3 + X(γ

1
2 t) + δX

1
2 (γ

1
2 t)
)

,

and in the same way, it holds that

‖(u, E1, B1)‖ ≤ C(1 + t)−
3
8

(
‖V 0‖L1∩H3 + X(γ

1
2 t) + δX

1
2 (γ

1
2 t)
)

,
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and

‖∇B1‖ ≤C(1 + t)−
5
8 ‖(u0, E1,0, B1,0)‖L1∩H3

+ C
∫ t

0
(1 + t − τ)−

5
8 (1 + γ

1
2 τ)−

3
4 dτ

(
X(γ

1
2 t) + δX

1
2 (γ

1
2 t)
)

≤C(1 + t)−
3
8

(
‖(u0, E1,0, B1,0)‖L1∩H3 + X(γ

1
2 t) + δX

1
2 (γ

1
2 t)
)

.

Therefore, we get

∫ t

0
(1 + τ)−

1
4+ε‖(u(τ ), E1(τ ), B1(τ ))‖2dτ

≤C
∫ t

0
(1 + τ)−

1
4+ε(1 + τ)−

3
4 dτ

(
‖V 0‖2L1∩H3 + X(γ

1
2 t)2 + δX(γ

1
2 t)
)

≤C(1 + t)ε
(
‖V 0‖2L1∩H3 + X(γ

1
2 t)2 + δX(γ

1
2 t)
)

and
∫ t

0
(1 + τ)−

1
4+ε‖∇B1(τ )‖2dτ

≤ C
∫ t

0
(1 + τ)−

1
4+ε(1 + τ)−

3
4 dτ

(
‖V 0‖2L1∩H3 + X(γ

1
2 t)2 + δX(γ

1
2 t)
)

≤ C(1 + t)ε
(
‖V 0‖2L1∩H3 + X(γ

1
2 t)2 + δX(γ

1
2 t)
)

.

Since ‖B(t)‖ ≤ C‖B1(γ
− 1

2 t)‖ and (ρ, u, E1, B1) is equivalent with (σ , v, E, B) up
to a positive constant, we have

(1 + t)
3
4+εEs(V (t)) + λ

∫ t

0
(1 + τ)

3
4+εDs(V (τ ))dτ

≤ C(1 + t)ε
(
‖V 0‖2L1∩Hs+1 + X(t)2 + δX(t)

)
,

(4.13)

which implies that

(1 + t)
3
4Es(V (t) ≤C

(
‖V 0‖2L1∩Hs+1 + X(t)2 + δX(t)

)
.

Therefore,

X(t) = sup
0≤τ≤t

(1 + τ)
3
4Es(V (τ )) ≤ C

(
‖V 0‖2L1∩Hs+1 + X(t)2 + δX(t)

)
,

and then

X(t) ≤ C
(
‖V 0‖2L1∩Hs+1 + X(t)2

)
.
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Since ‖V 0‖L1∩Hs+1 is sufficiently small, we have X(t) is bounded uniformly in
time, and we also obtain

sup
t≥0

X(t) ≤ C‖V 0‖2L1∩Hs+1

holds true, which gives (1.6) in Theorem 1.1. ��
Next we start with the high-order energy inequality time-weighted estimate and

iteration for the Lyapunov inequality. For this purpose, let us define

Y(t) = sup
0≤τ≤t

(1 + τ)
5
4Eh

s (V (τ )), F0(t) = sup
0≤τ≤t

(1 + τ)
5
4 ‖(ρ, u)‖2.

Similar to obtain the uniform-in-time bound of X(t) in Lemma 4.3, we have the
following result to show the boundedness ofY(t) for all t ≥ 0 .

Lemma 4.4 If ‖V 0‖L1∩Hs+2 is sufficiently small, then

sup
t≥0

Y(t) ≤ C‖V 0‖2L1∩Hs+2 . (4.14)

Proof Under smallness assumption of ‖V 0‖L1∩Hs+2 , we obtain that (4.9) holds true

for any t ≥ 0. Fix ε > 0 small enough, multiplying (4.9) by (1+ t)
5
4+ε and integrating

the resulting equation over [0, t], we have

(1+ t)
5
4+εEh

s (V (t))+λ

∫ t

0
(1+τ)

5
4+εDh

s (V (τ ))dτ ≤ Eh
s (V 0)

+ C
∫ t

0
(1 +τ)

1
4+εEh

s (V (τ ))dτ.

(4.15)

Because

Eh
s (V ) ∼ ‖∇V ‖2s−1 ≤ Ds+1(V ) + ‖∇B‖2, (4.16)

we have

(1 + t)
5
4+εEh

s (V (t)) + λ

∫ t

0
(1 + τ)

5
4+εDh

s (V (τ ))dτ

≤ Eh
s (V 0) + C

∫ t

0
(1 + τ)

1
4+εDs+1(V (τ ))dτ + C

∫ t

0
(1 + τ)

1
4+ε‖∇B(τ )‖2dτ.

From (4.13), we have

∫ t

0
(1 + τ)

1
4+εDs+1(V (τ ))dτ ≤ C(1 + t)ε‖V 0‖2L1∩Hs+2 , (4.17)
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which implies that

(1 + t)
5
4+εEh

s (V (t)) + λ

∫ t

0
(1 + τ)

5
4+εDh

s (V (τ ))dτ

≤ C
∫ t

0
(1 + τ)

1
4+ε‖∇B(τ )‖2dτ + C(1 + t)ε‖V 0‖2L1∩Hs+2 .

From Proposition 4.1, we have

‖∇B1‖ ≤C(1 + t)−
5
8 ‖U 0‖L1∩H3 + C

∫ t

0
(1 + t − τ)−

7
8 ‖g2(τ )‖L1∩L2dτ

+ C
∫ t

0
(1 + t − τ)−

5
8 (‖g3(τ )‖L1∩L2 + ‖∇3g3(τ )‖)dτ.

It is easy to verify

‖(g2(τ ), g3(τ ))‖L1∩L2 + ‖∇3g3(τ )‖
≤ CEs(U ) + Cδ

√

Eh
s (U ) + Cδ‖(ρ, u)‖

≤ C(1 + γ
1
2 τ)−

3
4X(γ

1
2 t) + Cδ(1 + γ

1
2 τ)−

5
8Y

1
2 (γ

1
2 t) + Cδ(1 + τ)−

5
8F

1
2
0 (t).

Then,

‖∇B1‖
≤ C(1 + t)−

5
8 ‖U 0‖L1∩H3 + C

∫ t

0
(1 + t − τ)−

5
8 (1 + γ

1
2 τ)−

3
4 dτX(γ

1
2 t)

+Cδ

∫ t

0
(1+t−τ)−

5
8 (1+γ

1
2 τ)−

5
8 dτY

1
2 (γ

1
2 t)

+Cδ

∫ t

0
(1+t−τ)−

5
8 (1+τ)−

5
8 dτF

1
2
0 (t)

≤ (1+t)−
5
8 ‖U 0‖L1∩HN+1+(1+t)−

5
8X(γ

1
2 t)

+δ(1 + t)−
5
8Y

1
2 (γ

1
2 t) + δ(1 + t)−

5
8F

1
2
0 (t)

≤ C(1 + t)−
5
8 (‖U 0‖L1∩Hs+1 + X(γ

1
2 t) + δY

1
2 (γ

1
2 t) + δF

1
2
0 (t)).

Next, we begin to estimate F0(t). From (4.7), we have

‖ρ‖ ≤ C(1 + t)−
5
4 ‖(ρ0, u0)‖L1∩L2 +

∫ t

0
(1 + t − τ)−

5
4 ‖(g1, g2)(τ )‖L1∩L2dτ,
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and

‖u‖ ≤C(1+t)−
5
8 ‖U 0‖L1∩L2 +

∫ t

0
(1+t−τ)−

5
4 ‖g1(τ )‖L1∩L2dτ

+
∫ t

0
(1+t−τ)−

3
4 ‖(g2, g3)(τ )‖L1∩L2dτ.

It is straightforward to get

‖(g1, g2, g3)(τ )‖L1∩L2

≤ CEs(U ) + Cδ

√

Eh
s (U ) + Cδ‖(ρ, u)‖

≤ C(1 + γ
1
2 τ)−

3
4X(γ

1
2 t) + Cδ(1 + γ

1
2 τ)−

5
8Y

1
2 (γ

1
2 t) + Cδ(1 + τ)−

5
8F

1
2
0 (t).

Therefore, we have

‖(ρ, u)‖
≤ C(1 + t)−

5
8 ‖U 0‖L1∩L2 +

∫ t

0
(1 + t − τ)−

3
4 ‖(g1, g2, g3)(τ )‖L1∩L2dτ

≤ C(1 + t)−
5
8 ‖U 0‖L1∩L2 + C

∫ t

0
(1 + t − τ)−

3
4 (1 + γ

1
2 τ)−

3
4 dτX(γ

1
2 t)

+Cδ

∫ t

0
(1+t−τ)−

3
4 (1+γ

1
2 τ)−

5
8 dsY

1
2 (γ

1
2 t)

+Cδ

∫ t

0
(1+t−τ)−

3
4 (1+τ)−

5
8 dτF

1
2
0 (t)

≤ C(1+t)−
5
8 ‖U 0‖L1∩L2 +C(1+t)−

3
4X(γ

1
2 t)+Cδ(1+t)−

5
8Y

1
2 (γ

1
2 t)

+Cδ(1+t)−
5
8F

1
2
0 (t)

≤ C(1 + t)−
5
8

(

‖U 0‖L1∩L2 + X(γ
1
2 t) + δY

1
2 (γ

1
2 t) + δF

1
2
0 (t)

)

.

Then, by the definition of F0(t), we have

F0(t) ≤ C‖U 0‖2L1∩L2 + CX2(γ
1
2 t) + Cδ2Y(γ

1
2 t) + Cδ2F0(t),

which further implies that

F0(t) ≤ C‖U 0‖2L1∩L2 + CX2(γ
1
2 t) + Cδ2Y(γ

1
2 t). (4.18)
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Then, we have

‖∇B1‖

≤ C(1+t)−
5
8

(

δ
(
‖U 0‖2L1∩L2 +X2(γ

1
2 t)+δ2Y(γ

1
2 t)
) 1

2

+δY
1
2 (γ

1
2 t)+X(γ

1
2 t)‖U 0‖L1∩Hs+1

)

≤ C(1 + t)−
5
8

(
‖U0‖L1∩Hs+1 + X(γ

1
2 t) + δY

1
2 (γ

1
2 t)
)

.

Due to the fact that ‖∇B‖ ∼ ‖∇B1‖, we have

‖∇B‖ ≤ C(1 + t)−
5
8

(
‖V 0‖L1∩Hs+1 + X(t) + δY

1
2 (t)
)

.

The inequality above together with (4.16) and (4.17) give

∫ t

0
(1 + τ)

1
4+εEh

s (V (τ ))dτ

≤ C(1 + t)ε‖V 0‖2L1∩Hs+2

+ C
(
‖V 0‖2L1∩Hs+1 + X2(t) + δ2Y(t)

) ∫ t

0
(1 + τ)

1
4+ε(1 + τ)−

5
4 dτ

≤ C(1 + t)ε
(
‖V 0‖2L1∩Hs+2 + X2(t) + δ2Y(t)

)
.

Substitute it into (4.15), we obtain

(1 + t)
5
4+εEh

s (V (t)) + λ

∫ t

0
(1 + τ)

5
4+εDh

s (V (τ ))dτ

≤ CEh
s (V 0) + C(1 + t)ε

(
‖V 0‖2L1∩Hs+2 + X2(t) + δ2Y(t)

)
.

Taking the limit ε → 0, we have

(1+t)
5
4Eh

s (V (t))+λ

∫ t

0
(1+τ)

5
4Dh

s (V (τ ))dτ ≤ CEs(V 0)

+C‖V 0‖2L1∩Hs+2 +CX2(t)+Cδ2Y(t),

which implies that

Y(t) = sup
0≤τ≤t

(1 + τ)
5
4Eh

s (V (τ ))

≤ CEs(V 0) + C‖V 0‖2L1∩Hs+2 + CX2(t) + Cδ2Y(t),
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and then

Y(t) ≤ C‖V 0‖2L1∩Hs+2 + CX2(t).

It follows from lemma 4.3 that

Y(t) ≤ C‖V 0‖2L1∩Hs+2 + C‖V 0‖4L1∩Hs+1 ≤ C‖V 0‖2L1∩Hs+2 .

Therefore, (4.14) holds true since ‖V 0‖L1∩Hs+2 is sufficiently small. This completes
the proof of Lemma 4.4. ��

Due to the fact that Eh
s (V (t)) ∼ ‖∇V ‖2s−1, it follows from (4.14) that

‖∇V ‖s−1 ≤ (1 + t)−
5
8 ‖V 0‖L1∩Hs+2 , (4.19)

which yields (1.7) in Theorem 1.1. On the other hand, by (4.11), (4.14) and (4.18), we
have

F0(t) ≤ C‖V 0‖2L1∩L2 + C‖V 0‖4L1∩Hs+1 + Cδ2‖V 0‖2L1∩Hs+2 ≤ C‖V 0‖2L1∩Hs+2 ,

which further gives

‖(ρ, u)‖ ≤ C(1 + t)−
5
8 ‖V 0‖L1∩Hs+2 ,

then (1.8) follows. We have completed the proof of Theorem 1.1. ��
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