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Abstract
The hydrodynamic model for semiconductors with sonic boundary, represen-
ted by Euler—Poisson equations, possesses the various physical steady states
including  interior-subsonic/interior-supersonic/shock-transonic/C'-smooth-
transonic steady states. Since these physical steady states result in some seri-
ous singularities at the sonic boundary (their gradients are infinity), this makes
that the structural stability for these physical solutions is more difficult and
challenging, and has remained open as we know. In this paper, we investigate
the structural stability of interior subsonic steady states. Namely, when the
doping profiles are as small perturbations, the differences between the corres-
ponding subsonic solutions are also small. To overcome the singularities at the
sonic boundary, we propose a novel approach, which combines the weighted
multiplier technique, local singularity analysis, monotonicity argument and
squeezing skill. Both the result itself and the technique developed here will
give us some truly enlightening insights into our follow-up study on the struc-
tural stability of the remaining types of solutions. A number of numerical
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approximations are also carried out, which intuitively confirm our theoretical
results.

Keywords: Euler—Poisson equations, semiconductor effect, sonic boundary,
interior subsonic solutions, structural stability
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1. Introduction
The hydrodynamic model was first derived by Blatekjer [2] for electrons in a semiconductor.

After appropriate simplification the one-dimensional time-dependent system in the isentropic
case reads:

ny + (nu), =0,
(nu), + (mu +p(n)), = nE — % (1.1)
E.=n—>b(x),

where n(x, 1), u(x,t) and E(x,t) denote the electron density, velocity, and electric field respect-
ively. The given function p = p(n) is the pressure-density relation on which a commonly used
hypothesis is

p(n)=T1n",

where T > 0 is Boltzmann’s constant and y > 1 is the adiabatic exponent. The constant para-
meter 7 > 0 is the momentum relaxation time. The given background density b(x) > 0is called
the doping profile standing for a background fixed charge of ions in the semiconductor crys-
tal. The hydrodynamic model (1.1) is also called Euler—Poisson equations with semiconductor
effect. For more details we refer to treatises [22, 33] and references therein.

The well-posedness of the physical solutions for the dynamical system (1.1) and their large-
time behaviours are always one of significant and hot research spots in this topic as we know,
see [10, 15-17, 23, 24, 27, 31] and the references therein. Meanwhile, the asymptotic pro-
files for the hydrodynamic model (1.1) are expected to be the steady states to the following
stationary Euler—Poisson system

J = constant,
J? J

<+p(n)> =nE— -, (1.2)
n . T

E.=n—>b(x),

where J = nu stands for the current density.

However, with different settings on the boundary, the doping profile b(x) and the relaxa-
tion time 7, the stationary Euler—Poisson system (1.2) may or may not possess the physical
subsonic/supersonic/transonic solutions, or may have totally different regularities [1, 4, 6, 8,
9, 13, 14, 18, 19]. The influence from these physical quantities, in particular, from the doping
profile, is essential and important for the structure of solutions. The main purpose of the paper
is to investigate the so-called structural stability of the solutions related to the doping profile
in the critical sonic boundary case.

For simplicity, let us consider the isothermal case to (1.2) with p(n) = Tn. We first recall
some terminologies from gas dynamics. We call ¢ := /P’ (n) = /T > 0 the speed of sound for
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the fluid dynamical system. The flow is referred to as subsonic, sonic or supersonic provided
the velocity satisfies

u<c, u=c or u>c, respectively. (1.3)

For convenience of notation, we introduce
1 . ..
« = —, the reciprocal of the momentum relaxation time. (1.4)
T

Without loss of generality, we set
T=1landJ=1, (1.5)

thus the system (1.2) is equivalently reduced to the system

(1—12)nx:nE—a,
n (1.6)
E.=n—>b(x).

From (1.3) and (1.5), it is easy to see that the flow is subsonic if #n > 1, sonic if n = 1, or super-
sonic if 0 < n < 1. By virtue of (1.4), we call the system (1.6) the Euler—Poisson equations
with the semiconductor effect if a > 0, and without the semiconductor effect if o = 0, respect-
ively. Throughout this paper, we are interested in the system (1.6) in the open interval (0, 1),
which is subjected to the sonic boundary condition, the critical case of boundary:

n(0)=n(1)=1. (1.7)

We also assume that the doping profile b(x) is of class C[0, 1], satisfying the subsonic condi-
tion b(x) > 1 on [0,1]. For simplicity of notation, its infimum and supremum over [0, 1] are
denoted by

b:= inf b(x) andb:= sup b(x).
XG[O,]] XE[O,]]

Let us draw the background picture of research in this topic. Over the past three dec-
ades, major advances in the mathematical theory of steady-state Euler—Poisson equations
with/without the semiconductor effect have been made by many authors. In what follows,
we just list several results which are closely linked to the present paper.

For the purely subsonic steady-state flows, in 1990, Degond and Markowich [8] first proved
the existence of the subsonic solution to the one-dimensional steady-state Euler—Poisson
equations with the semiconductor effect when its boundary states belong to the subsonic
region. Subsequently, Degond and Markowich [9] further showed the existence and local
uniqueness of irrotational subsonic flows to the three-dimensional steady-state semiconductor
hydrodynamic model under a smallness assumptions on the data. Along this line of research,
the steady-state subsonic flows with and without the semiconductor effect were investigated in
various physical boundary conditions and different dimensions [3, 11, 15, 26]. It is noteworthy
that Donatelli et al [10] studied the two-fluid Euler—Poisson equations with semiconductor
effect on the entire real line and constructed the unique purely subsonic steady state to the cor-
responding Cauchy problem, and they also proved that this purely subsonic steady state is the
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best asymptotic profile of the transient subsonic solutions. As for the purely supersonic steady-
state flows, Peng and Violet [28] established the existence and uniqueness of the supersonic
solutions with the semiconductor effect, which correspond to a large current density.

Regarding transonic steady states, Ascher et al [1] first examined the existence of the tran-
sonic solution to the one-dimensional isentropic Euler—Poisson equations without and with the
semiconductor effect when the doping profile is a supersonic constant. Cordier et al [7] fur-
ther analysed the travelling wave solutions to the two-fluid isothermal Euler—Poisson equations
without the semiconductor effect. Along this research direction, Rosini [29] extended the work
in [1, 7] to the non-isentropic case by the analysis of phase plane. When the doping profile is
non-constant, Gamba [13, 14] investigated the one-dimensional and two-dimensional tran-
sonic solutions with shocks, respectively. However, these transonic solutions yield boundary
layers because they are constructed as the limits of vanishing viscosity. Luo et al [20, 21]
further considered the one-dimensional Euler—Poisson equations without the semiconductor
effect, under the restriction that boundary data are far from the sonic state and the doping
profile is either a subsonic constant or a supersonic constant, a comprehensive analysis on
the structure and classification of steady states was carried out in [21] by using the analysis
of phase plane. Meanwhile, both structural and dynamical stability of steady transonic shock
solutions was obtained in [20].

What if the sonic state appears in the solutions? As we have seen, all the existing work intro-
duced above cannot answer this question. Even the work regarding transonic shocks cannot
radically answer it either because the two different phase states are connected by the jump of
shocks satisfying the Rankine—Hugoniot condition and entropy condition, avoiding the degen-
eracy caused by the sonic state. So, it is significant to study the system with the sonic boundary.
In fact, as we see, the system (1.2) or (1.6) will be degenerate at the sonic state, thus the study
on the transonic solutions and various steady states satisfying the sonic boundary condition
becomes very difficult. Recently, Li et al [18, 19] systematically explored this critical case of
boundary, that is, the one-dimensional semiconductor Euler—Poisson equations with the sonic
boundary condition. The existence, nonexistence and classification of all types of physical
steady states to this critical boundary value problem was obtained for the subsonic doping
profile in [18] and supersonic doping profile in [19]. More precisely, in [18], they proved that
the critical boundary value problem admits a unique subsonic solution, at least one supersonic
solution, infinitely many transonic shocks if a < 1, and infinitely many transonic C'-smooth
solutions if o > 1; in [19], they showed the nonexistence of all types of physical steady states
to the critical boundary-value problem assuming that the doping profile is small enough and
a > 1, and they also discussed the existence of supersonic and transonic shock solutions under
the hypothesis that the doping profile is close to the sonic state and o < 1. Inspired by the
groundbreaking works [18, 19], there is a series of interesting generalizations into the tran-
sonic doping profile case in [4], the case of transonic C*°-smooth steady states in [32], the
multi-dimensional cases in [3, 6], and even the bipolar case [25].

As showed in [4, 18, 19], the structure of the physical steady states are heavily dependent
on the doping profile. When the doping profile b(x) is subsonic, the system (1.2) has many
physical solutions (one subsonic solution, one supersonic solution, infinitely many transonic
solutions); and when the doping profile is supersonic, basically there is no any physical solu-
tions. So, it is interesting to explore the structural stability of the solutions with respect to the
doping profile. Namely, with a small perturbation of the doping profile, we expect the dif-
ference of the corresponding physical steady states to be also small, depending on the small
perturbation of doping profiles. The study in this critical boundary case is never related due
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to its difficulty and singularity. Note that, when the boundary data are in different subsonic
and supersonic regions separated by the sonic line, Luo et al [20] first studied the structural
stability of shock transonic steady states, where the perturbed system around the shock tran-
sonic steady state does not yield the singularity at the sonic line, because the shock steady state
jumps the sonic line. For the smooth C!-transonic steady states cross the sonic line, there are
some singularities for the system. Recently, Feng et al [12] demonstrated the structural stabil-
ity of these smooth transonic steady states by the local singularity analysis. However, in the
sonic boundary case, these physical (subsonic/supersonic/transonic) steady states produce the
essential singularities at the sonic boundary, because their gradients at the sonic boundary are
negative infinity. This makes the study of structural stability for these physical steady states
more difficult. To thoroughly solve this problem is full of challenges, owing to the boundary
degeneracy and singularity. In this paper, we focus on the subsonic steady states, and prove
them to be structurally stable. In order to overcome the singularities of solutions at the sonic
boundary, a new method is proposed by combining the weighted multiplier technique, local
singularity analysis, monotonicity argument and squeezing skill. This intends to shed new light
on this problem.

This paper is organized as follows. Some necessary preliminaries and the main result are
stated in section 2. The proof of the main result, theorem 2.1, is given in section 3. Section 4
is devoted to the numerical simulations in order to better understand our theoretical results.

2. Preliminaries and the main result

In this section we shall present the main result. Before proceeding, we first give the important
preliminaries from the foregoing research [18]. First of all, we recall the definition of the
interior subsonic solution.

Definition 2.1. We say a pair of functions (n,E)(x) is an interior subsonic solution of the
boundary value problem (1.6) and (1.7) provided (i) (n—1)? € H}(0,1), (i) n(x) > 1, for
all x€ (0,1), (iil) n(0) =n(1) =1, (iv) the following equality holds for all test functions
¢ € Hy(0,1),

1 1 1
11 i
/(—3>nx<pxdx+a sidx—l—/ (n—>)pdx=0, 2.1)
0 n 0

n

and (v) E(x) is given by

E(x) = E(0) + /0 C(n() — b)) dy. 22)

In addition, we continue to recall the existence and uniqueness of interior subsonic solu-
tions, which is excerpted from the first part of theorem 1.3 in [18].

Proposition 2.1 (existence [18]). Suppose that the doping profile b € L>°(0,1) is subsonic
such that b > 1. Then for any « € [0,00) the boundary value problem (1.6) and (1.7) admits
a unique interior subsonic solution (n,E) € C1[0,1] x H'(0,1) satisfying the boundedness

1 +msin(mx) <n(x) <b, x€]0,1]. (2.3)
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Furthermore, if b € C[0,1] and o = \/8(b(0) — 1), then the boundary behaviour of solutions
at endpoints is the following

E(0)=a, E(1)<a, (2.4)
1—x)? <nx)—1<C(1-x)7,
CI=»%< rlz(x) G- . forxnearl, (2.5)
—C(1—x) 2<n(x) < —Cs(1—x)" 7,

wherem = m(a,b) > 0, C; > C; > 0and Cs3 > Cy4 > 0 are certain uniform estimate constants.

Remark 2.1. Note that the degeneracy of the boundary value problem (1.6) and (1.7) occurs
merely on the boundary. Thus, if we assume that the doping profile has relatively higher-order
regularity, say b € CJ0, 1], then by virtue of the standard theory for elliptic interior regular-
ity and Sobolev’s embedding theorem, the corresponding interior subsonic solution (n, E) is

actually of class (C1 (0,1)nCz|0, 1]) x C'[0,1]. This fact will be tacitly exploited hereafter.

We are now in a position to formulate the main result in the present paper.

Theorem 2.1 (structural stability). Assume that doping profiles by,b, € C|0,1] are subsonic
such that by (x),ba(x) > 1 for all x € [0, 1], and that o > 2+/2max{/b;(0) — 1,/b2(0) — 1}.
Let (n,E))(x) and (ny, E;)(x) be interior subsonic solutions corresponding to their separate
doping profiles by (x) and by (x). Then the two interior subsonic solutions are structurally stable
to one another in the sense that

1
[n1 —nalleo,) + 1| (1 —=x)2 (n1 —n2), [lco,1 + |E1 — E2llc1j0,1 < Cllb1 — b2l o1y, (2.6)

where C >0 is a certain constant independent of ||by — b3 || cfo,17-

We conclude this section with a brief sketch of the strategy that underlies the proof of our
main result. Due to the boundary degeneracy, the study of the globally structural stability of
interior subsonic solutions over the entire interval [0, 1] becomes sophisticated and challenging.
To overcome this difficulty, we first deal with the monotone case in which we assume that
bi(x) = by(x) for all x € [0, 1] (see lemma 3.8). Based on this building block, we can further
remove the extra hypothesis that b, (x) > b,(x) by the squeezing skill (see equations (3.64)
and (3.65)).

In the monotone case, we shall have to engage with the boundary singularities of interior
subsonic solutions. Therefore, a natural idea is to divide the whole interval [0,1] into three
domains as follows:

[0,1]=[0,6)U[d,1—36]U(1—4,1],

where the intrinsic segmentation constant § > 0 would be appropriately determined (see lemma
3.6), and we will also have to establish structural stability estimates separately on their respect-
ive domains in the following order: (i) near the left endpoint x = 0; (ii) near the right endpoint
x=1; (iii) on the middle domain. This strategy is feasible because we have discovered the
following facts:

(1) the local singularity analysis reveals that the plausible singularity at the left endpoint x =0
is removable (see lemma 3.2); based on this, we are able to establish the local structural
stability estimate on an intrinsic neighbourhood [0, §y) by the monotonicity argument. The
main point is that both the radius ¢y and the positive estimate constant are independent of
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llb1 — bal|cpo,1) (see lemma 3.3, and this sort of tacit convention will be used throughout
the present paper).

(2) the local weighted singularity analysis discloses that the genuine singularity at the right
endpoint x =1 can be well controlled by the (1 —x)%-weight (see lemma 3.4); thus, the
monotonicity argument further ensures that the local weighted structural stability holds on
an intrinsic neighbourhood (1 — §;,1] (see lemma 3.5).

(3) the remaining part constitutes the middle domain, which is regular as to the structural
stability (see lemma 3.6).

It is worth mentioning that the monotonicity argument has been playing a crucial role in
establishing structural stability estimates near both endpoints. The principle behind the mono-
tonicity argument is given by lemma 3.1. Moreover, lemma 3.1 is also capable of guaranteeing
the validity of the squeezing skill, which can help us further to get rid of the additional assump-
tion that by (x) = by (x).

3. Proof of theorem 2.1

This section is devoted to proving our main result. In order to make the line of reasoning
accessible to the reader, the proof will be divided into a sequence of lemmas.

We let (n;, E; ) (x) denote the interior subsonic solution corresponding to the subsonic doping
profile b;(x) > 1, satisfying the sonic boundary value problem

1
(1 - 2) nie = niE; — a,
n;

Ei=n;—b;i(x), x€(0,1),
I’l,(O) :}’ll(l) = 1,

for i = 1,2, respectively. 3.1

First of all, we adapt the comparison principle in [18](lemma 2.2, P4773) for use with
two doping profiles and their corresponding interior subsonic solutions. This new version of
comparison principle will be stated in the following lemma, which is the basis of both the
monotonicity argument and the squeezing skill.

Lemma 3.1 (comparison principle). Let the doping profiles by,by € C[0,1]. If bi(x) >
by(x) > 10n [0,1]. Then

ny (x) =n2(x), on [0,1]. (3.2)
Proof. According to the relevant arguments from [18] (equation (17), P4773), for i = 1,2,

since (n;,E;) is the interior subsonic solution, thereby having the approximate solution
sequence {n;;}o<j<1 C C'[0, 1] satisfying the weak form

1 1
/A(n,-j,nijx)goxdx—i—/ (nij — b;) pdx =0, Yo € Hy (0,1), (3.3)
0 0

where
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Subtracting (3.3)|;=; from (3.3)|;—, for all nonnegative test functions ¢ € H}(0,1), we
have

1

1 1
/ (A (ngj,n) — A (nyj,nyj)) prdx+/ (ngj —nyj) pdx = / (by —b1) pdx <0, (3.4
0 0 0

where we have used the assumption that b, (x) > b,(x) on [0, 1] in the last inequality. This is
exactly the crucial equation (19) in [18], the same result therefore applies to (3.4) provided we
simply imitate the remaining arguments in lemma 2.2 of [18]. That is,

nij (x) = nyi(x), on [0,1], for 0 <j < 1. (3.5)

Now the monotonicity relation (3.1) follows after a passage to the limit as j — 1~ on both
sides of the inequality (3.5).
O

In order to get around the difficulty caused by singularities, we first investigate the mono-
tone case. We assume, unless otherwise stated, that the doping profiles satisfy the monotonicity
condition

b1 (x) =2 ba(x), Vxe][0,1]. (3.6)

Fori = 1,2, we now set about analysing the boundary behaviour of the first-order derivative
of n;(x) at the left endpoint x = 0. It seems plausible that the singularity should have appeared
there, as a matter of fact the singularity at x =0 is removable because of E;(0) = .

Lemma 3.2. Suppose that b;,i = 1,2 satisfy the same conditions in lemma 3.1, and o >

2v2max{+/b(0) — 1,1/b2(0) — 1}. Then

lim n;, (x) = ! (a—\/ozz—S(bi(O)— 1)) =A;>0, i=1,2. 3.7

x—0+ 4

Proof. In much the same way as in [18] (theorem 5.6, P4802), owing to n;(0) = 1 and E;(0) =
«, it is easy to see that lim,_,o+ n;(x) exists by the monotone convergence argument. Then
from the first equation of (3.1), we have

E;n? (Ei—oz)n-2 .
__ En L in (0.1).
M i Y Dm0

Noting that n;(0) = 1 and E;(0) = «, it follows from the L’Hospital Rule that

En; E;—a)n}
Ai = lim np (x) = lim —"% 4 lim (B
x—0+ x—0+tn;+ 1 x>0t (l’li — 1) (I’l,’ + 1)
1 Ei - 1 . Eix
T T Eiza), a)x*g+ lim —

2 2 x—0+ (I’l,‘ — l)x B 2 Ex—>0Jr Nix
1 . — b
_o Ly m b
2 2 x—0+ iy
1-5;(0)
24,

+

(Sl
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which in turn implies that

A; :i<a_\/a2—8(b,~(0)—l)) = aJr\/chfi((;)(;t()))l) :0<;),

or

A; :i(a—l—\/az—S(bi(O)—l)) —0(a).

According to the local singularity analysis in [18] (lemma 5.3, P4796), we know that in a
small neighbourhood of x = 0, the drastic change of the density component 7;(x) of the interior
subsonic solution is impossible when « is suitably large. Therefore, we have to choose the
former root as the limit value of lim,_,+ n;;(x), and the latter one is the extraneous root. [J

Based on proposition 2.1, lemmas 3.1 and 3.2, we are now preparing to establish the local
structural stability of interior subsonic solutions to the boundary value problem (1.6) and (1.7)
on an intrinsic neighbourhood of the left endpoint x = 0.

Lemma 3.3 (local structural stability estimate near x =0). Under the same conditions in
lemma 3.2. There exist two positive constants 0o € (0,1) and C>0 independent of ||by —
b ||co,1) such that

In1 —nallcio,s0) + 1E1 — E2llcijo,60) < Cllb1 — b2[ cpo,11- (3.8)

Proof. Firstly, in light of lemma 3.1, it is clear that the following monotonicity relation holds,

Mo, Mmooy € [0,1] 3.9)
= 9 X ) . .
n+1 ny+1
~ 2
Next, for simplicity, we set E; := E; — . Multiplying equation (3.1); by n;"il, we have
Eond
My = — ”ll, i=1,2. (3.10)

Taking the difference of equations (3.10)|;=; and (3.10)|;=, near x = 0, we compute together
with the monotonicity relation (3.9) that

o Eln? Ezl’l%
(s nz)xin%—l n%—l
_ n? El _ l’l% El n% El . n% Ez
n|—|—1n]—1 n2—|—1n1—1 n2—|—1n1—1 n2—|—1n2—1
o El n? ng + I’l% E] Ez
T =1 \nm+1 m+1 nm+1\n—-1 n—1
3 3 3
n n n
<M, L2 2_Mol||by — b
ooz<n]+1 n2+1)+n2—|—1 ol|b1 2||c[0,1]7
< C(ny —ny) + Cllby — ballcpo,1y,  x € [0,0), (3.11)
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where we have used the fact that there exist two positive constants dy € (0, %) and My >0
independent of ||by — b3 0,17 such that

E,
I’ll—l

E; E
l’ll—l n2—1

(¥) < Moo, and ( )<x><Mo||b1—bzqo,l], x € [0.60).

(3.12)
To prove that the crucial estimate (3.12) on a certain intrinsic neighbourhood [0, dy) holds,

we assume for the sake of contradiction that for any § € (0, %) and M > 0, there exists x5 €
[0,8) such that

El EZ
n1—1 }’l2—1

E
I’ll—l

(xs) >Ma, or ( ) (xs) > M||by — bal|co,1)- (3.13)

Particularly, we take § = %,k =3,4,5,..., forany M >0, there is x; € [0, %) such that

E;
}’ll—l

E E,
m—1 ny—1

(4) > Ma, or ( ) (5) > Mb1 — ballcpon.

which implies that

E
lim —— (x) > Ma, (3.14)
x—0+
or
hm( - fl>(xk)>Mb1—bzllqo,l]. (3.15)
)Ck—>0+ nl nz

Combining the boundary behaviour (2.4), the L’Hospital Rule, equation (3.1), and lemma 3.2,
we calculate

I — 1 s
xi}g}r n—1 (X) xl)%l+ n;—1 (X)
Ei(x)—E;(0)+a— n?—x)
= lim :
x—0+ ni(x)—1
i BWO-E©)
=0t i (x)—1 x—=0+ 1; (x)
= lim o
x—0t Ny
1—-5;(0
:T()+o<<a, i=1,2, (3.16)
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and
. E, E; by (0)—1 b (0)—1
xg%l+ <n1—1 l’l2—1> ()C)— Az B Al
—;(\/az—S(bz(O)—l)—\/az—S(bl(O)—l))
2
= bl 0 —b 0
a2—8(n—1)( (0) = b2(0))
< Collbr = ballcro, 1), (3.17)

where 7 € (b2(0),b;(0)). Furthermore, we note that the constant M in (3.14) and (3.15) can be
chosen arbitrarily. Consequently, if we take M =2 in (3.14), together with (3.16), we obtain
the contradiction that 2 < «; if we take M = 2C, in (3.15), combined with (3.17), we have
the contradiction 2 < 1.

Based on the local estimate (3.11), we continue establishing the structural stability locally
on the intrinsic neighbourhood [0, dy). To this end, we multiply through the inequality (3.11)
by n; — n, and calculate

d
&(nl—nz)z(x)QC(nl—nz)z(x)—l—CHbl—b2||20[071], x€[0,80), (3.18)

where we have used lemma 3.1 and Cauchy’s inequality. By Gronwall’s inequality and the
sonic boundary condition n; (0) = n,(0) = 1, we get

(m1 = nm2)*(x) < Cllbr = ballggoy: * €[0,00), (3.19)
which in turn implies that
In1 —na|(x) + [ (n1 —n2),|(x) < Cllby — balcpo,1, X €[0,00). (3.20)

with the aid of the foregoing local estimate (3.11) again.
Finally, from equation (2.2) in definition 2.1 and the boundary behaviour (2.4), we have

B =at [ () -bi0)ady =12 (321)
0
Taking the difference of (3.21)|;=; and (3.21)|;=», we compute that
Ei-Bl0) < [ -+ [ b=l
0 0
< Cllb1 = ball e, x€[0,0), (3.22)

and

[(E1 — E2)i|(x) = [n1 —np — (b1 — b2)|(x)
< Cllbr = ballcpo,y,  x €10,00). (3.23)

Hence, the local structural stability estimate (3.8) follows immediately from equations (3.20),
(3.22) and (3.23). ]

1
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We now turn to analysing the refined boundary behaviour of the first-order derivative of
n;(x) at the right endpoint x= 1. From the boundary estimate displayed in the second line
of (2.5), we know that lim,_, ;- n;,(x) = —oco. This means the genuine singularity will occur
at the right endpoint x = 1. Inspired by (2.5), we are able to implement the local weighted
singularity analysis. The result is summarized as follows.

Lemma 3.4. Assume that b;,i = 1,2 satisfy the same conditions in lemma 3.1. Then

L 1 :
lim (1 —x)? (X)) = —~ bi—n)dx=:B; <0, i=172. (3.24)
2
0

x—1-

Proof. For i = 1,2, from the boundary estimate (2.5), we know that the coefficient 1 — nlz

in the degenerate principal part of equation (3.1); is comparable to (1 — x)% near the right
endpoint x = 1. Thus the regularity theory of boundary-degenerate elliptic equations in one
dimension (e.g. [30]) ensures that (1 — x) %nix(x) is continuous up to the right endpoint x = 1.

We now proceed to calculate the exact limit value of lim,_,;_ (1 — x)%n,-x(x). For conveni-
ence, we set

B;:= lim (1 —x)%nl-x (x).

x—1—

2
Thereupon, multiplying through equation (3.1); by (1 — x)% nz'ﬁ, we have

3
;i

al (1-x)?
E, —— .
n+1 < I’li> n—1

By virtue of the sonic boundary condition n;(1) = 1, the known boundary behaviour (2.4) and
the L’Hospital Rule, we compute

(1 —x)%n,-x =

B; = lim (l—x)%nix
x—1-

3 1—x)?

= lim i lim (Eia) lim Q

x—1- I’li+1x—>1* n; ) x—1- I’l,'—l

1

1 . —%(l—x)_7
=z EW) ) lim =
1 . 1
=1 (a—Ei(l))xl_lflT{ m
1 1
=4 (& (O)_E’(l))E’ (3.25)

which implies from equation (3.1), that

B = VEO) EM =3 [ 6 -myac<o
2 2\ /,

where the boundary estimate (2.5), has been employed to uniquely determine the value of B;,
which is strictly negative. O
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Proposition 2.1 alongside lemmas 3.1 and 3.4 now enable us to demonstrate the local
weighted structural stability of interior subsonic solutions to the boundary value problem (1.6)
and (1.7) on an intrinsic neighbourhood of the right endpoint x = 1.

Lemma 3.5 (local weighted structural stability estimate near x=1). Under the same con-
ditions in lemma 3.2. There exist two positive constants 0, € (0, %) and C > 0 independent of
1oy — b2||c[071] such that

1 1
I I (e
H( x)7Hm = n2) c(1_(s,,1]Jr (1=2)% (e = n2s) C(1-61.1]

+IE1 — Exllci1—s,,1) < Cllb1 — | co,1)- (3.26)

Proof. Fori = 1,2, from (2.5);, we have known that ﬁ possesses the uniform positive

1
upper and lower bounds near x = 1, and so does its reciprocal (lni

_1/2. This property will be
used repeatedly hereafter.
Owing to the fact that n;;(x) has the genuine singularity at x = 1, we are compelled to estab-
lish the structural stability estimate near x = 1 only in the weighted manner as follows.

Firstly, multiplying through equation (3.1); by (1 —x)2 n;’il and taking the difference of
resultant equations for i = 1,2, we calculate that I
1
(1 _x)z (nlx - n2x)
L () L B LtV
= mE —« — mk, — «
n+1 1= n—1 n,+1 2= n, —1
) 1 1
ny (I-x)2 (1—x)2
= E _ J—
nl—l—l(nl ! a)<n1—l n—1
2 2 3
ny n; (1—x)2
E —a)— E,—
+(i’l1+1(n1 ! OZ) n2+1(n2 2 OZ)) n2—1
1 1
(1—=x)2 (1—x)% np—nmy 1—x)?
=h E h E)—nh E
(n1,En) 1 m1 ] + (h(n1,E1) — h(na, E2)) p—
=1+, (3.27)
where
n?
h(l’li7Ei) = nl—;_] (n,-E,-—a), 12172

In what follows, near x =1, we shall estimate /| and /5, respectively. But first, we claim
that the following estimates

E/(x)| <a+2b, xelo,1], i=1.2, (3.28)
[Ei (1) = E2 (1) | < Cl[b1 = ba||cpo.ny (3.29)

hold, where the estimate constant C >0 is independent of ||b; — bs||¢fo,1], and the proof of
which is deferred to lemma 3.7 at the end of this paper.

13
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As for I, it is clear from (2.5); and (3.28) that

(lfx)% (lfx)% ny — ny
m—1 n—1 (l—x)%

[ny —ny|

‘Il‘: T
(1—x)?

/’l(fl],El)

<C (3.30)

However, as far as I, is concerned, the situation becomes more complicated because of the
factor h(ny,E1) — h(ny, E;). Next, we are taking it step by step. Precisely, a straightforward
computation gives

"2 2
h(ny,E) —h(ny,Ey) = — E —a)— —2 E, —
(m1,E1) —h(ny, Ez) ) (mE —a) P (mE; — )

. n3 _ n? n nE, _ )

m+1 n+1 m+1 n+1
=R +R>. (3.31)

From (2.3) and lemma 3.1, we know that

1 < 1+m(a,by)sin(rx) <ny(x) <njp(x) <b;, x€]0,1]. (3.32)

Consequently, it follows from the mean-value theorem of differentials that

IRi| =

2 2 _
af 2 - MV < Oy — | < clm=m|(®) (3.33)
m+1 n+1 X

=

We now turn to estimating R, near x = 1. Combining (3.32), (3.28) and (3.29), the mean-value
theorem of differentials, and the mean-value theorem of integrals, we have

l’l%E] l’l%Ez
Ry| = -
nm+1 ny+1
3 3 3
n n n
—|E (L) 2 (E —E
1(n]—i—l n2+1>+n2—|—1(1 2)

g C|n1 —n2| (X) +C

(Ex (1)~ Es (1)) - (/ <n1—nz>—<b1—b2>dy>H

1
< iy =2l 3) + CUE (1) = Ex (1) +:C | = maldy + Cllby = bl

< Cllbr — ba oy + C('"‘ —ral () | i = m] (5)> . e, (3.34)
(1-x) (1-¢)

(SIE
(SIE

where we have used the formula

B0 =B~ [ -b)0ay =12 (3:35)
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Substituting (3.33) and (3.34) into (3.31), we have

h(n1,Ey) — h (3, Ea) | < Cllby — bl cpoy + € | =2l Im=mal(©)) g gy,
(1-x)2 (1-9°
which further implies that
1
1—x)?
] = [ 0, E0) — B, E)) L=
I’l2—1
< Cllby = bzl + € |"'7"2|Ex)+|"17”2|55) . 3eexn1]. (3.36)
(I—x)? (1-¢)

Inserting (3.30) and (3.36) into (3.27), near x = 1, we obtain

(1=2)7 [ (m —n2), | (x)

<C (l”ll _n2|EX) + |7’l1 —ny (F)) +CHb1 _b2||C[O,1]7 35 c [x7 l] ) (3.37)
(1—x)2 (1-¢)

It is worth mentioning that the generic constant C >0 in (3.37) is independent of |b; —

bs||cpo,1- Moreover, the term |'("]:Z§‘15§) + "(’;:'g)ll(ﬁ) on the right-hand side of (3.37) can be

bounded by an appropriate constant multiple of [|b; — b || (o, ] in an intrinsic neighbourhood of

the right endpoint x = 1. Precisely, we claim that there exist two positive constants 0 < §; < %
and M; > 0 independent of ||b; — bz ||¢po,1] such that

ny —ny|(x
%gmnbl—bzncm,u, xe(1-01,1]. (3.38)
(1-x)}

Aiming for a contradiction, suppose that for any ¢ € (0, %) and M > 0, there is x5 € (1 —4,1]
such that
1 — na| (x5)
————1 - >M|bi = ba|[cp, - (3.39)
(1 —Xx5)*?

By the arbitrariness, we could take 6 = %,k =3,4,5,---, for arbitrary M > 0, there exists x; €
(1—1,1] such that

n—n X
w > Ml|by — bl cpo.1)» (3.40)

(1 — xk) 2
which implies that

. —m| (x
lim w = M||by — b2 cpo,1)- (3.41)

xe—1— (l—xk

(ST}
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Besides, combining lemma 3.1, the L’Hospital Rule and lemma 3.4, we calculate that

fim =l oy imm) @) =D 2= 1D
= (l-xr (1—x)§] =l (1—)6)51 = (IT=x)2
= —ZXEIIQ (1—x)2 n1x+2x£r]ni (1 —x)% nyy
1 1
:\//(; (bl_nl)dx—\//o (by —np)dx
_ Jy (b1 —by)dx — [ (n1 — ) dx
\/fol (b1 —ni)dx+ \/fol (by —ny)dx
_ Jiy (b1 — by) dx
) VI B =) dr4 /[ (62— n2) dx
< Cillby = b2l cpo,- (3.42)

Moreover, we note that the constant M >0 in (3.41) is arbitrary. Therefore, together
with (3.42), taking M = 2C in (3.41) leads to the contradiction that 2 < 1.
Applying (3.38) to (3.37), we have
(1—x)2|(n1 — n2)el (x) < Cllby — baleo,y, x € (1—61,1]. (3.43)

Similarly to (3.34), we are able to compute that

n—n
|E1 — Ex|(x) < Cl|b1 — bal|cpo,1) + |(11§)|(1£), 3¢ € [x, 1]
< Clby = balcpo,1, x € (1=61,1], (3.44)

and

[(E1 — E2)x|(x) = [m1 —na — (b1 — b2)[(x) < [m1 = na|(x) + b1 — ba|(x)

[n1 — na(x)
_ by —b
1)} + b1 = ball o,y
< Cllby = ballepy, x€ (1= 31, 1], (3.45)

Finally, putting results (3.38), (3.43), (3.44) and (3.45) together, we obtain the desired local
weighted estimate (3.26). O

Up to now, we have obtained two intrinsic small domains [0,d¢) and (1 — 0y, 1] distrib-
uted around the two endpoints x =0 and x = 1, respectively. This fact enables us to estab-
lish the structural stability estimate on a certain regular domain [0, 1 — ], where 0 < § :=
min{50,51} < 1/2

Lemma 3.6. Under the same conditions in lemma 3.2. Let § ;== min{d, d; }. Then there is a
positive constant C > 0 independent of ||by — by||cjo,1) such that

In1 —nallers,i—s) + 1B — E2ll o1 5,167 < Cllb1 — bal|cjo,1y- (3.46)

16
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Proof. We are now able to work with equations (3.1) on a regular closed interval [0, 1 — ¢]
away from singularities, where § has been defined in the hypothesis of the present lemma.
Firstly, we rewrite the estimate (3.32) on the regular interval as follows.

1 <l:=1+m(a,b,)sin(m0) <ny(x) <ny(x)<by, x€[5,1-06]. (3.47)
Secondly, subtracting (3.1)|;=; from (3.1)|;=;, for x € [§,1 — §], we thus get

3 2 3 2
mE, —any  mE, —an

(m —n2), = n—1 a n—1
=E (f(m) —f(n2)) +f(n2) (E1 — E2) — (g (1) — g (n2))
= (Evf' (1) — ag’ (1)) (m —m2) +f(m) (E1 — E2), 3,7 € (na,m1),  (3.48)
and
(E] 7E2)x = (I’l] 71’12) — (b] — bz), (349)
where
n’ n? —
f(n) = ot g(n):= ot Vn e [l,bl] ,

and we have used the mean-value theorem of differentials in the third line of equation (3.48).
Thirdly, multiplying through (3.48) by n; —n,, and using (3.28), (3.47) and Cauchy’s
inequality together, we have

((nl - nz)z)x < C(a,l,El) ((I’ll - I’lz)2 + (El —E2)2) , XE€ [(5, 1— 5] . (350)

Similarly, multiplying through (3.49) by E; — E», and employing Cauchy’s inequality, we
obtain

((E1 - Ez)z)x < (i —m) +2(Ey — E) + ||by — 2|20y, x€[6,1-0]. (3.51)
And then, summing estimates (3.50) and (3.51) gives

(n =)+ (B E2)?) ()
<C ((n1 )+ (E —E2)2> () + lb1 = balfgoyys x € [5,1—4]. (3.52)
Applying the Gronwall inequality to (3.52), we have
((’11 —m)’ +(E —Ez)z) (x)
< ((m =+ (8- £) )+ [ 101~ alB 0]
<C [((m —m)’ +(E —Ez)z) (6)+ ||by —bzllzc[o,l]] . xelo,1-4]. (3.53)

Noting that § < &y and the continuity of the error function pair (n; — n,,E; — E)(x) at x = dy,
from lemma 3.3 we see

((nl )+ (B, — E2)2> (8) < Cllbr = ball 0.1 (3.54)

17
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which along with (3.53) implies
In1 —na| (x) +|Er — Ea| (x) < Cl|by — ballcpo,1),  x € [6,1—9]. (3.53)
Finally, from equations (3.48) and (3.49), and the estimate (3.55), we directly calculate
| (n1 —n2) | (x) + | (E1 — E2), | (x) < Cllb1 —balcpo,, x€[6,1—0]. (3.56)

Combining estimates (3.55) and (3.56) yields the desired structural stability estimate (3.46)
on the regular domain [, 1 — ¢]. O

Last but not least, let us prove the estimates (3.28) and (3.29) in the following lemma.

Lemma 3.7. Under the same conditions in lemma 3.5. Then there exists a positive constant C
independent of ||by — ba||cpo,1] such that estimates (3.28) and (3.29) hold, that is,

E:(x)| <a+42b;, x€[0,1], i=1,2,
and
E1 (1) — E2 (1) | < Cllby = bl cpo,1y,
respectively.
Proof. From equation (2.2) in definition 2.1 and the boundary behaviour (2.4), we have

E;i(x)= oz+/x(n,~ —b;)(y)dy, Vxe[0,1], i=1,2. 3.57)
0

First of all, in light of the lower and upper bounds (2.3) of n;(x), a straightforward compu-
tation gives

X 1
|E,(x)|: O[—l—/ (n,—b,)dy‘<a+/ (n,+b,)dy<a+25,, VXE[O,I], 1:1,2
0 0
(3.58)
Next, taking the value x =1 in equation (3.57), we have
1
Ei(l):a—i—/ (i —b;)(y)dy, i=1,2. (3.59)
0

Furthermore, taking the difference of equations (3.59)|;—; and (3.59)|;—,, we calculate

1
B (1)~ B> (1)] < /0 (11— b1) — (n2 — b)) dy

1
< [ =l G)ay-+ 16~ 2l
0
= |y —m| () + b1 — ballc.yys 3¢ €0,1], (3.60)
where we have used the mean-value theorem of integrals in the last line.

18
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Finally, we claim that there is a positive constant C independent of ||b; — bz||c(o,1) such that
In1 —na| (§) < Cllby — b2 cpo,115 (3.61)

wherever the point £ is located in the whole interval [0, 1]. In fact, take ¢ the same as in lemma
3.6, and if £ € [0,1 — §], it is clear from estimates (3.8) and (3.46) that (3.61) is true; if £ €
(1 — 6, 1], the intrinsic local estimate (3.38) guarantees that (3.61) is true as well. Consequently,
substituting (3.61) into (3.60), we obtain the desired estimate (3.29). O

Obviously, putting all the estimates we have established in lemmas 3.3, 3.5 and 3.6 together,
we have the following globally structural stability estimate under the monotonicity condi-
tion (3.6).

Lemma 3.8 (structural stability in the monotone case). Let the doping profiles by,b; €
C[0,1]. If b1 (x) = ba(x) > 1 on [0,1), and o > /8(b1(0) — 1). Then there exists a positive
constant C independent of ||by — by||cjo,1) such that

1
[n1 —nalleo,) + 1| (1 —=x)2 (n1 —n2), [lcpo,1 + |E1 — E2llc1j0,1 < Cllb1 — b2l o,y (3.62)

We end this section by proving theorem 2.1. Thanks to lemma 3.8 and the squeezing skill,
we can now dispense with the monotonicity condition (3.6).

Proof of theorem 2.1. Let b;,b, € C[0,1] be any two subsonic doping pro-
files, there is no need to require the monotonicity condition (3.6). Let « >
2v2max{/b;(0) — 1,/b2(0) — 1}, for i = 1,2, let (n;, E;)(x) denote the interior subsonic
solution corresponding to b;(x).

Firstly, we define

di (x) :=max{b; (x),b2(x)}, dr(x):=min{b; (x),b2(x)}, Vxe]0,1], (3.63)
thus we have the squeezing relation
dy(x) 2bi(x) >da(x)>1, on[0,1], fori=1,2, (3.64)
and the squeezing estimate
lbi — djllcio,1) < 1b1r — b2l o1y, fori,j =1,2. (3.65)

Next, for j = 1,2, we denote by (p;,&;)(x) the interior subsonic solution corresponding to
the subsonic doping profile dj(x). The squeezing properties (3.64) and (3.65) enable us to
choose, be it by d;(x) or via dy(x), a background solution (p,&)(x) that is common to both
doping profiles by (x) and b,(x). For example, we opt for (p,&)(x) = (p1,&1)(x). Note that
dy (x) = bi(x) > 1 (see (3.64)), combined with lemma 3.8 gives

1 .
P1 — Nillclo,1] —X)°(P1 = i)y liclo,1] 1~ Lillc,1] & 1 —biliclo,1], tori=1,2.
| o1+ 1 (T =x)2 ( )ellcoy + €1 — Eil| < Clldy — bi| f 1,2
(3.66)
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Finally, it follows from (3.65) and (3.66) that
[n1 = n2llcpoy + 11 (1 =x)2 (m1 = n2) Moy + 1E1 = Ez2llerpo,)

2
1
<> (llor = millego, + 111 =) (o1 = ) lleto, + €1 = Eilleworn )
i=1

2
<Yl =billcoy
i=1

< Cllby = ballcpo,1)- (3.67)

4. Numerical simulations

In this section, we engage in the numerical verification of our theoretical results. Due to the
boundary degeneracy, we cannot directly perform the numerical simulations of the degenerate
problems (1.6) and (1.7). Instead, we make the most of the subsonic-current-approximation
problem below: for fixed 0 <j < 1,

nE — aj
E.=n—b(x), xe€(0,1), @.D
n(0)=n(l)=1.

For notational convenience, the approximate solutions here are still denoted by (n, E)(x).

In order to sufficiently reflect the nature of the interior subsonic solution with sonic bound-
ary, we set the approximate current j = 0.9 which is in close proximity to 1. Furthermore, the
computational interval is [0, 1] with 100000 uniform mesh points. We use the bvp5c solver in
MATLAB to numerically study the boundary value problem (4.1), where the relaxation time is
set as 7 =0.1, that is &« = 10. The reasonable choice of the initial guess is [1;«] because
of (4.1); and (2.4).

In what follows, we set about confirming the structural stability estimate (2.6) by using the
above parameter settings. To this end, we consider the following doping profiles:

3.1+sin(mx) =: by (x) > by (x) : =3 +sin(7wx),

and denote the corresponding numerical solutions to the problem (4.1) by (n,E;)(x) and
(n2,E7)(x) respectively. The numerical simulations are displayed in figures 1-4.

Firstly, the numerical result in figure 1 demonstrates that the comparison principle in lemma
3.1is true.

In addition, from figures 1,2 and 4, one can easily see that the difference of || — 12 ||cpo,1) +
|E1 — Ez2||c1[0,1) can be controlled by the perturbation by — b2 cjo,1) of doping profiles. So,
the numerical results approximately coincide with theorem 2.1.

Last but not least, figure 3 numerically indicates that the first derivative of the first compon-
ent of the interior subsonic solution will produce the genuine singularity at the right endpoint

20



Nonlinearity 37 (2024) 025020 Y-H Feng et al

1.35, T \
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T

Figure 1. Comparison between n; (x) and n (x).

6! 1 1 1 1 1
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
xr

Figure 2. Comparison between E; (x) and E>(x).

x=1 (i.e. lim,_,;- n,(x) = —00), and the singularity at the left endpoint x =0 is removable.
These numerical observations also agree with our local singularity analyses in lemmas 3.2 and
3.4. Also, form figure 3, one can note that the curves of n; »(x) and n, ,(x) are almost over-

lapped except near the right endpoint x = 1. Therefore, introducing the (1 — x) 2 -weight in the
structural stability estimate (2.6) is necessary.
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Figure 3. Comparison between first derivatives of n; (x) and n(x).
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Figure 4. Comparison between first derivatives of E; (x) and E>(x).
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