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TRANSONIC STEADY-STATES OF EULER--POISSON EQUATIONS
FOR SEMICONDUCTOR MODELS WITH SONIC BOUNDARY\ast 
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Abstract. In this paper, we mainly focus on radial transonic solutions for the steady hydro-
dynamic model of semiconductors represented by Euler--Poisson equations with sonic boundary in
n dimensions. In an annulus domain, given constant electronic current j0 at the inner boundary
and the sonic data of boundary electronic density (\rho 0, \rho 1), we present that the Euler--Poisson system
possesses infinitely many transonic shock solutions when the relaxation time is large and infinitely
many C1-smooth transonic solutions when the relaxation time is small and the doping profile is
continuous. To study the structure of shock-transonic steady-states, the approach is the construc-
tive method based on the entropy condition and Rankine--Hugoniot jump condition. To show the
existence of C1-smooth solutions, the adopted approach is the local continuation method, and the
derivation on C1-regularity of transonic steady-states is based on a new defined iterative approxi-
mation combining the singularity analysis on the critical point. The difficulties caused by the high
dimensions for the system and the nonconstant doping both are essential. In short, the concept of
local analysis throughout the entire proof is the basis and the core for solving this nonautonomous
system.
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1. Introduction. In this paper, we investigate the transonic steady-states of
the hydrodynamic model for semiconductors with sonic boundary, represented in n-
dimensional stationary Euler--Poisson equations [11]:

(1.1)

\left\{       
div(\rho u) = 0,

(u \cdot \nabla )u+
\nabla P

\rho 
= \nabla \Phi  - u

\tau 
,

\Delta \Phi = \rho  - b(x).

x \in \BbbR n, n = 2, 3,

Here \rho (x) is the density of electrons, u(x) presents the average particle velocity at
location x, and \Phi (x) denotes the electrostatic potential of electrons. The pressure
P = P (\rho ) is the pressure-density relation, where we assume in present paper that
P = T\rho for the isothermal flow with the constant temperature T > 0, the constant
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364 L.CHEN M. MEI, G. ZHANG, AND K. ZHANG

\tau > 0 represents the momentum relaxation time, and the known function b(x) > 0 is
the doping profile standing for a background density of changed ions.

The main objective of this paper is to study the structure of radial transonic
solutions to (1.1) in an annulus domain which is defined by

\scrA := \{ x \in \BbbR n| r0 < | x| < r1\} with fixed constants 0 < r0 < r1,

where the inner boundary is given by

\Gamma 0 := \{ x \in \BbbR n : | x| = r0\} 

and the outer boundary is given by

\Gamma 1 := \{ x \in \BbbR n : | x| = r1\} .

The closure of \scrA is denoted by

\scrA := \Gamma 0 \cup \scrA \cup \Gamma 1.

From the terminology of fluid dynamics, we call c(\rho ) :=
\sqrt{} 

P \prime (\rho ) =
\surd 
T the local

sound speed and M := | \bfu | 
c(\rho ) the Mach number. It is well known that the system (1.1)

is a mixed-type system, that is, an elliptic system for the subsonic flow (M < 1) and
a hyperbolic-elliptic system for the supersonic flow (M > 1), and the sonic state for
M = 1. The radial transonic solutions to (1.1), introduced first in [6], are defined as
follows.

Definition 1.1 (radial transonic solution of the Euler--Poisson system). Suppose
that there exists a curve/surface \Gamma s = \{ | x| = s\} , where r0 < s < r1; then the domain
\scrA is divided into two connected subdomains, a supersonic region \scrA  - and a subsonic
region \scrA +, respectively. That is, M > 1 in \scrA  - = \{ r0 < | x| < s\} and M < 1 in
\scrA + = \{ s < | x| < r1\} . Hereinto, M always changes from the state of M > 1 to
the state of M < 1 across \Gamma s. Let ns be the unit normal vector field on \Gamma s oriented

into \scrA + and \{ v(i)
s \} n - 1

i=1 be the tangent vector fields on \Gamma s with \{ v(i)
s \} n - 1

i=1 being linearly
independent at each point on \Gamma s.

1. Radial transonic shock solutions: The solution (\rho ,u,\Phi )\in [C(\scrA \pm )\cap C1(\scrA \pm )]1+n

\times [C1(\scrA \pm ) \cap W 2,\infty (\scrA \pm )] is called a radial transonic shock solution to (1.1)
in \scrA if (\rho ,u,\Phi ) satisfies (1.1) and

(1.2) (\rho ,u,\Phi )(x) = (\rho ,u,\Phi )(| x| )

pointwise in \scrA \pm , respectively, and satisfies the extended Rankine--Hugoniot
jump conditions

(1.3) [\rho u \cdot ns]\Gamma s
= [\rho (u \cdot ns)u+ T\rho ns]\Gamma s

= [\nabla \Phi \cdot ns]\Gamma s
= 0

and the entropy condition on \Gamma s,

0 < u+ \cdot ns < u - \cdot ns.

Here [Q]\Gamma s
is denoted by [Q]\Gamma s

:= Q| \Gamma  - 
s
 - Q| \Gamma +

s
and u\pm denote u restricted

on \scrA \pm , respectively.
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2. Radial C1-smooth transonic solutions: On the other hand, the solution (\rho ,u,\Phi )
\in [C(\scrA )\cap C1(\scrA )]1+n\times [C1(\scrA )\cap W 2,\infty (\scrA )] is called a radial C1-smooth tran-
sonic solution to (1.1) in \scrA if (\rho ,u,\Phi ) satisfies (1.1)--(1.3) in \scrA and further
it holds that

u+ \cdot ns = u - \cdot ns and \nabla u+ \cdot ns = \nabla u - \cdot ns on \Gamma s.

Our purpose of this paper is to show the existence results about radial transonic
solutions to system (1.1) with sonic boundary. Precisely, given a sonic density \rho 0
and prescribed constant current j0 at the inner boundary \Gamma 0, and a sonic density \rho 1
at the outer boundary \Gamma 1, we show that there exist infinitely many radial transonic
shock steady-states of (1.1) with a large relaxation time and infinitely many radial
C1-smooth transonic steady-states of (1.1) with a small relaxation time.

Before stating our main theoretical results, let us provide some background studies
of this topic. System (1.1) is physically originated from the hydrodynamic model of
semiconductors [24, 30],\left\{       

\rho t + div(\rho u) = 0,

(\rho u)t + div(\rho u
\bigotimes 

u) +\nabla P = \rho \nabla \Phi  - \rho u

\tau 
,

\Delta \Phi = \rho (t, x) - b(x),

which, first introduced by Bl{\e}tekj{\ae}r [7], is fundamentally developed to simulate the
motion of electrons [17, 23] or plasmas [31]. More specifically, the evolution of this
model is dictated by conservation laws for mass, momentum, and energy coupled with
the Poisson equation for the electric potential, the so-called Euler--Poisson equations.
A great deal of mathematical analysis has been proposed to study the above equations
with different suitable conditions.

Regarding the stationary Euler--Poisson system (1.1), Degond and Markowich
[10] first considered one-dimensional (1.1) in a bounded domain with a fully subsonic
background (small electronic current and heavy electronic density on boundary, and
subsonic doping profile) and proved the existence and uniqueness of the subsonic
solution. They further considered the three-dimensional potential flow case in [11].
Since then, subsonic steady-states in different cases have been further investigated
by Markowich [25], Amster et al. [2], and Bae, Duan, and Xie [3, 4]. On the other
hand, when the system is set with strongly supersonic background (large electronic
current and supersonic doping profile), Peng and Violet [28] proved the existence of
the unique subsonic steady-state in the one-dimensional case, and then Bae et al. [5]
obtained the supersonic steady-state in the two-dimensional case. When the doping
profile b(x) is a supersonic constant, even when the boundary of the system is still
subsonic, Ascher et al. [1] first observed some transonic steady-states via a phase-
plane analysis in the one-dimensional case, which was then extended by Rosini [29]
to the nonisentropic flow. Furthermore, when the doping profile b(x) is supersonic
and non-constant, Gamba [13] and Gamba and Morawetz [14] constructed one- and
two-dimensional transonic steady-states with shocks by the artificial viscosity approx-
imation, respectively. When the boundary of the system is set as one part in subsonic
region and the other in supersonic region, Luo and Xin [22] thoroughly analyzed the
existence, nonexistence, uniqueness, and nonuniqueness of transonic solutions with a
constant doping profile. See also the recent study by Duan and Zhou [12]. Regarding
the stability of steady-state solutions and the time-asymptotic behavior of smooth
solutions, we refer to [15, 16, 18, 21, 26, 27] and references therein.
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When the boundary is sonic, which is the critical case, the situation becomes
more complicated and challenging as we know, and our research group recently paid
more attention to this topic. When the doping profile is set to be subsonic or super-
sonic, the classification of all types of subsonic/supersonic/transonic/sonic solutions
was first studied by Li et al. in the series of two pioneering papers [19, 20]. That is,
once the doping profile is subsonic, the Euler--Poisson system admits a unique subsonic
steady-state, at least one supersonic steady-state, and infinitely many shock-transonic
steady-states when the semiconductor effect is weak (\tau \gg 1), and infinitely many
C1-smooth transonic steady-states when the semiconductor effect is strong (\tau \ll 1),
while, once the doping profile is supersonic and far from the sonic line, there is not any
physical (subsonic/supersonic/transonic) solution. The supersonic steady-state and
many shock-transonic steady-states exist only when the doping profile is sufficiently
close to the sonic line. When the doping profile is transonic, based on the differ-
ent case of the subsonic-dominated doping profile or supersonic-dominated doping
profile, we [8] investigated the structure of all subsonic/supersonic/shock-transonic
solutions. In particular, once the doping profile is a constant, Wei et al. [32] first
observed two C\infty -smooth transonic solutions for a one-dimensional stationary Euler--
Poisson system when the doping profile is a subsonic constant, or when the doping
profile is supersonic constant but the relaxation time is sufficiently small. Further-
more, in the multiple-dimensional case, we [9] showed the criteria of the existence
and nonexistence of the radial subsonic/supersonic steady-states in some sense of
the subsonic-dominated doping profile and supersonic-dominated doping profile. But
the existence and structure of transonic solutions are still unknown. To answer this
question will be the main target of the present paper.

In this paper, we continue to study the multiple-dimensional Euler--Poisson sys-
tem (1.1) and look for the transonic steady-states. Analogously to [19], the radial
transonic solutions are also divided in two types, discontinuous transonic steady-
states and continuous transonic steady-states, the so-called shock-transonic steady-
states and smooth transonic steady-states. As we know, it is quite significant to study
the structure of all physical solutions for the multiple-dimensional Euler--Poisson sys-
tem subjected on a general domain, but this case is really challenging and difficult
and is almost not related. So, here we are going to consider the system (1.1) in
an annulus domain and look into the structure of the shock/smooth transonic solu-
tions in the radial form. We set the electronic current j0 on the inner boundary and
the electronic density (\rho 0, \rho 1) to be sonic on the inner and outer boundaries, respec-
tively. We will show that the Euler--Poisson system subjected to the sonic boundaries
possesses infinitely many transonic shock steady-states when the relaxation time is
large and infinitely many C1-smooth transonic steady-states when the relaxation time
is small and the doping profile is continuous. To investigate the existence and the
structure of shock-transonic steady-states, our approach is the constructive method
based on the entropy condition and Rankine--Hugoniot jump condition. When the
relaxation time is sufficiently large, we note that the norm of the electric field \nabla \Phi at
boundary actually keeps away from zero, which is crucial for us to employ the above
constructive method. On the other hand, to prove the existence of smooth transonic
solutions, the adopted approach is the local continuation method, and the derivation
on C1-regularity of transonic steady-states is based on a locally iterative approxima-
tion combining the singularity analysis on the critical point. The difficulties caused
by the high dimensions for the system and the nonconstant doping both are essential.
Note that the local analysis throughout the entire proof is the basis and the core for
solving this nonautonomous system.
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For a sake of convenience, let us set the electric field

E := \nabla \Phi 

and assume

b(x) := \~b(r) in \scrA with \~b \in L\infty (r0, r1).

In the polar coordinate, from (1.2), we denote

(\rho ,u, E)(x) := (\~\rho (r), \~u(r)\vec{}e, \~E(r)\vec{}e),(1.4)

where r = | x| and \vec{}e = x
r . For positive constants (\rho 0, \rho 1, j0), system (1.1) is supple-

mented by the following boundary conditions:

(1.5) (\rho | \Gamma 0 , \rho | \Gamma 1 , \rho u| \Gamma 0) = (\rho 0, \rho 1, j0\vec{}e).

Thus by (1.4) and (1.5), the system (1.1) is transformed into

(1.6)

\left\{         
(rn - 1\~\rho \~u)r = 0,

(rn - 1\~\rho \~u2)r + rn - 1T \~\rho r = rn - 1\~\rho ( \~E  - \~u
\tau ),

(rn - 1 \~E)r = rn - 1(\~\rho  - \~b(r)),

(\~\rho (r0), \~\rho (r1), \~u(r0)) = (\rho 0, \rho 1, j0/\rho 0).

for r0 < r < r1,

Denote \~J := \~\rho \~u. Without loss of generality, let us also take

\~J > 0 and T = 1.

Then the first equation of (1.6) yields from (1.5) that

(1.7) \~J(r) = j0r
n - 1
0 /rn - 1 for r \in [r0, r1],

and the second equation of (1.6) becomes

(1.8)

\Biggl( 
1 - 

\~J2

\~\rho 2

\Biggr) 
\~\rho r +

n - 1

r

\~J2

\~\rho 
= \~\rho \~E  - 

\~J

\tau 
;

thus the sonic boundary conditions to (1.6) are proposed by

(1.9) \rho 0 = j0 and \rho 1 = j0 \cdot 
rn - 1
0

rn - 1
1

.

Actually, it follows from (1.7) that (1.9) corresponds to the sonic state M = \~u =
\~J
\~\rho =

1, and the singularities of equation (1.8) exist at the boundary where the boundary
value problem (1.6) is degenerate.

To simplify the equations (1.6), we define a new variable

m(r) := rn - 1\~\rho (r), r \in [r0, r1],

and a parameter

\scrJ := j0r
n - 1
0 > 0.
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Clearly, it holds that

\~J =
\scrJ 

rn - 1
, \~u =

\scrJ 
m
, and \~\rho =

m

rn - 1
,

so that the system (1.6)--(1.9) can be reduced to

(1.10)

\left\{         
\biggl( 
1 - \scrJ 2

m2

\biggr) 
mr = m

\biggl( 
\~E +

n - 1

r

\biggr) 
 - \scrJ 

\tau 
,

(rn - 1 \~E)r = m - B,

m(r0) = m(r1) = \scrJ ,

where the function B is denoted by

B(r) := rn - 1\~b(r) over [r0, r1].

Throughout this paper we denote

B := essinf
r\in [r0,r1]

B(r) and B := esssup
r\in [r0,r1]

B(r).

Note that for the new system (1.10), m = \scrJ is the sonic state corresponding to
M = 1. So m > \scrJ implies the flow of (1.10) to be subsonic, and m < \scrJ is equivalent
to the supersonic flow of (1.10). Consequently, to look for the solution of (1.1), (1.5),
and (1.9) is equivalent to solving (1.10). So, corresponding to Definition 1.1, we have
the following equivalent definition of transonic solutions for (1.10).

Definition 1.2.
1. (m, \~E)(r) is called a transonic shock solution of system (1.10) if m(r0) =

m(r1) = \scrJ and it is separated by a point x0 \in (r0, r1) in the form

(m, \~E)(r) =

\Biggl\{ 
(msup, \~Esup)(r), r \in [r0, x0),

(msub, \~Esub)(r), r \in (x0, r1],

where 0 < msup(r) < \scrJ and msub(r) > \scrJ satisfy the entropy condition at x0,

(1.11) 0 < msup(x
 - 
0 ) < \scrJ < msub(x

+
0 ),

and the Rankine--Hugoniot condition at x0,
(1.12)

msup(x
 - 
0 ) +

\scrJ 2

msup(x
 - 
0 )

= msub(x
+
0 ) +

\scrJ 2

msub(x
+
0 )

, \~Esup(x
 - 
0 ) =

\~Esub(x
+
0 ).

Thus, by a direct calculation, the first equation of (1.12) reduces to

m - m+ = \scrJ 2,

where m - := msup(x
 - 
0 ) and m+ := msub(x

+
0 ).

2. (m, \~E)(r) is called a C1-smooth transonic solution of system (1.10) if m(r0) =
m(r1) = \scrJ and there exists a point x0 \in (r0, r1) such that

(m, \~E)(r) =

\Biggl\{ 
(msup, \~Esup)(r), r \in [r0, x0],

(msub, \~Esub)(r), r \in [x0, r1],
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where 0 < msup(r) < \scrJ and msub(r) > \scrJ satisfy the smoothness conditions
at x0,

(1.13) m - = m+ = \scrJ and m\prime 
sup(x

 - 
0 ) = m\prime 

sub(x
+
0 ).

Our main results for the existence of shock/C1-smooth transonic steady-states
for (1.10) are stated as follows.

Theorem 1.3 (two-dimensional case: n = 2). Assume that B \in L\infty (r0, r1)
satisfies \scrJ < B \leq B \leq B; then the following hold:

1. Once the relaxation time \tau is large enough, then (1.10) has infinitely many
transonic shock solutions (mtran, \~Etran)(r) over [r0, r1], satisfying the entropy
condition (1.11) and the Rankine--Hugoniot condition (1.12) at a jump point
x0 \in (r0, r1).

2. Once the relaxation time \tau is small enough and the doping profile satisfies
B \in C[r0, r1], then there exist infinitely many C1-smooth transonic solutions
to (1.10), satisfying the smoothness conditions (1.13) at the continuous point
x0 with the condition | x0 - r0| \ll 1. Furthermore, there is no transonic shock
solution to (1.10) in this case.

Theorem 1.4 (three-dimensional case: n = 3). Assume that B \in L\infty (r0, r1)
satisfies B > \scrJ + 2; then the following hold:

1. Once the relaxation time \tau is large enough, the system (1.10) has infinitely
many transonic shock solutions (mtran, \~Etran)(r) over [r0, r1].

2. Once the relaxation time \tau is small enough and the doping profile satisfies
B \in C[r0, r1], the system (1.10) has infinitely many C1-smooth transonic
solutions. No transonic shock solutions exist.

Remark 1.5.
1. To prove the existence of C1-smooth transonic solutions, the smoothness con-

dition B \in C[r0, r1] is necessary in the proofs of both Theorems 1.3 and 1.4.
In addition, if the function B(r) has a higher regularity in part 2 of Theorem
1.3, it can be proved that the regularity of smooth transonic solutions can be
raised up.

2. In Theorem 1.3 and Theorem 1.4, the condition | x0 - r0| \ll 1 is crucial in the
proofs. In fact, this condition indicates that the subsonic part of transonic
solutions is dominating. In particular, it is necessary if \tau \ll 1 for C1-smooth
transonic solutions.

3. In Theorem 1.3, the condition of B > \scrJ is necessary in some sense for the
existence of transonic solutions. However, when B \leq \scrJ , inspired by [20, 8],
it can be proved that there exist transonic solutions only for | B  - \scrJ | \ll 1,
and no transonic solutions exist once B \ll \scrJ .

4. Note that the requirement B > \scrJ + 2 for the doping profile in Theorem 1.4
is stronger than the condition B > \scrJ in Theorem 1.3. This is somewhat
consistent to what we showed in [8].

The paper is organized as follows. Section 2 is devoted to getting the result of
transonic shock solutions to (1.10) in two space dimensions when \tau \gg 1. Section
3 explores the existence of C1-smooth transonic solutions to (1.10) for n = 2 and
\tau \ll 1 by locally analyzing the trajectories of a nonautonomous system. What is
more, section 4 briefly sketches the conclusions about transonic shock solutions and
C1-smooth transonic solutions of (1.10) in three space dimensions.
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2. Infinitely many radial transonic shock solutions. In this section, in-
spired by [19], we are ready to study the existence of transonic shock solutions of
(1.10) with a large relaxation time (namely, \tau \gg 1). First let's consider the two-
dimensional system (1.10) with sonic boundary on a bounded domain when the semi-
conductor effect vanishes (namely, 1

\tau = 0). For convenience, set \^E = \~E + 1/r; then
(1.10) becomes

(2.1)

\left\{         
\biggl( 
1 - \scrJ 2

m2

\biggr) 
mr = m \^E,

(r \^E)r = m - B,

m(r0) = m(r0 + L) = \scrJ ,

where L > r1 - r0
4 is a positive constant. We note that the function B, both here

and below, has been extended periodically to [r0,+\infty ). As we showed in the proof
of Theorem 3.2 [9], when B > \scrJ , system (2.1) has an interior supersonic solution
(mL, \^EL)(r) on [r0, r0 + L] satisfying

0 < mL(r) < \scrJ over (r0, r0 + L).

Then we show the following estimates with respect to the interior supersonic solution
(mL, \^EL).

Lemma 2.1. Assume that B \leq B \leq B and B > \scrJ and that (mL, \^EL) are interior
supersonic solutions of (2.1). Then

\^EL(r0) \geq \alpha 1(L), \^EL(r0 + L) \leq  - \alpha 2(L),

where \alpha 1(L) and \alpha 2(L) are positive constants.

Proof. Denoting the solution (mL, \^EL) by (m, \^E), we get for r \in [r0, r0 + L],

(2.2)
d(r \^E)

dm
=

(m - B)(m2  - \scrJ 2)

m3 \^E
.

For system (2.1), we briefly analyze the monotonicity properties of the trajectories
in the phase-plane (m, \^E). Note that 0 < m < \scrJ and B > \scrJ ; then from (2.1), the
solution m is decreasing with respect to r if \^E > 0, and m is increasing in r if \^E < 0.
Furthermore, \^E is always decreasing over [r0, r0 + L].

Therefore, there exists a number z0 \in [r0, r0 + L] such that m(r) reaches the
minimum value at the point z0. Indeed, we have

(2.3) m(z0) = min
r\in [r0,r0+L]

m(r) =: m0, m\prime (z0) = 0, and \^E(z0) = 0.

Now, we are going to estimate m0. It follows from (2.1) that \~u = \scrJ 
m satisfies \~u \geq 1

and

(2.4)

\biggl[ 
r

\biggl( 
\~u - 1

\~u

\biggr) 
\~ur

\biggr] 
r

=
\scrJ 
\~u
 - B, \~u(r0) = \~u(r0 + L) = 1.

It is noted that (m  - \scrJ )2 \in H1
0 (r0, r0 + L); hence, (\~u  - 1)2 \in H1

0 (r0, r0 + L). Then
multiplying (2.4) by (\~u - 1)2, we obtain

(2.5)

\int r0+L

r0

r(\~u+ 1)

2\~u

\bigm| \bigm| \bigm| \Bigl[ (\~u - 1)
2
\Bigr] 
r

\bigm| \bigm| \bigm| 2 dr =

\int r0+L

r0

\biggl( 
B  - \scrJ 

\~u

\biggr) 
(\~u - 1)

2
dr,
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where we have used

2

\int r0+L

r0

r

\biggl( 
\~u - 1

\~u

\biggr) 
(\~u - 1) (\~ur)

2dr =

\int r0+L

r0

r(\~u+ 1)

2\~u

\bigm| \bigm| \bigm| \Bigl[ (\~u - 1)
2
\Bigr] 
r

\bigm| \bigm| \bigm| 2 dr.
Similarly to the proof of Lemma 4.1 in [19], it is concluded that\int r0+L

r0

\biggl( 
B  - \scrJ 

\~u

\biggr) 
(\~u - 1)

2
dr \leq r0

4L2

\int r0+L

r0

(\~u - 1)
4
dr +

L3B
2

r0

\leq r0
4

\int r0+L

r0

\bigm| \bigm| \bigm| \Bigl[ (\~u - 1)
2
\Bigr] 
r

\bigm| \bigm| \bigm| 2 dr + L3B
2

r0
,

where we have used Young's inequality and Poincar\'e's inequality. Hence, this indicates
by (2.5) that \bigm\| \bigm\| \bigm\| \Bigl[ (\~u - 1)

2
\Bigr] 
r

\bigm\| \bigm\| \bigm\| 
L2(r0,r0+L)

\leq 2BL
\surd 
L

r0
,

so that for any \phi \in H1
0 (r0, r0+L), it follows from the inequality

\bigm\| \bigm\| \phi \bigm\| \bigm\| 
L\infty \leq 

\surd 
L
\bigm\| \bigm\| \phi r

\bigm\| \bigm\| 
L2

that

(\~u - 1)
2 \leq 2BL2

r0
.

Furthermore, it holds that

\~u \leq 1 +

\sqrt{} 
2B/r0 \cdot L

such that we estimate m0 by

m0 =
\scrJ 

\~u(z0)
\geq \scrJ 

1 +
\sqrt{} 
2B/r0 \cdot L

=: \beta 1(L,B).

The following proof is divided into two cases.
Case 1. Assume that the minimum point z0 satisfies z0  - r0 \geq L

2 . Thus, by
integrating the second equation of (2.1) over [r0, z0], one can see that

\^E(r0) =  - 1

r0

\int z0

r0

(m - B)ds \geq B  - \scrJ 
r0

\cdot (z0  - r0) \geq 
L(B  - \scrJ )

2r0
=: \alpha 1(L).

Afterwards, a direct computation yields from (2.1) that

mrr =
m3

m+ \scrJ 

\biggl[ 
1

m2(\scrJ  - m)

\biggl( 
3\scrJ 2

m2
 - 1

\biggr) 
| mr| 2  - 

mr

r
+

B  - m

r(\scrJ  - m)

\biggr] 
on [r0, r0+L].

Since mr(r) < 0 over [r0, z0] and B \geq \scrJ \geq m, we immediately conclude that

mrr \geq m3

m+ \scrJ 

\biggl[ 
1

m2(\scrJ  - m)

\biggl( 
3\scrJ 2

m2
 - 1

\biggr) 
| mr| 2 +

B  - m

(r0 + L)(\scrJ  - m)

\biggr] 
\geq m3

0

2\scrJ (r0 + L)
\geq \beta 3

1(L,B)

2\scrJ (r0 + L)
on [r0, z0].
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By Taylor expansion,

m(r0) = m(z0) - m\prime (z0)(z0  - r0) +m\prime \prime (\xi )(z0  - r0)
2/2 with \xi \in [r0, z0];

it then follows that

m0 \leq \scrJ  - L2\beta 3
1(L,B)

16\scrJ (r0 + L)
\leq \scrJ  - \scrJ 2L2

16(r0 + L)
\cdot 1\biggl( 

1 +
\sqrt{} 
2B/r0 \cdot L

\biggr) 3 =: \beta 2(L,B).

Using (2.2) and (2.3), we derive

(r0 + L)2

2r0
\cdot \^E2(r0 + L) \geq 

\int r0+L

z0

(m - B)(m2  - \scrJ 2)

m3

=
(2\scrJ  - B)

2
+ \scrJ  - B ln\scrJ 

 - 
\biggl[ 
\scrJ 2(2m0  - B)

2m2
0

+m0  - B lnm0

\biggr] 
= f(m0;B),

where

f(\ell ;B) : = \scrJ +
(2\scrJ  - B)(\ell  - \scrJ )2 + \scrJ (2\scrJ  - 2B)(\ell  - \scrJ )

2\ell 2

 - \ell +B ln \ell  - B ln\scrJ 
(2.6)

for \ell \in (0,\scrJ ). One finds that f(\scrJ ;B) = 0 and f \prime (\ell ;B) =  - (B - \ell )(\scrJ 2 - \ell 2)
\ell 3 < 0 for

\ell \in (0,\scrJ ). Thus, we get

\^E2(r0 + L) \geq 2r0f(m0;B)

(r0 + L)2
\geq 2r0f(\beta 2;B)

(r0 + L)2
=: \alpha 2

2(L,B).

Here \alpha 2(L,B) is a positive constant. Integrating the second equation of (2.1) over
[z0, r0 + L], we have

\^E(r0 + L) =
1

r0 + L

\int r0+L

z0

(m - B)dr \leq (r0 + L - z0)(\scrJ  - B)

r0 + L
< 0.

Hence, it is easy to check that \^E(r0 + L) \leq  - \alpha 2(L,B) < 0.
Case 2. Suppose that z0  - r0 \leq L

2 , that is, r0 + L  - z0 \geq L
2 ; then we directly

obtain
(2.7)

\^E(r0+L) =
1

r0 + L

\int r0+L

z0

(m - B)dr\leq (r0 + L - z0)(\scrJ  - B)

r0 + L
\leq L(\scrJ  - B)

2(r0 + L)
=:  - \alpha 2(L,B) < 0,

where the constant \alpha 2(L,B) is also positive. On the other hand, we estimate \^E(r0)
by arguing about the size of m0. In fact, if m0 > \scrJ  - \mu with a positive constant \mu ,
then

(r0 + L)2

2r0
\cdot \^E2(r0 + L) \leq 

\int r0+L

z0

(m - B)(m2  - \scrJ 2)

m3
\leq f(m0;B) < f(\scrJ  - \mu ;B),
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where the function f is denoted by (2.6). From the above inequality, we get

\^E2(r0 + L) <
2r0f(\scrJ  - \mu ;B)

(r0 + L)2

and further choose a constant \mu (L,B) to satisfy

f(\scrJ  - \mu ;B) \leq L2(B  - \scrJ )2(r0 + L)2

4r0
,

which gives \^E(r0 + L) >  - \alpha 2(L,B). This is a contradiction to (2.7). Therefore,
m0 \leq \scrJ  - \mu for the fixed constant \mu (L,B); then

r0 \^E
2(r0)

2
\geq f(m0;B) \geq f(\scrJ  - \mu ;B).

Here we determine \alpha 1(L) =
\sqrt{} 

2f(\scrJ  - \mu ;B)
r0

> 0 to satisfy \^E(r0) \geq \alpha 1(L). The proof is

finished.

Now we are ready to prove the existence of transonic shock solutions of the fol-
lowing two-dimensional system:

(2.8)

\left\{         
\biggl( 
1 - \scrJ 2

m2

\biggr) 
mr = m \^E  - \scrJ 

\tau 
,

(r \^E)r = m - B,

m(r0) = m(r1) = \scrJ .

Since a transonic solution consists of the supersonic and subsonic parts, the goal
of Lemma 2.1 is to present a transonic shock solution where the supersonic part is
dominating. Furthermore, we may ignore the singularity of the subsonic part of this
solution, because the subsonic part is extremely small near the sonic state. Hence,
from this point of view, we show the following theorem.

Theorem 2.2. Let B \in L\infty (r0, r1) satisfy \scrJ < B \leq B \leq B, and assume further
that \tau is large enough; then (2.8) has a transonic shock solution (mtran, \^Etran)(r) over
[r0, r1], satisfying the entropy condition (1.11) and the Rankine--Hugoniot condition
(1.12) at a point x0 \in (r0, r1). Because of the arbitrary choices of x0, the transonic
shock solutions are infinitely many.

Proof. This proof is split into three steps.
Step 1. First we know that there exists a supersonic solution (mL, \^EL)(r) over

[r0, r0 + L] to (2.1) such that \^EL(r0) \geq \alpha 1(L) > 0 and \^EL(r0 + L) \leq  - \alpha 2(L) < 0,
which is given in Lemma 2.1. Here the constants \alpha 1 and \alpha 2 only depend on B, B, and
L. Then, in the case of \tau \gg 1, we consider the boundary value problem as follows:

(2.9)

\left\{         
\biggl( 
1 - \scrJ 2

m2

\biggr) 
mr = m \^E  - \scrJ 

\tau 
,

(r \^E)r = m - B,

m(r0) = m(r0 + L) = \scrJ .

Of course, from the proof of Theorem 2.1 in [9], one finds that (2.9) has a supersonic
solution (m1, \^E1)(r) on [r0, r0 + L], and we claim that

(2.10) \^E1(r0) \geq 
\alpha 1(L)

2
> 0 and \^E1(r0 + L) \leq  - \alpha 2(L)

2
< 0.
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That is, we only need to prove that if \tau \gg 1,

| \^E1(r) - \^EL(r)| \leq C

\biggl( 
1

\tau 

\biggr) 
on [r0, r0 + L],

which actually is a problem of structural stability to (2.1) under a perturbation term
\scrJ 
\tau . Thus, by a standard energy estimate and Gronwall's inequality, noting that

(m1  - \scrJ ) \in C1/2[r0, r0 + L] and (mL  - \scrJ ) \in C1/2[r0, r0 + L], we show that for r \in 
[r0, r0 + L],

| m1(r) - mL(r)| 2 + | \^E1(r) - \^EL(r)| 2 \leq C

\tau 2
with a constant C.

The claim is proved.
Step 2. Let \eta be a small number, to be determined later, satisfying 0 < \eta \ll 1. It

can be presented that there exists a last number x1 at which m1 attains to the line
\scrJ  - \eta . Indeed, as in the proof of Theorem 4.2 [19], it follows that

(2.11) | \^E1(x1) - \^E1(r0 +L)| \leq C\eta , m1(x1) = \scrJ  - \eta , and | r0 +L - x1| \leq C\eta 2,

where C is a positive constant independent of \eta . Now let's focus on the ODE system

(2.12)

\left\{         
\biggl( 
1 - \scrJ 2

m2

\biggr) 
mr = m \^E  - \scrJ 

\tau 
,

(r \^E)r = m - B,

(m(r0), \^E(r0)) = (\scrJ , \^E1(r0))

and construct a transonic solution of (2.12) on an interval [r0, x2] with

m(r0) = m(x2) = \scrJ 

in the form

(m, \^E)(r) =

\Biggl\{ 
(msup, \^Esup)(r), r \in [r0, x1),

(msub, \^Esub)(r), r \in (x1, x2].

Obviously, (msup, \^Esup)(r) = (m1, \^E1)(r) on [r0, x1]. Set m - = msup(x1) = \scrJ  - \eta 

and \^E - = \^Esup(x1), and we take x1 \in (0, x2) as a jump point. Hence, m+ =

\scrJ 2/m - = \scrJ 2

\scrJ  - \eta > \scrJ , \^E+ = \^E - . Then we prepare to prove that (2.12) has a subsonic

solution (msub, \^Esub)(r) on [x1, x2] with the initial data (m+, \^E+) satisfying

msub(x2) = \scrJ , | \^Esub(x2) - \^E+| \leq C\eta , and x2  - x1 \leq C\eta .

In fact, if C\eta \leq \alpha 2(L)
4 , we derive from (2.10) and (2.11) that

m+
\^E+  - \scrJ 

\tau 
\leq \scrJ 2

\scrJ  - \eta 

\Bigl( 
\^E1(r0 + L) + C\eta 

\Bigr) 
\leq \scrJ 2

\scrJ  - \eta 

\biggl( 
 - \alpha 2(L)

2
+ C\eta 

\biggr) 
\leq  - \scrJ \alpha 2(L)

4
.
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Thus, from the first equation of (2.12), one can easily see that the subsonic solution

msub is decreasing near x+
1 . Then in the neighborhood of x+

1 , if \eta \leq \scrJ  - \scrJ 2

B and

C\eta \leq \alpha 2(L)
4 , we get

\^Esub(r) =
x1

r
\^E+ +

1

r

\int r

x1

(msub  - B)dr

\leq x1

r

\Bigl( 
\^E1(r0 + L) + C\eta 

\Bigr) 
+

1

r

\int r

x1

\biggl( 
\scrJ 2

\scrJ  - \eta 
 - B

\biggr) 
dr

\leq  - x1\alpha 2(L)

4r
< 0.

Note that the function g(s) := s3

s2 - \scrJ 2 is monotone decreasing on [\scrJ ,
\surd 
3\scrJ ]; then if

\eta \leq min\{ \alpha 2(L)
4C , \scrJ 

2 \} ,

(2.13) m\prime 
sub =

msub
\^Esub  - \scrJ 

\tau 

1 - \scrJ 2

(msub)2

\leq 
m3

+
\^E+

m2
+  - \scrJ 2

\leq \scrJ 4 \^E+

\eta (\scrJ  - \eta )(2\scrJ  - \eta )
\leq  - \scrJ \alpha 2(L)

4
,

which indicates that msub keeps decreasing and arrives the line \scrJ at the end point
x2. Hence, we derive from (2.13) that

(2.14) x2  - x1 =
\scrJ  - \scrJ 2

\scrJ  - \eta \int 1

0
m\prime 

sub(sx2 + (1 - s)x1)ds
\leq C\eta .

So we construct the transonic solution of (2.12) on [r0, x2], which satisfies the bound-
ary conditions

msup(r0) = msub(x2) = \scrJ ,

the entropy condition

0 < m - < \scrJ < m+,

and the Rankine--Hugoniot condition (1.12) at the jump point x1. Moreover, one can
get from (2.11) and (2.14) that

| x2  - L - r0| \leq | x2  - x1| + | x1  - L - r0| \leq C\eta 

and

\^Esub(x2) \geq 
x1

\^E1(x1)

x2
 - B(x2  - x1)

x2
\geq \^E+  - C\eta .

Step 3. We argue it by the continuity method. Let L = r1 - r0
2 and define the

interior supersonic solution of (2.9) by (m
(1)
1 , \^E

(1)
1 ) and the corresponding transonic

shock solution of (2.12) by (m2, \^E2). From Steps 1--2, we deduce that there exists a
number x3 such that\bigm| \bigm| \bigm| x3 - 

r0 + r1
2

\bigm| \bigm| \bigm| \leq C\eta , m2(r0) = m2(x3) = \scrJ , and
\bigm| \bigm| \bigm| \^E2(x3) - \^E

(1)
1

\biggl( 
r0 + r1

2

\biggr) \bigm| \bigm| \bigm| \leq C\eta .
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Furthermore, there must be a jump point z1 satisfying m2(z
 - 
1 ) = \scrJ  - \eta , m2(z

+
1 ) =

\scrJ 2

\scrJ  - \eta > \scrJ and \^E2(z1) < 0. Therefore, (2.12) has a transonic solution on [r0, x3] with

L = r1 - r0
2 as follows:

(m2, \^E2)(x) =

\Biggl\{ 
(msup, \^Esup)(x), x \in [r0, z1),

(msub, \^Esub)(x), x \in (z1, x3].

Here, the Rankine--Hugoniot condition and the entropy condition are satisfied at jump
point z1.

Similarly, we set L = 2(r1  - r0) and denote the corresponding supersonic solu-

tions of (2.9) and the transonic shock solution of (2.12) by (m
(2)
1 , \^E

(2)
1 ) and (m3, \^E3),

respectively. Then we prove that there exists a number x4 satisfying

| x4  - (2r1  - r0)| \leq C\eta 

such that

m3(r0) = m3(x4) = \scrJ and
\bigm| \bigm| \^E3(x4) - \^E

(2)
1 (2r1  - r0)

\bigm| \bigm| \leq C\eta .

Additionally, it is shown that there exists a jump point z2 \in [r0, x4] such that

m3(z
 - 
2 ) = \scrJ  - \eta < \scrJ < m3(z

+
2 ) =

\scrJ 2

\scrJ  - \eta 
,

where the Rankine--Hugoniot condition (1.11) and the entropy condition (1.12) hold.
After this, one can see that the transonic solution of (2.12) continuously depends

on the length of the solution and the initial value \^E(r0), respectively. Therefore,
choosing \eta sufficiently small such that the solution length satisfies r1  - r0 \in [x3, x4],
we then look for a parameter \^E(r0) as the corresponding initial value. A continuity
argument certainly verifies the existence of the initial value, so we have a transonic
solution (mtran, \^Etran) to system (2.8). Furthermore, one can fix a number \eta 0, and
owing to the arbitrary choice of 0 < \eta < \eta 0, we have infinitely many transonic solutions
to (2.8). This proof is complete.

3. Infinitely many radial \bfitC \bfone -smooth transonic solutions. In this section,
we are going to construct C1-smooth transonic solutions by analyzing the properties
of the interior subsonic and supersonic solutions on the boundary when the relaxation
time is small. Since the doping profile is not a constant and the ODE system is non-
autonomous on a bounded domain by the effect of radial high-dimensional space, the
phase-plane analysis, shown in [19], can't be directly applied to deal with the system
(1.10). Actually, by a mathematical experience, the essential features of the transonic
solutions for this system are consistent with those of the one-dimensional system.
Therefore, inspired by this, we first focus on the following two-dimensional problem:

(3.1)

\left\{         
\biggl( 
1 - \scrJ 2

m2

\biggr) 
mr = m

\biggl( 
\~E +

1

r

\biggr) 
 - \scrJ 

\tau 
,

(r \~E)r = m - B,

m(r0) = m(r1) = \scrJ .

Then one of the primary theorems in this section is stated as follows.
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Theorem 3.1. Assume that B \in L\infty (r0, r1) satisfies \scrJ < B \leq B \leq B and that
there exists a constant \tau 0(B, r0) such that for 0 < \tau < \tau 0; then system (3.1) has
infinitely many continuous transonic solutions (mtran, \~Etran) in the form of

(mtran, \~Etran)(r) =

\Biggl\{ 
(msup, \~Esup)(r) for r \in [r0, x0],

(msub, \~Esub)(r) for r \in [x0, r1].

Indeed,

msub(x0) = msup(x0) = \scrJ and \~Esub(x0) = \~Esup(x0) =
1

\tau 
 - 1

x0
> 0

at the continuous points x0. Here x0 satisfies | x0  - r0| \leq C(\tau ) with a constant C
positively depending on \tau . Moreover, there is no transonic shock solution to system
(3.1).

For convenience, we set

F := r

\biggl( 
\~E +

1

r
 - \scrJ 

\tau m

\biggr) 
and w := m - \scrJ ;

then (3.1) can be transformed into

(3.2)

\left\{       
wr =

(w + \scrJ )3

r(w + 2\scrJ )
\cdot F
w
,

Fr = w + \scrJ  - B +
\scrJ (w + \scrJ )

\tau (w + 2\scrJ )
\cdot F
w

 - \scrJ 
\tau (w + \scrJ )

with the boundary conditions w(r0) = w(r1) = 0. Here B(r) has been extended
periodically to [r0,+\infty ). Although system (3.2) is nonautonomous, all trajectories
still can be presented in the phase-plane (w,F ), satisfying

(3.3)
dF

dw
= r

\biggl( 
(w + \scrJ  - B)(w + 2\scrJ )

(w + \scrJ )3
\cdot w
F

+
\scrJ 

\tau (w + \scrJ )2
 - \scrJ (w + 2\scrJ )

\tau (w + \scrJ )4
\cdot w
F

\biggr) 
.

Obviously, from (3.3), one can easily see that some trajectories may intersect at some
different points. Now before proving Theorem 3.1, a definition is given below.

Definition 3.2. If (m, \~E) is called an interior subsonic (resp., interior supersonic)
solution to (3.1), the corresponding trajectory \~E = \~E(m; r) in the phase-plane (m, \~E)
is called an interior subsonic (resp., interior supersonic) trajectory to (3.1). Further-
more, the transformed function F (w; r) denotes an interior positive (resp., interior
negative) trajectory to (3.2) in the (w,F ) plane.

From the above definition, it's easy to see that every interior subsonic (resp., in-
terior supersonic) trajectory of (3.1) always corresponds to an interior positive (resp.,
interior negative) trajectory to (3.2). To seek a transonic solution of (3.1), we turn
to analyzing the structure of solutions to system (3.2). For clarity, we first show the
following three lemmas.

Lemma 3.3. Let B \in L\infty (r0, r1) satisfy \scrJ < B \leq B \leq B, and let there exist a
positive constant \tau 0 depending on (B, r0); then for any r0 < x0 < r1 and 0 < \tau < \tau 0,
all interior positive trajectories to system (3.2) over (x0, r1) start from the point (0, 0).
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Proof. First suppose that a trajectory starts from the point (0, h) with a positive
constant h, and because F (0) = h > 0 and dF

dw

\bigm| \bigm| 
w(x0)=0

= x0

\tau \scrJ > 0, we here focus on

the region F \geq 0. According to Lemma 5.2 in [19], and similarly to (3.2), we define
an autonomous ODE system

(3.4)

\left\{       
wr =

(w + \scrJ )3

x0(w + 2\scrJ )
\cdot F1

w
,

(F1)r = w + \scrJ  - B +
\scrJ (w + \scrJ )

\tau (w + 2\scrJ )
\cdot F1

w
 - \scrJ 

\tau (w + \scrJ )

for r \geq x0,

with F1(0) = h/2. Therefore,

dF1

dw
= x0

\biggl( 
(w + \scrJ  - B)(w + 2\scrJ )

(w + \scrJ )3
\cdot w

F1
+

\scrJ 
\tau (w + \scrJ )2

 - \scrJ (w + 2\scrJ )

\tau (w + \scrJ )4
\cdot w

F1

\biggr) 
=: x0 \cdot H(w,F1;B).

(3.5)

Hereinto the equation H(w,F1;B) = 0 determines a function in the w - F coordinate
system as follows:

(3.6) \Xi (w) =
(w + 2\scrJ )w

(w + \scrJ )2
 - \tau (w + \scrJ  - B)(w + 2\scrJ )w

\scrJ (w + \scrJ )
=:

(w + 2\scrJ )w

(w + \scrJ )2
+\Psi (w).

Clearly, all critical points of the trajectories to system (3.5) are located at the curve
\Xi (w). For (3.6), a straightforward calculation shows that

\Psi (0) = 0, \Psi (B  - \scrJ ) = 0,

(3.7) \Psi \prime (w) =  - \tau 

\scrJ 

\biggl( 
2w + 2\scrJ  - B  - \scrJ 2B

(w + \scrJ )2

\biggr) 
for w \geq 0,

\Psi \prime \prime (w) =  - 2\tau 

\scrJ 

\biggl( 
1 +

\scrJ 2B

(w + \scrJ )3

\biggr) 
< 0 for w \geq 0,

\Psi \prime (0) =
2\tau 

\scrJ 
\bigl( 
B  - \scrJ 

\bigr) 
> 0, and \Psi \prime (B  - \scrJ ) =  - \tau 

\scrJ 

\biggl( 
B  - \scrJ 2

B

\biggr) 
< 0,

which implies that \Psi is concave on [0,\infty ). Further, we have

(3.8) \Xi (0) = 0, \Xi (w) \geq \Psi (w) \geq 0 for w \in [0, B  - \scrJ ]

and

(3.9) \Xi 
\prime 
(w) =

2\scrJ 2

(w + \scrJ )3
+\Psi \prime (w) for w \in [0, B  - \scrJ ].

Hereafter it follows from (3.5) and (3.6) that

dF1

dw
= x0

\biggl( 
 - \scrJ \Xi 

\tau (w + \scrJ )2F1
+

\scrJ 
\tau (w + \scrJ )2

\biggr) 
=

x0\scrJ 
\tau (w + \scrJ )2

\cdot 
\biggl( 
F1  - k\Xi 

F1
+

(k  - 1)\Xi 

F1

\biggr) 
,

(3.10)
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where k > 0 is a constant to be determined later. Thanks to (3.7)--(3.10), we obtain

(F 2
1  - k2\Xi 

2
)\prime = 2F1F

\prime 
1  - 2k2\Xi \Xi 

\prime 

= 2\scrJ \Xi 

\biggl[ 
x0(k  - 1)

\tau (w + \scrJ )2
 - 2k2\scrJ 

(w + \scrJ )3
+

k2\tau 

\scrJ 2

\biggl( 
2w + 2\scrJ  - B  - \scrJ 2B

(w + \scrJ )2

\biggr) \biggr] 
+

2x0\scrJ (F1  - k\Xi )

\tau (w + \scrJ )2

= 2\scrJ \Xi \cdot I(w;x0, B) + (F 2
1  - k2\Xi 

2
) \cdot 2x0\scrJ 

\tau (w + \scrJ )2(F1 + k\Xi )
,

(3.11)

where

I(w;x0, B) :=
x0(k  - 1)

\tau (w + \scrJ )2
 - 2k2\scrJ 

(w + \scrJ )3
+

k2\tau 

\scrJ 2

\biggl( 
2w + 2\scrJ  - B  - \scrJ 2B

(w + \scrJ )2

\biggr) 
.

We next determine k such that I > 0 for w \in [0, B  - \scrJ ]. To this end, we set k = r0
8\tau ,

so that if \tau < min\{ 2\scrJ 2

(B
3
+\scrJ 2B)

, r0
16\} , we have

I =
1

\tau (w + \scrJ )2
\cdot 
\biggl[ 
x0(k  - 1) - 2k2\tau \scrJ 

w + \scrJ 
+

k2\tau 2

\scrJ 2

\bigl( 
2(w + \scrJ )3  - B(w + \scrJ )2  - \scrJ 2B

\bigr) \biggr] 
>

1

\tau (w + \scrJ )2
\cdot 
\biggl[ 
(r0k  - 2k2\tau ) - r0  - 

k2\tau 2

\scrJ 2
(B

3
+ \scrJ 2B)

\biggr] 
=

1

\tau (w + \scrJ )2
\cdot 
\biggl[ 
k(r0  - 2k\tau  - r0\tau 

8\scrJ 2
(B

3
+ \scrJ 2B)) - r0

\biggr] 
>

1

\tau (w + \scrJ )2
\cdot 
\biggl( 
r0k

2
 - r0

\biggr) 
=

r0
\tau (w + \scrJ )2

\cdot 
\Bigl( r0
16\tau 

 - 1
\Bigr) 
> 0,

which in combination with (3.8), (3.11), and F 2
1 (0)  - k2\Xi 

2
(0) = h2/4 > 0 indicates

that

(3.12) F1(w) \geq k\Xi (w) \geq 0 for w \in [0, B  - \scrJ ].

One can see that k = r0
8\tau > 1 and \Xi (B  - \scrJ ) = (B+\scrJ )(B - \scrJ )

B
2 > 0, and if \tau \leq 

r0(B+\scrJ )(B - \scrJ )

8B
2 , it yields that

(3.13) F1(B  - \scrJ ) \geq r0(B + \scrJ )(B  - \scrJ )

8\tau B
2 > 1.

Thus, it implies by (3.5) that for w \geq B  - \scrJ ,

dF1

dw
\geq x0

\biggl( 
\scrJ 

\tau (w + \scrJ )2
 - \scrJ (w + 2\scrJ )

\tau (w + \scrJ )4
\cdot w

F1

\biggr) 
=

x0\scrJ 
\tau (w + \scrJ )2F1

\biggl( 
F1  - 1 +

\scrJ 2

(w + \scrJ )2

\biggr) 
> 0.

(3.14)

Therefore, the trajectories of (3.4) starting from (0, h) go to infinity but cannot go
back to the line w = 0.
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For any r \in (x0, r1), we next claim that if F (0) = h > 0,

dF (w)

dw
> 0 for w \geq 0.(3.15)

First denote the solution of (3.2) by (w,F ) and the solution of (3.4) by (w1, F1). In
fact, there exist constants \varepsilon 0, \=r1, and \^r1 such that \varepsilon 0 < B  - \scrJ , w(\=r1) = \varepsilon 0, and
w1(\^r1) = \varepsilon 0. For w \in [0, \varepsilon 0], defining \=F := F  - F1, and by (3.3) and (3.5), one finds
that

d \=F

dw
= r \cdot H(w,F ;B) - x0 \cdot H(w,F1;B)

= r \cdot H(w,F ;B) - x0 \cdot H(w,F1;B) +
r

F
\cdot K(w),

(3.16)

where the function H is defined in (3.5) and

K(w) :=
(B  - B)(w + 2\scrJ )w

(w + \scrJ )3
.

Obviously, note that F (0)  - F1(0) = h/2 > 0; then take \varepsilon 0 small enough so that
F (w) - F1(w) > 0 for 0 < w \leq \varepsilon 0; further we see that K(w) \geq 0 and

H(w,F ;B) \geq H(w,F1;B) =
1

x0
\cdot dF1

dw
> 0 on (0, \varepsilon 0).

Here the last inequality is proved by (3.10)--(3.12). Thus, it's easy to check that
d \=F
dw (w) > 0 over (0, \varepsilon 0]. Since

dF1(w)
dw > 0 on [0, B - \scrJ ] in the case of \tau \ll 1, the result

is easily extended up to w = B  - \scrJ , that is,

dF

dw
\geq dF1

dw
> 0 over [0, B  - \scrJ ].

Hereinto we assume that there exist constants \=r2 and \^r2 such that w(\=r2) = w1(\^r2) =
B - \scrJ . Now if \=r2 < r1, we continue to show that dF

dw > 0 for r \in [\=r2, r1]. As in (3.16),
and by (3.3) and (3.14), one can repeat the above argument to derive the result up
to r = r1. As a consequence, (3.15) holds such that the claim is verified.

On the other hand, a trajectory cannot start from (0, - h) by (3.2). Accordingly,

if 0 < \tau < \tau 0(B, r0) := min\{ 2\scrJ 2

B
3
+\scrJ 2B

, r0(B+\scrJ )(B - \scrJ )

8B
2 , r0

16\} , this lemma is proved.

Lemma 3.4. Let all assumptions of Lemma 3.3 hold, and let there exist a constant
\tau 0(B, r0) such that for any 0 < \tau < \tau 0 and r0 < x0 < r1, satisfying x0  - r0 \leq C(\tau ),
all interior negative trajectories over (r0, x0) to system (3.2) end at the point (0, 0).

Proof. We first consider another ODE system as follows:\left\{       
wr =

(w + \scrJ )3

r0(w + 2\scrJ )
\cdot F2

w
,

(F2)r = w + \scrJ  - B +
\scrJ (w + \scrJ )

\tau (w + 2\scrJ )
\cdot F2

w
 - \scrJ 

\tau (w + \scrJ )

for r \geq r0,

and

dF2

dw
= r0 \cdot H(w,F2;B).(3.17)

D
ow

nl
oa

de
d 

01
/1

1/
22

 to
 1

42
.1

57
.2

02
.6

0 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TRANSONIC STEADY-STATES OF EULER--POISSON EQUATIONS 381

Then the critical curve is also denoted by (3.6), and note that
(3.18)

\Xi (w) < 0, \Xi 
\prime 
(w) >

2

\scrJ 
(1 + \tau (B  - \scrJ )) > 0 and \Xi 

\prime \prime 
(w) < 0 for w \in ( - \scrJ , 0).

Suppose that F2(0) =  - h/2 < 0 and it holds that dF2

dw (0) > 0; then we consider the
region F \leq 0 and  - \scrJ < w \leq 0. Furthermore, similar to the proof of Lemma 3.3, one
see that

(F 2
2  - k2\Xi 

2
)\prime = 2\scrJ \Xi \cdot I(w; r0, B) + (F 2

2  - k2\Xi 
2
) \cdot 2r0\scrJ 

\tau (w + \scrJ )2(F2 + k\Xi )
.(3.19)

From the form of I(w; r0, B), we derive that the trajectory of I certainly changes sign
on ( - \scrJ , 0). Now we want to choose a suitable value of k to ensure

I(w) > 0 on
\Bigl( 
 - \scrJ 

2
, 0
\Bigr] 
.

Setting k = r0
8\tau and \tau < min\{ 1

B
, r0
32\} , we obtain

I(w; r0, B)

\geq 1

\tau (w + \scrJ )2
\cdot 
\biggl[ 
(r0k  - 4k2\tau ) - r0 +

k2\tau 2

\scrJ 2

\bigl( 
2(w + \scrJ )3  - B(w + \scrJ )2  - \scrJ 2B

\bigr) \biggr] 
\geq 1

\tau (w + \scrJ )2
\cdot 
\bigl[ 
(r0k  - 4k2\tau ) - r0  - 2Bk2\tau 2

\bigr] 
=

1

\tau (w + \scrJ )2
\cdot 
\biggl[ 
k

\biggl( 
r0  - 4k\tau  - r0B\tau 

4

\biggr) 
 - r0

\biggr] 
>

r0
\tau (w + \scrJ )2

\cdot 
\biggl( 
k

4
 - 1

\biggr) 
> 0.

Then it follows that

F 2
2 (w) \geq k2\Xi 

2
(w) for w \in 

\Bigl( 
 - \scrJ 

2
, 0
\Bigr] 
,

which implies by (3.18) that

F2(w) < k\Xi (w) < 0 for w \in 
\Bigl( 
 - \scrJ 

2
, 0
\Bigr) 
.

So we conclude from (3.17) that

dF2

dw
(w) > 0 for w \in 

\Bigl( 
 - \scrJ 

2
, 0
\Bigr) 
.

We next define \^F := F  - F2; then for r \in (r0, x0),

d \^F

dw
= r \cdot H(w,F ;B) - r0 \cdot H(w,F2;B) +

r

F
\cdot K(w),

where K is given by Lemma 3.3. Thanks to F (0)  - F2(0) =  - h/2 < 0, and as in
Lemma 3.3, we apply the same argument to prove that

dF

dw
(w) \geq dF2

dw
(w) > 0 for w \in 

\Bigl( 
 - \scrJ 

2
, 0
\Bigr) 

and r \in (r0, x0).
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By (3.3), one finds that

0 <
dF (w)

dw
\leq r\scrJ 

\tau (w + \scrJ )2
\leq 4x0

\tau \scrJ 
and

F (w)

w
\leq 4x0

\tau \scrJ 
for w \in 

\biggl( 
 - \scrJ 

2
, 0

\biggr) 
.

Thus for the region F < 0, it follows from (3.2) that

0 < wr(r) \leq 
4x0(w + \scrJ )3

\tau r0(w + 2\scrJ )
\leq 2x0\scrJ 2

r0\tau 
for r \in (r0, x0) and w \in 

\biggl( 
 - \scrJ 

2
, 0

\biggr) 
.

Then it implies that there exists an inverse function r(w) such that rw(w) \geq C(\tau )
on ( - \scrJ 

2 , 0) where the constant C positively depends on \tau . Suppose that \tau is small
enough and x0  - r0 \leq C(\tau ) with a small and positive constant C; then the trajectory
cannot go back to the region F \geq 0 at the starting state, that is, w(r0) < 0 and
F | w(r0) < 0. Hence, the trajectories ending at (0, - h) cannot start from the line
w = 0. In addition, it's impossible that any trajectories end at (0, h). The proof is
finished.

Lemma 3.5. There exists a constant \tau 0 such that for any 0 < \tau < \tau 0, system
(3.2) has no transonic shock solution.

Proof. See Theorem 5.13 in [19].

On the basis of Lemmas 3.3--3.5, and additionally according to Theorem 2.1 and
Theorem 3.2 in [9], we can construct infinitely many continuous transonic solutions
to system (3.2) and there is no transonic shock solution in the case of \tau \ll 1; then
Theorem 3.1 is completely proved.

Naturally, we then discuss the interior regularity of the continuous transonic so-
lutions referring to section 5 in [19], and the result is as follows.

Theorem 3.6 (C1-smooth transonic solutions). Assume that B \in C[r0, r1] and
that there exists a constant \tau 0 > 0 such that 0 < \tau < \tau 0; then system (3.1) has
infinitely many C1-smooth transonic solutions denoted in Theorem 3.1 satisfying

msub(x0) = msup(x0), \~Esub(x0) = \~Esup(x0),

and

m\prime 
sub(x0) = m\prime 

sup(x0) =
\scrJ 
4

\biggl( 
1

\tau 
 - 
\sqrt{} 

1

\tau 2
 - 8

\tau x0

\bigl[ 
\tau (B0  - \scrJ ) + 1

\bigr] \biggr) 
at the continuous points x0.

Proof. From Theorem 3.1, it has been known that system (3.1) has a continuous
transonic solution with the transonic transition point x0. Now it suffices to prove that
the continuous transonic solution is C1-smooth on the neighborhood of x0. Therefore,
to achieve this purpose, we have to apply local analysis near the continuous point x0.
Here our adopted approach is really rigorous but tedious, so this proof is divided into
three steps.

Step 1. First, one claims that all interior positive trajectories over (x0, r1) starting
from the point (0, 0) to system (3.2) are C1-smooth on the neighborhood of w = 0+.

In fact, if F (w)
w \leq 0 near w = 0+, then this implies from (3.3) and B > \scrJ that

dF (w)
dw > 0 on a neighborhood of w = 0+, which is a contradiction to F (0) = 0.

Thus, there is always a small constant \varepsilon 1 such that F (w)
w > 0 on (0, \varepsilon 1). Because of

B \in C[r0, r1], we see that the function dF
dw is smooth with respect to w. Hence the

claim is verified.
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Next we're going to prove that

lim
w\rightarrow 0+

dF (w)

dw
exists = F \prime (0).

Here F \prime (0) satisfies

(3.20) F \prime (0) =
2(\scrJ  - B0)

\scrJ 2
\cdot x0

F \prime (0)
+

x0

\tau \scrJ 
 - 2

\tau \scrJ 2
\cdot x0

F \prime (0)

with B0 = B(x0) > \scrJ . A direct computation indicates that F \prime (0) has two solutions
denoted by

\theta 1 =
1

2

\left(  x0

\tau \scrJ 
+

\sqrt{} \biggl( 
x0

\tau \scrJ 

\biggr) 2

 - 8x0

\tau \scrJ 2

\bigl[ 
\tau (B0  - \scrJ ) + 1

\bigr] \right)  
or

\theta 2 =
1

2

\left(  x0

\tau \scrJ 
 - 

\sqrt{} \biggl( 
x0

\tau \scrJ 

\biggr) 2

 - 8x0

\tau \scrJ 2

\bigl[ 
\tau (B0  - \scrJ ) + 1

\bigr] \right)  .

Now we prepare to exclude the choice of \theta 1. Actually, since \theta 1 = O( 1\tau ) and \theta 2 =

C(\scrJ ) +O(\tau ), one can see that \theta 1
2 > \theta 2 > 0 when \tau \ll 1. After this, if

lim
w\rightarrow 0+

dF (w)

dw
exists >

\theta 1
2
,

then there exists a constant \varepsilon 2 < B - \scrJ such that F (w)
w \geq \theta 1

2 > \theta 2 on (0, \varepsilon 2]. We here

set F1(\varepsilon 2)
\varepsilon 2

:= F (\varepsilon 2)
\varepsilon 2

\geq \theta 1
2 . By Lemma 3.3, if \tau \ll 1, we see that for w \in [\varepsilon 2, B  - \scrJ ],

I(w;x0, B) > 0.

Moreover, we can set F1(\varepsilon 2) \geq \theta 1\varepsilon 2
2 > B

2
\Xi (\varepsilon 2)

B
2 - \scrJ 2

> 0; then it follows from (3.8) and

(3.11) that

F1(w) \geq 
B

2
\Xi (w)

B
2  - \scrJ 2

> 0 on [\varepsilon 2, B  - \scrJ ].

Next as in Lemma 3.3, we also get that

dF1

dw
(w) > 0 for w \geq B  - \scrJ ,

and further
dF

dw
(w) \geq dF1

dw
(w) > 0 for w \geq \varepsilon 2.

Since F (w) denotes an interior positive trajectory and goes back to the line w = 0,
this is a contradiction.

Afterwards, it suffices to show that

lim
w\rightarrow 0+

dF (w)

dw
exists = F \prime (0) = \theta 2.

Based on the above, we note that there exist constants \varepsilon 3 and \theta 3 satisfying \varepsilon 3 < B - \scrJ 
and \theta 3 \leq \theta 1

2 , so that

F (w)

w
\leq \theta 1

2
on (0, \varepsilon 3] and

F (\varepsilon 3)

\varepsilon 3
= \theta 3.
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In fact, one can take the variable r of (3.3) as a continuous function with respect to w
over [0,+\infty ) and r(0) = x0. Then, we discuss this issue into two cases, \theta 2 < \theta 3 < \theta 1

2
and 0 < \theta 3 < \theta 2, and create a locally iterative approximation as follows.

In the case of \theta 3 > \theta 2, because of B \in C[r0.r1] and r \in C[0, \varepsilon 3], it then follows
that

dF

dw
(\varepsilon 3) = r(\varepsilon 3)

\biggl( 
(\varepsilon 3 + \scrJ  - B)(\varepsilon 3 + 2\scrJ )

(\varepsilon 3 + \scrJ )3
 - \scrJ (\varepsilon 3 + 2\scrJ )

\tau (\varepsilon 3 + \scrJ )4

\biggr) 
\cdot 1

\theta 3
+

r(\varepsilon 3)\scrJ 
\tau (\varepsilon 3 + \scrJ )2

\geq  - 
\biggl( 
2(B0  - \scrJ )

\scrJ 2
+

2

\tau \scrJ 2

\biggr) 
\cdot x0

\theta 3
+

x0

\tau \scrJ 
 - C(r(\varepsilon 3) - r(0) + \varepsilon 3)

\geq \theta 3 + f1(\theta 3) - C1\varepsilon 3,

where C1 > 0 is a fixed constant depending on (r0, r1,\scrJ , \tau , B) but independent of \varepsilon 3,
and

f1(s) :=  - 
\biggl( 
2(B0  - \scrJ )

\scrJ 2
+

2

\tau \scrJ 2

\biggr) 
\cdot x0

s
 - s+

x0

\tau \scrJ 
for s > 0.

From (3.20), it's easy to see that f1 is a positive function on (\theta 2, \theta 1/2) and f1(\theta 2) = 0.
Indeed, we can find a small constant \delta such that \theta 2 + \delta < \theta 3 and

f1(s) \geq f1(\theta 2 + \delta ) for any s \in (\theta 2 + \delta , \theta 1/2).

Here we redefine \varepsilon 3 = f1(\theta 2+\delta )
2C1

with a sufficiently small \delta ; then

dF

dw
(\varepsilon 3) \geq \theta 3 +

f1(\theta 3)

2
>

F

w
(\varepsilon 3).

The above inequality means that the trajectory F (w) keeps close to the line F = \theta 2w if
w tends to zero, and the details of the progress are described below. By the continuity

of dF
dw , there must exist a constant \varepsilon 4 < \varepsilon 3 satisfying F (\varepsilon 4)

\varepsilon 4
:= \theta 4 \geq \theta 2 + \delta and

dF (w)

dw
\geq \theta 3 for w \in (\varepsilon 4, \varepsilon 3).

Obviously, the point (\theta 4, F (\theta 4)) is under the line F (w) = \theta 3w in the plane (w,F ),
which indicates that \theta 4 < \theta 3. Noting that

\varepsilon 4 < \varepsilon 3 \leq f1(\theta 2 + \delta )

2C1
\leq f1(\theta 4)

2C1
,

we then estimate

dF

dw
(\varepsilon 4) \geq \theta 4 + f1(\theta 4) - C1\varepsilon 4 \geq \theta 4 +

f1(\theta 4)

2
>

F

w
(\varepsilon 4).

Repeating the above process, we notice that the trajectory crossing the point (\varepsilon 3, \theta 3\varepsilon 3)
eventually intersects with the line F (w) = (\theta 2+\delta )w at a point (\^\varepsilon , (\theta 2+\delta )\^\varepsilon ). In nature,
as the trajectory is sufficiently close to the line w = 0, the constant \^\varepsilon can keep getting
small, and we can find a smaller constant \delta because f \prime 

1(s) > 0 near s = \theta +2 . Note that
the trajectory F (w) only starts from the point (0, 0), which is proved in Theorem 3.1.
Therefore, it holds that

\delta \searrow 0+ as \^\varepsilon \searrow 0+.
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In other words, the trajectory of (3.2) and the line F (w) = \theta 2w are tangent at the
point (0, 0), that is

lim
w \mapsto \rightarrow 0+

dF (w)

dw
= \theta 2.

In the case of \theta 3 < \theta 2, we can conclude that

dF

dw
(\varepsilon 3) \leq \theta 3 + f1(\theta 3) + C2\varepsilon 3 \leq \theta 3 +

f1(\theta 3)

2
<

F

w
(\varepsilon 3)

if \varepsilon 3 is small enough. Here f1 is negative on (0, \theta 2) and C2 is a positive constant.
As in to the case of \theta 3 > \theta 2, we also observe that the slope of the interior positive
trajectory of system (3.2) can get close to the constant \theta 2 as \varepsilon 3 \searrow 0. In the end, we
also obtain

dF (w)

dw
\rightarrow \theta 2 as w \rightarrow 0+.

Of course, when \theta 3 = \theta 2, the conclusion is obvious by the first two cases. The step is
complete.

Step 2. In this step, from Lemma 3.4, we know that all interior negative trajec-
tories ending at the point (0, 0) to system (3.2) are C1-smooth on a neighborhood of
w = 0 - for r \in (r0, x0), where x0  - r0 \ll 1. Then a claim is stated that the limit of
dF
dw exists, and

lim
w\rightarrow 0 - 

dF (w)

dw
= F \prime (0).

Here,

F \prime (0) =
1

2

\left(  x0

\tau \scrJ 
\pm 

\sqrt{} \biggl( 
x0

\tau \scrJ 

\biggr) 2

 - 8x0

\tau \scrJ 2

\bigl[ 
\tau (B0  - \scrJ ) + 1

\bigr] \right)  = \theta 1,2 > 0 if \tau \ll 1.

Also, it follows from (3.3) that F (w)
w > 0 near w = 0 - . If lim

w\rightarrow 0 - 

dF (w)
dw exists > \theta 1

2 ,

then there exists a constant \varepsilon 5 < 0 such that F (w)
w \geq \theta 1

2 on [\varepsilon 5, 0). Further, we assume

that F2(\varepsilon 5)
\varepsilon 5

:= F (\varepsilon 5)
\varepsilon 5

\geq \theta 1
2 where the function F2 is defined in Lemma 3.4. Due to

x0  - r0 \ll 1, we get that w \geq  - \scrJ /2. By Lemma 3.4, taking k = 2 in (3.19), when

\tau < min\{ r0
64 ,
\sqrt{} 

r0
32B

\} , we see that for w \in ( - \scrJ 
2 , \varepsilon 5],

I(w; r0, B) \geq 1

\tau (w + \scrJ )2
\cdot 
\biggl[ 
(r0  - 16\tau ) +

4\tau 2

\scrJ 2
(2(w + \scrJ )3  - B(w + \scrJ )2  - \scrJ 2B)

\biggr] 
\geq 1

\tau (w + \scrJ )2
\cdot 
\bigl[ 
r0  - 16\tau  - 8B\tau 2

\bigr] 
>

1

\tau (w + \scrJ )2
\cdot r0
2

> 0.

Obviously, F2(x5) \leq \theta 1\varepsilon 5
2 < 2\Xi (x5) < 0 when \tau \ll 1. By (3.19), we have

F 2
2 (w) \geq 4\Xi 

2
(w) on

\Bigl( 
 - \scrJ 

2
, \varepsilon 5

\Bigr] 
.

Thus, F2(w) \leq \theta 1\varepsilon 5
2 < 2\Xi (w) < 0 on ( - \scrJ 

2 , \varepsilon 5]. Now as similar to Lemma 3.4, it's
proved that

dF (w)

dw
>

dF2(w)

dw
> 0 for w \in 

\Bigl( 
 - \scrJ 

2
, \varepsilon 5

\Bigr] 
and r \in (r0, x0).
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Hence the trajectory F (w) ending at the point (0, 0) cannot go back the line w = 0
for r \in (r0, x0), so that F \prime (0) = \theta 2. Next there exists a constant \varepsilon 6, and we also

have two cases, \theta 2 < F (\varepsilon 6)
\varepsilon 6

\leq \theta 1
2 or 0 < F (\varepsilon 6)

\varepsilon 6
< \theta 2. As in Step 1, by a rigorous local

analysis, we derive that

lim
w\rightarrow 0 - 

dF (w)

dw
= \theta 2.

Step 3. From Steps 1--2, it is concluded that every transonic trajectory is C1-
smooth over (r0, r1) and the corresponding solution satisfies, at a continuous point
x0,

F (x0) = w(x0) = 0

and

w\prime (x0) = lim
r\rightarrow x0

(w + \scrJ )3

r(w + 2\scrJ )
\cdot F
w

=
\scrJ 2

2x0
\cdot lim
w\rightarrow 0

dF (w)

dw
=

\scrJ 
4

\Biggl( 
1

\tau 
 - 
\sqrt{} 

1

\tau 2
 - 8

\tau x0

\bigl[ 
\tau (B0  - \scrJ ) + 1

\bigr] \Biggr) 
.

Afterwards, by (3.1) and (3.2), we have

\~Esub(x0) = \~Esup(x0) =
1

\tau 
 - 1

x0
, msub(x0) = msup(x0) = \scrJ ,

and

m\prime 
sub(x0) = m\prime 

sup(x0) = w\prime (x0) =
\scrJ 
4

\biggl( 
1

\tau 
 - 
\sqrt{} 

1

\tau 2
 - 8

\tau x0

\bigl[ 
\tau (B0  - \scrJ ) + 1

\bigr] \biggr) 
.

Thus, we complete the proof of this theorem.

4. Transonic solutions in three dimensions. The existence of transonic solu-
tions to the three-dimensional system (1.10) will be stated, especially, including tran-
sonic shock solutions and transonic C1-smooth solutions. Analogously to Theorems
2.2, 3.1, and 3.6, and in a similar manner, we can obtain some results about transonic
solutions to the following system:

(4.1)

\left\{         
\biggl( 
1 - \scrJ 2

m2

\biggr) 
mr = m( \~E +

2

r
) - \scrJ 

\tau 
,

(r2 \~E)r = m - B,

m(r0) = m(r1) = \scrJ .

Theorem 4.1 (transonic shock solutions). Assume that \tau \gg 1 and B  - 2 > \scrJ 
and that system (4.1) has a transonic shock solution (mtran, \~Etran)(r) over [r0, r1],
satisfying the entropy condition (1.11) and the Rankine--Hugoniot condition (1.12) at
a point x0 \in (r0, r1). Because of the arbitrary choices of x0, the transonic solutions
are infinitely many.

Theorem 4.2 (C1-smooth transonic solutions). Assume that B \in C[r0, r1] sat-
isfies B  - 2 > \scrJ and there exists a constant \tau 0(r0, r1, B) such that for 0 < \tau < \tau 0,
there exist infinitely many C1-smooth transonic solutions (mtran, \~Etran) to system
(4.1) in the form of

(mtran, \~Etran)(r) =

\Biggl\{ 
(msup, \~Esup)(r) for r \in [r0, x0),

(msub, \~Esub)(r) for r \in [x0, r1].

D
ow

nl
oa

de
d 

01
/1

1/
22

 to
 1

42
.1

57
.2

02
.6

0 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TRANSONIC STEADY-STATES OF EULER--POISSON EQUATIONS 387

Indeed,

msub(x0) = msup(x0), \~Esub(x0) = \~Esup(x0),

and

m\prime 
sub(x0) = m\prime 

sup(x0) =
\scrJ 
4

\Biggl( 
1

\tau 
 - 

\sqrt{} 
1

\tau 2
 - 8

\tau x2
0

\bigl[ 
\tau (B0  - 2 - \scrJ ) + 2x0

\bigr] \Biggr) 

at some continuous points x0. There is also no transonic shock solution to system
(4.1).
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