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The purpose of this paper is to study the multi-dimensional steady hydrodynamic 
model of semiconductors represented by Euler-Poisson equations with sonic 
boundary. We prove that, the steady Euler-Poisson equations with sonic boundary 
possess a unique subsonic solution and at least one supersonic solution in the 
radial form. The adopted approach for proof is the energy method combining the 
compactness analysis. For the n-D radial supersonic solutions, since it is more 
challenging to get the crucial energy estimates due to the effect by the multiple 
dimensions and the restriction by the sonic boundary, we propose a brand new two-
steps iteration scheme to build up the key energy estimates. This is the first attempt 
to study the n-D steady-states with the sonic boundary, and the results obtained 
essentially improve and develop the previous studies in the one-dimensional case.

© 2021 Published by Elsevier Inc.

1. Introduction

The hydrodynamic model of semiconductors, first introduced by Bløtekjær [7], usually characterizes the 
motion of the charged fluid particles such as electrons and holes in semiconductor devices [24]. This paper 
is a continuity of our series of study [8,19,20] on the Euler-Poisson equations of semiconductor models 
subjected to sonic boundary. Different from [8,19,20] on 1-D equations with sonic boundary, here we are 
mainly interested in the multiple-dimensional Euler-Poisson system [4,10] as follows:

⎧⎪⎪⎨
⎪⎪⎩
ρt + div(ρu) = 0,
(ρu)t + div(ρu ⊗ u + PIn) = ρ∇Φ − ρu

τ
,

ΔΦ = ρ− b(x).

(x, t) ∈ Rn ×R+, n = 2, 3, (1.1)
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Here ρ, u and Φ denote the electron density, the velocity and the electrostatic potential, respectively. In is 
the n × n identity matrix, the constant τ > 0 is the momentum relaxation time and the function b(x) > 0
is the doping profile standing for the density of positively charged background ions. P (ρ) is known as the 
pressure-density relation. As usual, for isentropic flows, P (ρ) = κργ , κ > 0 with the adiabatic exponent 
γ > 1; for isothermal flows, P = Tρ with the constant temperature T > 0. In present paper, we consider 
the isothermal case, and set T = 1 without loss of generality, i.e.

P (ρ) = ρ.

Throughout this paper, we consider the steady-state solutions of (1.1) in an annulus domain

A := {x ∈ Rn|r0 < |x| < r1}, 0 < r0 < r1,

with the inner boundary

Γ0 := {x ∈ Rn : |x| = r0},

and the outer boundary

Γ1 := {x ∈ Rn : |x| = r1}.

Its closure is denoted by

A := Γ0 ∪ A ∪ Γ1.

Note that

div(ρu ⊗ u) = ρ(u · ∇)u + div(ρu) · u,

and set E := ∇Φ (the electric field), then the corresponding stationary equations of (1.1) can be written as
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div(ρu) = 0,

(u · ∇)u + ∇ρ

ρ
= E − u

τ
,

div E = ρ− b(x).

x ∈ A, (1.2)

The aim of our work is to investigate the structure of the steady-state solutions to (1.2), particularly, 
the radial subsonic/supersonic solutions of (1.2) in two and three dimensional annulus domains with sonic 
boundary, and to study various analytical features including the requirement of the doping profile and the 
adopted methods in the proofs by comparing with the one-dimensional case [19].

Additionally, we call M := |u|
c(ρ) the Mach number for c(ρ) :=

√
P ′(ρ) = 1. Here, c(ρ) is called the local 

sound speed. Depending on the size of M , the analytic features of (1.2) vary: if M > 1, the stationary flow is 
called supersonic; if M < 1, the corresponding flow is called subsonic; otherwise, M = 1 is the sonic state.

In what follows, we assume that b̃ is in L∞(r0, r1) such that b(x) := b̃(r) in A, and we denote

(ρ,u, E)(x) := (ρ̃(r), ũ(r)�e, Ẽ(r)�e), (1.3)

where r = |x|, and �e := x

r
is a unit vector, and we prescribe the boundary conditions as follows:

(ρ|Γ0 , ρ|Γ1 , ρu|Γ0) = (ρ̃(r0), ρ̃(r1), ρ̃(r0)ũ(r0)�e) = (ρ0, ρ1, j0�e) (1.4)
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for positive constants (ρ0, ρ1, j0). Therefore, (1.2) and (1.4) are reduced to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(rn−1ρ̃ũ)r = 0,
(rn−1ρ̃ũ2)r + rn−1ρ̃r = rn−1ρ̃(Ẽ − ũ

τ ),
(rn−1Ẽ)r = rn−1(ρ̃− b̃(r)),
(ρ̃(r0), ρ̃(r1), ũ(r0)) = (ρ0, ρ1, j0/ρ0),

for r0 < r < r1, (1.5)

so that the sonic state is redefined by |ũ| = M = 1. Clearly, each pair of the solution (ρ̃, ̃u, Ẽ) to system 
(1.5) always corresponds to a solution (ρ, u, E) to (1.2) and (1.4).

Definition 1.1 (Radial subsonic/supersonic solution). We call (ρ, u, E) with M < 1 (M > 1) in A radial 
subsonic (correspondingly, supersonic) to system (1.2) and (1.4) if the corresponding solution (ρ̃, ̃u, Ẽ) of 
(1.5) satisfies |ũ| < 1 (|ũ| > 1) over (r0, r1).

We now focus on (1.5). Let J̃ := ρ̃ũ. Without loss of generality, let us also take J̃ > 0. From the first 
equation of (1.5) we have

J̃(r) = j0 ·
rn−1
0
rn−1 , r ∈ [r0, r1]. (1.6)

By (1.5) and (1.6), we can impose the sonic boundary conditions to (1.5) by

ρ0 = j0 and ρ1 = j0 ·
rn−1
0
rn−1
1

. (1.7)

By dividing the second equation of (1.5) by ρ̃ and differentiating the resulting equation with respect to r, 
and using the third equation of (1.5), we obtain

⎧⎪⎨
⎪⎩

[
rn−1

((
1
ρ̃
− J̃2

ρ̃3

)
ρ̃r + n− 1

r

J̃2

ρ̃2 + J̃

τ ρ̃

)]
r

= rn−1(ρ̃− b̃), r ∈ (r0, r1),

ρ0 = j0, ρ1 = j0 · rn−1
0

rn−1
1

.

(1.8)

In order to classify the radial solutions, it is convenient to introduce a new variable

m(r) := rn−1ρ̃(r), r ∈ [r0, r1],

with a parameter J := j0r
n−1
0 > 0. Thus, by (1.6), it implies that

J̃ = J
rn−1 and ρ̃ = m

rn−1 , (1.9)

then (1.8) is reduced to

⎧⎪⎨
⎪⎩

[
rn−1

(
1
m

− J 2

m3

)
mr + rn−1J

τm

]
r

= m−B(r) + rn−3(n− 1)(n− 2), r ∈ (r0, r1),

m(r0) = m(r1) = J ,

(1.10)

where the function B is defined by
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B(r) := rn−1b̃(r)

on [r0, r1]. Obviously, m > J means that the flow is subsonic; correspondingly, 0 < m < J stands for 
the supersonic flow. Moreover, equation (1.10) is elliptic but degenerate at the boundary, that causes us 
essential difficulties.

Now we define an interior subsonic/supersonic solution of (1.10) in the weak sense, which is first intro-
duced by [19].

Definition 1.2. m(r) is called an interior subsonic (correspondingly, interior supersonic) solution of system 
(1.10) if m(r0) = m(r1) = J and m(r) > J (correspondingly, 0 < m(r) < J ) for r ∈ (r0, r1), and 
(m − J )2 ∈ H1

0 (r0, r1), and it holds that

r1∫
r0

[
rn−1

(
1
m

− J 2

m3

)
mr + rn−1J

τm

]
ϕrdr +

r1∫
r0

(m−B(r) + rn−3(n− 1)(n− 2))ϕdr = 0,

for any ϕ ∈ H1
0 (r0, r1), which is equivalent to

r1∫
r0

[
rn−1m + J

2m3 ((m− J )2)r + rn−1J
τm

]
ϕrdr

+
r1∫

r0

(m−B(r) + rn−3(n− 1)(n− 2))ϕdr = 0.

(1.11)

Once m is known from (1.10), in view of (1.3) and (1.9), ρ and u can be determined. Then, by the second 
equation of (1.2), ũ = J

m and (1.9), E(x) is computed by

E(x) = Ẽ(r)�e =
(
ũũr + ρ̃r

ρ̃
+ ũ

τ

)
�e =

(
(m + J )[(m− J )2]r

2m3 + J
τm

− n− 1
r

)
�e.

Thus, finding the solution of (1.2), (1.4) and (1.7) amounts to solving (1.10).

Definition 1.3. (ρ, u, E) is called a radial subsonic (correspondingly, supersonic) solution in A to (1.2) and 
(1.4) with the sonic boundary conditions (1.7) if the corresponding solution of (1.10) is an interior subsonic 
(supersonic) solution.

The study on the hydrodynamic system of semiconductors has been one of hot research spots [17,23,25,30]. 
For the subsonic flows, Degong and Markowich [9,10] first proved the existence and uniqueness of smooth 
solutions with a fully subsonic background in one dimension, and for potential flow in three dimensions, 
respectively; see [2] for a non-isentropic case, and also [3,4,15,16,18,26,27] for more general subsonic case. 
For the supersonic flows, the existence and uniqueness of supersonic solutions were studied by Peng and 
Violet [28] when the flow is strongly supersonic in the one-dimensional case. The work was extended to 
the two-dimensional case by Bae [5]. Then, the transonic solutions have been a focus in the study of the 
stationary flows because of the forming of shock waves, we refer to [1,6,11–13,21,22,29].

For the one-dimensional case, if system (1.2) is with sonic boundary, the structures of all types of solutions 
for (1.2) have been intensively studied when the doping profile is subsonic [19], supersonic [20] or transonic 
[8]. In the case of the subsonic [19] and subsonic-dominated [8] doping profile, there exist a unique interior 
subsonic, at least one interior supersonic solution, infinitely many transonic shock solutions (the sufficiently 
large relaxation time, i.e. τ � 1), and infinitely many C1-smooth transonic solutions (the sufficiently small 
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relaxation time, i.e. τ � 1). The approach adopted consists of the technical compactness analysis, phase 
plane analysis and the energy method. Of course, interior subsonic/supersonic solutions may not exist 
with the subsonic-dominated [8] doping profile if the relaxation time is small enough. On the other hand, 
under the supersonic [20] and supersonic-dominated [8] doping profile, the non-existence of all types of the 
solutions can be obtained. However, the existence of supersonic and transonic shock solutions can be proved 
in an extreme case, where the doping profile is close to the sonic line and the semiconductor effect is small 
(τ � 1).

Inspired by our previous studies mentioned above, we expect to establish the well-posedness of the 
solutions for high dimensional system with sonic boundary. Physically speaking, it is hard to put forward 
an acceptable critical boundary in a general domain, such as a flat nozzle. Therefore, we first pay attention 
to radial solutions of (1.2) in an annulus domain. In this paper, we show that there exist a unique radial 
subsonic solution and at least one radial supersonic solution to (1.2) and (1.4) with the sonic boundary 
conditions (1.7). Different from the one-dimensional case, the proof is more challenging. The first technical 
point is that we have to treat the case of the doping profile with the lower bound smaller than the sonic 
curve; the second technical point is that, in order to prove the existence of interior supersonic solutions for 
(1.10), the so-called the one-step iteration for the one-dimensional case is failed to the multi-dimensional 
case, and we propose a new two-steps iteration scheme for establishing the key energy estimates.

Throughout this paper we denote

B = essinf
r∈[r0,r1]

B(r) and B := esssup
r∈[r0,r1]

B(r),

and also define

B := inf
r∈[r0,r1]

{
B(r) + 2r

τ
− 2

}
and B := sup

r∈[r0,r1]

{
B(r) + 2r

τ
− 2

}
,

which is necessary to prove the existence of the solutions in the three-dimensional case.
Now we state our main results about interior subsonic/supersonic solutions to (1.10) as follows.

Theorem 1.4 (Interior subsonic solutions).

1. The case of n = 2: Let B(r) ∈ L∞(r0, r1) and B ≤ B(r) ≤ B satisfying B + 1
τ

> J and B +
J

τ(B + 1/τ)
> J , then system (1.10) admits a unique interior subsonic solution m(r) over [r0, r1]. 

Further, m ∈ C
1
2 [r0, r1] satisfies a lower bound estimate

m(r) ≥ J + λ sin
(
π · r − r0

r1 − r0

)
, r ∈ [r0, r1],

where λ is a small and positive constant.

2. The case of n = 3: Let B > J and min
r∈[r0,r1]

(
B(r) + 2rJ

τB
− 2

)
> J , then equation (1.10) has a unique 

interior subsonic solution m satisfying m ∈ C
1
2 [r0, r1] and

m(r) ≥ J + λ̄ sin
(
π · r − r0

r1 − r0

)
, r ∈ [r0, r1],

where the constant λ̄ > 0 is also small.
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Theorem 1.5 (Interior supersonic solutions).

1. The case of n = 2: Assume that B + 1
τ

> J , then system (1.10) has at least one interior supersonic 

solution m ∈ C1/2[r0, r1] satisfying 
 ≤ m(r) < J over (r0, r1) for a positive constant 
.
2. The case of n = 3: Suppose that B > J , then there exists an interior supersonic solution m ∈ C1/2[r0, r1]

to system (1.10) satisfying 
̄ ≤ m(r) < J over (r0, r1) for a positive constant 
̄.

Remark 1.6.

1. If the hypotheses of Theorem 1.4 hold, we notice that subsonic solutions and supersonic solutions of 
(1.10) both exist. In addition, more restrictions on the doping profile are needed in 3-D case.

2. For any fixed r0 > 0, there exist always an interior subsonic solution and an interior supersonic solution 
to (1.10) when the hypotheses of Theorem 1.4 and 1.5 are satisfied.

3. Affected by the multiple dimensions, (1.2) will be recast as a nonlinear non-autonomous ODE system, 
which is more complex than autonomous system in one dimensional case. Thus, the transonic solutions 
of (1.10) are not discussed in this paper. We will leave it in future.

Next the rest of this paper is organized as follows. The second section focuses on interior subsonic 
solutions of system (1.10). For clarity, we discuss this issue in the two-dimensional and three-dimensional 
cases, respectively. Under both two cases, there exists a unique interior subsonic solution to (1.10). In 
addition, the third section is devoted to interior supersonic solutions of (1.10) in two and three dimensions 
cases. The existence of interior supersonic solutions is proved by a two-steps iteration and the Schauder 
fixed point theorem.

2. Existence and uniqueness of interior subsonic solutions

In this section, we’re going to prove that there exists a unique interior subsonic solution to (1.10) for 
both two-dimensional and three-dimensional cases. Here the main approach is the technical compactness 
method [19], which is inspired by the vanishing viscosity method.

2.1. The case of n=2

First we will prove the well-posedness of system (1.10) in the two-dimensional case. Actually, we consider 
the following equation,

⎧⎪⎨
⎪⎩

[
r

(
1
m

− J 2

m3

)
mr + rJ

τm

]
r

= m−B(r), r ∈ (r0, r1),

m(r0) = m(r1) = J .

(2.1)

Our main theorem in this subsection is stated below.

Theorem 2.1. Assume that B(r) ∈ L∞(r0, r1) and B ≤ B(r) ≤ B satisfying B + 1
τ

> J and 

B + J
τ(B + 1/τ)

> J , then we have a unique weak solution m to (2.1) satisfying m ∈ C
1
2 [r0, r1] and

m(r) ≥ J + λ sin
(
π · r − r0

r1 − r0

)
, r ∈ [r0, r1],

where λ is a small and positive constant.
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Since (2.1) is elliptic in (r0, r1) but degenerates at the boundary, we can’t directly work on it. Therefore, 
we first consider the approximate equation of (2.1) as follows:

⎧⎪⎨
⎪⎩

[
r

(
1
mj

− j2

(mj)3

)
(mj)r + rJ

τmj

]
r

= mj −B(r), r ∈ (r0, r1),

mj(r0) = mj(r1) = J ,

(2.2)

where the parameter j is a constant such that 0 < j < J . Obviously, one finds that (2.2) is uniformly elliptic 
in [r0, r1] for the expected solution mj > J . The following comparison principle is the key ingredient to 
prove the uniqueness of interior subsonic solution to (1.10).

Lemma 2.2. Let p ∈ C1[r0, r1] be a weak solution of (2.2) satisfying p ≥ J on [r0, r1], and

r1∫
r0

[
r

(
1
p
− j2

p3

)
pr + rJ

τp

]
ϕrdr +

r1∫
r0

(p−B(r))ϕdr = 0

for any ϕ ∈ H1
0 (r0, r1) where 0 < j < J . Further, let q ∈ C1[0, 1] be such that q(x) > 0 on [r0, r1], 

q(r0) ≤ J , q(r1) ≤ J , and for any ϕ ≥ 0, ϕ ∈ H1
0 (r0, r1),

r1∫
r0

[
r

(
1
q
− j2

q3

)
qr + rJ

τq

]
ϕrdr +

r1∫
r0

(q −B(r))ϕdr ≤ 0.

Then p(r) ≥ q(r) over [r0, r1].

Proof. This proof is same as that of Lemma 2.2 [19] and we omit it here. �
Now let’s prove the well-posedness of (2.2) first.

Lemma 2.3. Assume that B(r) ∈ L∞(r0, r1) and B ≤ B(r) ≤ B satisfying B+ 1
τ
> J and B+ J

τ(B + 1/τ)
>

J , then there exists a unique weak solution mj to (2.2) satisfying mj − J ∈ H1
0 (r0, r1) and

mj(r) ≥ J + λ sin
(
π · r − r0

r1 − r0

)
, r ∈ [r0, r1],

where λ is a small and positive constant, independent of j.

Proof. First denote a closed subset of C0[r0, r1] by

C :=
{
ω ∈ C0[r0, r1]|J ≤ ω(r) ≤ N,ω(r0) = ω(r1) = J

}

for an undetermined constant N > J . Then we define an operator P : C −→ C0[r0, r1], P(m̄) = mj , by 
solving the linearized system of (2.2),

⎧⎪⎨
⎪⎩

[
r

(
1
m̄

− j2

m̄3

)
(mj)r

]
r

− rJ
τm̄2 (mj)r = mj −B(r) − J

τm̄
, r ∈ (r0, r1),

mj(r0) = mj(r1) = J ,

(2.3)
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with m̄ ∈ C. Due to the L2 theory of elliptic equations, we have mj ∈ H1(r0, r1) for system (2.3). By the 
compact imbedding H1(r0, r1) ↪→ C0[r0, r1], one can see that P(m̄) is precompact. Further, P is continuous 
by a standard continuity argument. In order to use the Schauder fixed point theorem [14], it remains to 
prove P(C) ⊂ C.

Here we only need to show J ≤ mj(r) ≤ N over [r0, r1] by selecting a suitable N . In fact, if B(r) + J
τm̄

≥
J over [r0, r1], we obtain

⎧⎪⎨
⎪⎩

[
r

(
1
m̄

− j2

m̄3

)
(mj)r

]
r

− rJ
τm̄2 (mj)r − (mj − J ) ≤ 0, r ∈ (r0, r1),

mj(r0) = mj(r1) = J .

Thus, by the weak maximum principle (Theorem 8.1 [14]), it is easy to see that mj − J ≥ 0. Similarly, 

suppose that B(r) + J
τm̄

≤ N over [r0, r1], then it follows that

⎧⎪⎨
⎪⎩

[
r

(
1
m̄

− j2

m̄3

)
(mj)r

]
r

− rJ
τm̄2 (mj)r − (mj −N) ≥ 0, r ∈ (r0, r1),

mj(r0) = mj(r1) = J ,

which yields that mj −N ≤ 0. In brief, we can derive that J ≤ mj(r) ≤ N over [r0, r1] while

J ≤ B(r) + J
τm̄

≤ N, r ∈ [r0, r1], (2.4)

for arbitrary J ≤ m̄ ≤ N . Now we choose N = B+ 1
τ
> J so that the right-side inequality of (2.4) directly 

holds. Moreover, a simple computation using the condition

B + J
τ(B + 1/τ)

> J

yields that the left-side inequality of (2.4) also holds. Therefore, P(C) ⊂ C, and one can see that there 
exists a fixed point mj of P such that P(mj) = mj . Recalled Theorem 1 of [9], (2.2) has a weak solution 
mj ∈ H2(r0, r1). Thanks to the compact imbedding H2(r0, r1) ↪→ C1[r0, r1], we have mj ∈ C1[r0, r1].

Then we need to prove the uniqueness of the solution of (2.2) and build a lower bound estimate. Suppose 
that there exist two solutions m1

j and m2
j satisfying m1

j , m2
j ≥ J and m1

j , m2
j ∈ C1[r0, r1]. Thus, Lemma 2.2

implies that m1
j (r) = m2

j (r) over [r0, r1]. Furthermore, define

m(r) := J + λ sin
(
π · r − r0

r1 − r0

)
, r ∈ [r0, r1],

where λ is a positive constant. Note that B + J
τ(B + 1/τ)

> J , then a direct calculation shows that

−
[
r

(
1
m

− j2

m3

)
mr + rJ

τm

]
r

+ m−B(r) ≤ C(λ2 + λ) +
(
J −B(r) − J

τ(J + λ)

)

< C(λ2 + λ) +
(
J −B(r) − J

τ(B + 1/τ)

)

< 0,
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by choosing λ sufficiently small to satisfy λ < B + 1
τ
− J and C(λ2 + λ) < B + J

τ(B + 1/τ)
− J . Here 

C = C(τ, r0) is a positive constant independent of j. Hence, by Lemma 2.2, we get that

mj(r) ≥ m(r) over [r0, r1], (2.5)

and the constant λ is positive and small, independent of j. The proof is complete. �
Next we return to prove Theorem 2.1.

Proof of Theorem 2.1. Multiplying (2.2) by (mj − J ), we get

(J 2 − j2)
r1∫

r0

r
|(mj)r|2
(mj)3

dr + 4
9

r1∫
r0

r
mj + J
(mj)3

|[(mj − J ) 3
2 ]r|2dr

+ J
τ

r1∫
r0

r(mj)r
mj

dr +
r1∫

r0

(mj −B)(mj − J )dr = 0.

(2.6)

Combining B + 1
τ
≥ J with integration by parts and Cauchy inequality, we obtain

J
τ

r1∫
r0

r(mj)r
mj

dr = J
τ

r1∫
r0

rd(lnmj) = J
τ

[(r1 − r0) · lnJ ] − J
τ

r1∫
r0

lnmjdr,

and

r1∫
r0

(mj −B)(mj − J )dr ≥
r1∫

r0

(mj − J )2dr −
r1∫

r0

(
B + 1

τ
− J

)
(mj − J )dr

+ 1
τ

r1∫
r0

(mj − J )dr

≥ 1
2

r1∫
r0

(mj − J )2dr − 1
2

r1∫
r0

(
B + 1

τ
− J

)2

dr

+ 1
τ

r1∫
r0

(mj − J )dr.

After that, because of J ≤ mj ≤ B + 1
τ

, we derive from (2.6) that

(J 2 − j2)r0
(B + 1

τ )3

r1∫
r0

|(mj)r|2dr + 8r0J
9(B + 1

τ )3

r1∫
r0

|[(mj − J ) 3
2 ]r|2dr + 1

2

r1∫
r0

(mj − J )2dr

≤ 1
2

r1∫ (
B + 1

τ
− J

)2

dr + J
τ

r1∫
lnmjdr −

J
τ

[(r1 − r0) · lnJ ]

r0 r0
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≤ 1
2

r1∫
r0

(
B + 1

τ
− J

)2

dr + J (r1 − r0)
τ

[
ln

(
B + 1

τ

)
− lnJ

]
,

which gives

‖(mj − J ) 3
2 ‖H1(r0,r1) ≤ C1(B, τ, r0), ‖(J 2 − j2)(mj)r‖L2(r0,r1) ≤ C2(B, τ, r0)(J 2 − j2) 1

2 .

Here C1 and C2 are positive constants independent of j. Thus, by the compact imbedding H1(r0, r1) ↪→
Cα[r0, r1], 0 < α < 1

2 , there exists a function m, as j → J−, such that up to a subsequence,

(mj − J ) 3
2 ⇀ (m− J ) 3

2 weakly in H1(r0, r1), (2.7)

(mj − J ) 3
2 → (m− J ) 3

2 strongly in Cα[r0, r1], (2.8)

(J 2 − j2)(mj)r → 0 strongly in L2(r0, r1). (2.9)

Noticing that [(mj − J )2]r = 4
3(mj − J ) 1

2 [(mj − J ) 3
2 ]r, we get

||(mj − J )2||H1(r0,r1) ≤ C||(mj − J ) 3
2 ||H1(r0,r1) ≤ C(r0, B, τ),

which leads to

(mj − J )2 ⇀ (m− J )2 weakly in H1(r0, r1) as j → J−.

Thus, multiplying (2.2) by ϕ ∈ H1
0 (r0, r1), we have

r1∫
r0

r
mj + J

2m3
j

[(mj − J )2]rϕrdr +
r1∫

r0

r

m3
j

(J 2 − j2)(mj)rϕrdr

+ J
τ

r1∫
r0

r

mj
ϕrdr +

r1∫
r0

(m−B(r))ϕdr = 0.

As j → J−, by (2.7)-(2.9), (1.11) holds in the case of n = 2. The lower bound estimate is directly obtained 
from (2.5) and (2.8).

To prove the uniqueness of the interior subsonic solution, we first define w(r) := (m(r) − J )2 and it is 
easy to see that w ∈ H1

0 (r0, r1) satisfies the equality

(
r(
√
w + 2J )wr

2(
√
w + J )3

+ rJ
τ(
√
w + J )

)
r

=
√
w + J −B(r), r ∈ (r0, r1). (2.10)

Then, recalled from the proof of Theorem 2.1 [19], it implies by (2.10) that w ∈ C1+ 1
4 [r0, r1]. Letting

Gw(r) := r(
√
w + 2J )wr

2(
√
w + J )3

+ rJ
τ(
√
w + J )

,

we have
⎧⎪⎨
⎪⎩

r(
√
w + 2J )wr

2(
√
w + J )3

= Gw − rJ
τ(
√
w + J )

,

Gw(r) = Gw(r0) +
∫ r (

√
w(s) + J −B(r))ds.

(2.11)

r0
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First, suppose that (2.1) has two different interior subsonic solutions m1(r) and m2(r) over [r0, r1]. Next 
there exists a nonempty domain [r̄0, ̄r1] ⊂ [r0.r1] such that (2.10) has two corresponding solutions w1(r)
and w2(r) satisfying

w1(r̄0) = w2(r̄0), w1(r̄1) = w2(r̄1) and w1(r) > w2(r) for r ∈ (r̄0, r̄1).

Because of the C1-continuity of w1 and w2, it holds that

(w1)r(r̄0) ≥ (w2)r(r̄0) and (w1)r(r̄1) ≤ (w2)r(r̄1). (2.12)

Hence, it follows from the first equation of (2.11) that Gw1(r̄1) ≤ Gw2(r̄1). Then by the second equation of 
(2.11), we derive

Gw1(r̄0) +
r̄1∫

r̄0

(
√

w1(s) + J −B(r))ds ≤ Gw2(r̄0) +
r̄1∫

r̄0

(
√

w2(s) + J −B(r))ds.

Since w1(r) > w2(r) for r ∈ (r̄0, ̄r1), we get

Gw1(r̄0) < Gw2(r̄0),

which gives (w1)r(r̄0) < (w2)r(r̄0). This is a contradiction to (2.12). Therefore, the interior subsonic solution 
of (2.1) is unique.

In the end, we show that m ∈ C
1
2 [r0, r1]. Since m(r) ≥ J over [r0, r1], then

|m(a) − J + m(c) − J | = |m(a) − J | + |m(c) − J | ≥ |(m(a) − J ) − (m(c) − J )| = |m(a) −m(c)|.

Thus, by (m − J )2 ∈ C1[r0, r1], it is easy to see that

|m(a) −m(c)|2
|a− c| = |m(a) −m(c)||(m(a) − J )2 − (m(c) − J )2|

|a− c||m(a) − J + m(c) − J |

≤ |(m(a) − J )2 − (m(c) − J )2|
|a− c|

≤ C,

for any a, c ∈ [r0, r1], which implies m ∈ C
1
2 [r0, r1]. This finishes the proof. �

2.2. The case of n=3

In the subsection, we prove the existence and uniqueness of interior subsonic solutions of (1.10) in the 
three-dimensional case. Here (1.10) is rewritten as

⎧⎪⎨
⎪⎩

[
r2

(
1
m

− J 2

m3

)
mr + r2J

τm

]
r

= m−B(r) + 2, r ∈ (r0, r1),

m(r0) = m(r1) = J .

(2.13)

Now we list some results for interior subsonic solution of (2.13).
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Theorem 2.4. Suppose that B > J and inf
r∈[r0,r1]

{
B(r) + 2rJ

τB
− 2

}
> J , then (2.13) admits a unique 

interior subsonic solution m(r) over [r0, r1] satisfying m ∈ C
1
2 [r0, r1] and

m(r) ≥ J + λ̄ sin
(
π · r − r0

r1 − r0

)
, r ∈ [r0, r1],

where λ̄ is a small and positive constant.

Proof. First we divide the process into three steps.

Step 1. In this step, we concern the following approximate equation of (2.13)
⎧⎪⎨
⎪⎩

[
r2

(
1
mj

− j2

(mj)3

)
(mj)r + r2J

τmj

]
r

= mj −B(r) + 2, r ∈ (r0, r1),

m(r0) = m(r1) = J ,

(2.14)

and prove the existence and uniqueness of the solution to (2.14). In order to apply the Schauder fixed point 
theorem, we define an operator P : m̄ → mj , by solving the linear equation

⎧⎪⎨
⎪⎩

[
r2

(
1
m̄

− j2

m̄3

)
(mj)r

]
r

− r2J
τm̄2 (mj)r = mj −B(r) + 2 − 2rJ

τm̄
, r ∈ (r0, r1),

mj(r0) = mj(r1) = J .

Now it is easy to verify that the operator P is precompact and continuous. What’s important is to prove 
P(C) ⊂ C. As similar as that of Lemma 2.3, and by applying the weak maximum principle, we get the result

J ≤ mj(r) ≤ B

provided that

B > J and inf
r∈[r0,r1]

{
B(r) + 2rJ

τB
− 2

}
> J .

Hereafter there exists a fixed point mj of P such that P(mj) = mj , which is also a weak solution to (2.14)
satisfying mj ∈ H2(r0, r1).

The uniqueness of the solution of (2.14) can be obtained by a comparison principle, just like Lemma 2.2. 
Of course, we calculate that the comparison principle must be derived in the three-dimensional case. Hence, 
define

m̄(r) := J + λ̄ sin
(
π · r − r0

r1 − r0

)
, r ∈ [r0, r1],

and note that inf
r∈[r0,r1]

{
B(r) + 2rJ

τB
− 2

}
> J . Then if λ̄ > 0 is sufficiently small, we also obtain

−
[
r2

(
1
m̄

− j2

m̄3

)
m̄r + r2J

τm̄

]
r

+ m̄−B(r) + 2 ≤ C(λ̄2 + λ̄) +
(
J −B(r) − 2rJ

τ(J + λ̄)
+ 2

)

< C(λ̄2 + λ̄) +
(
J −B(r) − 2rJ

τB
+ 2

)

< 0.
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Here C is a positive constant independent of j. By the comparison principle, we also get

mj(r) ≥ m̄(r) over [r0, r1].

Step 2. The second step is to give a uniform bound estimate of the approximate solution mj(r) for all 
0 < j < J . As in (2.6), we have

(J 2 − j2)
r1∫

r0

r2 |(mj)r|2
(mj)3

dr + 4
9

r1∫
r0

r2mj + J
(mj)3

· |[(mj − J ) 3
2 ]r|2dr

+ J
τ

r1∫
r0

r2(mj)r
mj

dr +
r1∫

r0

(mj −B + 2)(mj − J )dr = 0.

(2.15)

Then because of B > J , it holds that

J
τ

r1∫
r0

r2(mj)r
mj

dr = J
τ

[(r2
1 − r2

0) · lnJ ] − J
τ

r1∫
r0

2r lnmjdr,

and

r1∫
r0

(mj −B + 2)(mj − J )dr ≥ 1
2

r1∫
r0

(mj − J )2dr − 1
2

r1∫
r0

(B + 2r
τ

− 2 − J )2dr

+ 1
τ

r1∫
r0

2r(mj − J )dr,

where we used Young’s inequality and integration by parts. Therefore, it follows from (2.15) and J ≤ mj ≤ B
that

(J 2 − j2)r2
0

B3

r1∫
r0

|(mj)r|2dr + 8r2
0J

9B3

r1∫
r0

|[(mj − J ) 3
2 ]r|2dr + 1

2

r1∫
r0

(mj − J0)2dr

≤ 1
2

r1∫
r0

(B − J )2dr + J (r2
1 − r2

0)(lnB − lnJ )
τ

,

which also gives

||(mj − J ) 3
2 ||H1 ≤ C and ||(J 2 − j2)(mj)r||L2 ≤ C(J 2 − j2) 1

2 ,

for some constant C depending on (τ, B, r0, r1), but independent of j. Hence, by the above estimates, there 
exists a subsequence {mj}0<j<J , converging weakly to a limit m as j → J−. In fact, the limit function m
is certainly a weak solution of (2.13) such that (m −J )2 ∈ H1

0 (r0, r1) and (1.11) holds.

Step 3. The last step is to prove the uniqueness of this interior subsonic solution m(r) and to show m ∈
C

1
2 [r0, r1]. This part of the proof is referring to that of Theorem 2.1 directly, and we don’t repeat it here. 

The proof is finished. �
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3. Existence of interior supersonic solutions

In this section, we are going to prove the existence of interior supersonic solutions of (1.10) in the two 
and three dimensional cases, respectively.

3.1. The case of n = 2

As similar as Lemma 2.2, we introduce a comparison principle first.

Lemma 3.1. Let V ∈ C1[r0, r1] satisfying V (r) ≥ k0 > 1 over [r0, r1] be a weak solution of the following 
equation

⎧⎪⎨
⎪⎩

[
rd1(r) · (V − 1)Vr + rV

τ

]
r

−
(
V

τ
− d2(r)

)
= 0,

V (r0) = V (r1) = k0,

r ∈ (r0, r1),

where d1, d2 ∈ L∞(r0, r1) and d1(r) > 0 on [r0, r1]. Thus, for any ϕ ∈ H1
0 (r0, r1), it holds that

r1∫
r0

[
rd1(r) · (V − 1)Vr + rV

τ

]
ϕrdr +

r1∫
r0

(
V

τ
− d2(r)

)
ϕdr = 0.

In addition, let U ∈ C1[r0, r1] be such that U(r) > 0 over [r0, r1], U(r0) ≤ k0, U(r1) ≤ k0, and for any 
ϕ ≥ 0, ϕ ∈ H1

0 (r0, r1),

r1∫
r0

[
rd1(r) · (U − 1)Ur + rU

τ

]
ϕrdr +

r1∫
r0

(
U

τ
− d2(r)

)
ϕdr ≤ 0.

Then V (r) ≥ U(r) over [r0, r1].

Proof. Referring to the textbook [14] (see Theorem 10.7) and Theorem 2.2 [19], we set

I(r, z1, z2) := rd1(r)(z1 − 1)z2 + rz1

τ
.

Then, for any ϕ ∈ H1
0 (r0, r1), ϕ ≥ 0, we obtain

r1∫
r0

[I(r, U, Ur) − I(r, V, Vr)]ϕrdr + 1
τ

r1∫
r0

(U − V )ϕdr ≤ 0. (3.1)

Denote W =: U − V and Ut := tU + (1 − t)V . A simple computation indicates that

I(r, U, Ur) − I(r, V, Vr) = I(r, U, Ur) − I(r, V, Ur) + I(r, V, Ur) − I(r, V, Vr)

=
1∫

0

∂I

∂z1
(r, Ut, Ur)dt ·W (r) +

1∫
0

∂I

∂z2
(r, V, (Ut)r)dt ·Wr(r).
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Let ϕ(r) = W+(r)
W+(r) + ε

with W+(r) := max{0, W (r)} and a positive constant ε, and note that

[
ln

(
1 + W+(r)

ε

)]
r

= W+
r (r)

W+(r) + ε
, ϕr(r) = ε

W+(r) + ε

[
ln

(
1 + W+(r)

ε

)]
r

.

Because k0 > 1, U ∈ C1[r0, r1] and dm := min
r∈[r0,r1]

d1(r) > 0, this yields that

1∫
0

∂I

∂z1
(r, Ut, Ur)dt = rd1(r)Ur + r

τ
≤ C

and

1∫
0

∂I

∂z2
(r, V, (Ut)r)dt = rd1(r)(V − 1) ≥ r0(k0 − 1)dm.

Then it follows from (3.1) that

εr0(k0 − 1)dm

r1∫
r0

∣∣∣∣
[
ln

(
1 + W+(r)

ε

)]
r

∣∣∣∣
2

dr + 1
τ

r1∫
r0

(W+(r))2

W+(r) + ε
dr

≤ Cε

r1∫
r0

W+(r)
W+(r) + ε

∣∣∣∣
[
ln

(
1 + W+(r)

ε

)]
r

∣∣∣∣ dr

≤ εr0(k0 − 1)dm
2

r1∫
r0

∣∣∣∣
[
ln

(
1 + W+(r)

ε

)]
r

∣∣∣∣
2

dr + C2ε(r1 − r0)
2r0(k0 − 1)dm

,

where we used Young’s inequality in the second inequality. Thus, we get for any ε

r1∫
r0

∣∣∣∣
[
ln

(
1 + W+(r)

ε

)]
r

∣∣∣∣
2

dr ≤ C2(r1 − r0)
r2
0(k0 − 1)2d2

m

,

which further by Poincaré’s inequality gives

r1∫
r0

[
ln

(
1 + W+(r)

ε

)]2

dr ≤ (r1 − r0)2
r1∫

r0

∣∣∣∣
[
ln

(
1 + W+(r)

ε

)]
r

∣∣∣∣
2

dr

≤ C2(r1 − r0)3

r2
0(k0 − 1)2d2

m

< ∞.

Now letting ε → 0+, one can see that if W+(r) �= 0 for some r ∈ [r0, r1],

r1∫
r0

[
ln

(
1 + W+(r)

ε

)]2

dr = ∞,

which gets a contradiction. Therefore, U(r) ≤ V (r) for all r ∈ [r0, r1]. �
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Then let’s show the existence theorem as follows.

Theorem 3.2. Assume that B + 1
τ
> J , then system (2.1) admits at least one interior supersonic solution 

m ∈ C1/2[r0, r1] satisfying 
 ≤ m(r) ≤ J over [r0, r1] for a positive constant 
. Moreover, the function m
possesses the property that m(r) < J for any r ∈ (r0, r1).

Proof. This proof is divided into three steps for clarity.

Step 1. We first consider the following approximate equation of (2.1)

⎧⎪⎨
⎪⎩

[
r

(
1
mk

− k2

m3
k

)
(mk)r + rk

τmk

]
r

= mk −B(r),

mk(r0) = mk(r1) = J ,

(3.2)

with the parameter k > J . Let vk(r) :=
k

mk(r)
, thus, (3.2) becomes

⎧⎪⎨
⎪⎩

[
r

(
vk − 1

vk

)
(vk)r + rvk

τ

]
r

−
(

k

vk
−B

)
= 0, r ∈ (r0, r1),

vk(r0) = vk(r1) = k

J � k0 > 1.
(3.3)

Next we only need to prove that there exists a weak solution vk(r) to (3.3) satisfying vk ≥ k0. Here our 
adopted approach is the iterative method. Due to the effect of high dimensions space, we apply a so-called 
two-steps iteration to complete the following proof.

Let X be a solution space, denoted by

X := {φ(r) : φ ∈ C1[r0, r1], k0 ≤ φ(r) ≤ M, φ(r0) = φ(r1) = k0,

||φ||Cα[r0,r1] ≤ Λ, ||φ||C1[r0,r1] ≤ Υ(Λ)}.

Here some positive constants M, Λ and Υ(Λ) are determined later. Then we define an operator Ψ : η −→ v

by solving the quasi-linear system
⎧⎪⎨
⎪⎩

[
r(η + 1)

η
· (v − 1)vr

]
r

+ rvr
τ

−
(
k

η
−B − η

τ

)
= 0, r ∈ (r0, r1),

v(r0) = v(r1) = k0,

(3.4)

where η ∈ X. To use the Schauder fixed point theorem, we first claim that system (3.4) has a unique solution 
v ∈ C1+α[r0, r1] for 0 < α < 1 and arbitrary fixed η ∈ X.

To this end, set

S := {ω ∈ C0[r0, r1]|k0 ≤ ω ≤ K and ω(r0) = ω(r1) = k0}

for an undetermined constant K, and let’s define an operator i : S → C0[r0, r1], i(ξ) = ζ by solving the 
linearized system of (3.4)

⎧⎨
⎩

[rg1(η, ξ) · ζr]r + rζr
τ

+ g2(η, τ) = 0, r ∈ (r0, r1),

ζ(r ) = ζ(r ) = k .
(3.5)
0 1 0
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Here ξ ∈ S and we have defined g1 := r(η + 1)(ξ − 1)
η

and g2 := B + η

τ
− k

η
. Furthermore, note that g1 and 

g2 are C1-continuous with respect to η.
Actually, one finds that the fixed point of the operator i is a solution of (3.4), so we need to prove the 

existence of the fixed point of i. Since (3.5) has a solution ζ ∈ H1(r0, r1), the operator i is precompact by 
the compact imbedding H1(r0, r1) ↪→ C0[r0, r1]. The continuity of i is based on the standard argument, 
obviously. Next, we only need to prove k0 ≤ ζ(r) ≤ K over [r0, r1]. Multiplying (3.5) by (ζ − k0)−(r) :=
min {0, (ζ − k0)(r)}, we have

r1∫
r0

rg1(r)|[(ζ − k0)−]r|2dr + 1
2τ

r1∫
r0

[(ζ − k0)−]2dr +
r1∫

r0

(−g2(r))(ζ − k0)−dr = 0 (3.6)

where we have used

1
τ

r1∫
r0

rζr(ζ − k0)−dr = − 1
2τ

r1∫
r0

[(ζ − k0)−]2dr.

Here each term of (3.6) is non-negative since g1 ≥ r0(k0 − 1) > 0, η ≥ k0, B + k0
τ > J and

g2(η, τ) = B + η

τ
− k

η
=

(
B + k0

τ
− J

)
+
(
J − k

η

)
+ η − k0

τ
> 0.

Then this implies by (3.6) that ζ(r) ≥ k0 over [r0, r1]. Now multiplying (3.5) by (ζ − k0)(r), we show that

r0(k0 − 1)
r1∫

r0

|(ζ − k0)r|2dr + 1
2τ

r1∫
r0

(ζ − k0)2dr ≤
r1∫

r0

g2(η, τ)(ζ − k0)dr.

Thus, by Young’s inequality and Poincaré’s inequality

r1∫
r0

(ζ − k0)2dr ≤ (r1 − r0)2
r1∫

r0

|(ζ − k0)r|2dr,

we get

r0(k0 − 1)
r1∫

r0

|(ζ − k0)r|2dr ≤
r1∫

r0

g2(η, τ)(ζ − k0)dr

≤ r0(k0 − 1)
2(r1 − r0)2

r1∫
r0

(ζ − k0)2dr + (r1 − r0)2

2r0(k0 − 1)

r1∫
r0

g2
2(η, τ)dr

≤ r0(k0 − 1)
2

r1∫
r0

|(ζ − k0)r|2dr + (r1 − r0)2

2r0(k0 − 1)‖g2(η)‖2
L2 ,

which indicates that

‖(ζ − k0)r‖L2 ≤ r1 − r0 ‖g2(η)‖L2 .

r0(k0 − 1)
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Further, we conclude that

ζ ≤ k0 + C(r0, r1, k0)‖g2(η)‖L2 ,

then choose K(η) := k0 + C(r0, r1, k0)‖g2(η)‖L2 such that k0 ≤ ζ ≤ K. Applying the Schauder fixed point 
theorem, we have a fixed point v ∈ S such that i(v) = v, which is also a weak solution to (3.4). Thanks 
to the regularity theory and Sobolev imbedding theory [14], it’s proved that v ∈ C1+α0 [r0, r1] such that 
k0 ≤ v ≤ K(η),

‖v‖Cα0 [r0,r1] ≤ C0(k0, η, τ,K(η)) and ‖v‖C1+α0 [r0,r1] ≤ C(C0, k0, η, τ,K(η)) (3.7)

for constants C0 and 0 < α0 < 1
2 . Moreover, we can prove that the solution of (3.4) is unique by Lemma 3.1. 

Thus the claim is verified.
Next, we go back to show that Ψ has a fixed point, so it is necessary to prove Ψ(X) ⊂ X. Since v(r) ≥ k0

over [r0, r1], it remains to determine the upper bound of the solution v(r) for (3.4). Multiplying (3.4) by 
(v − k0)2, we derive

r1∫
r0

r(η + 1)
2η · |[(v − k0)2]r|2dr + 1

3τ

r1∫
r0

(v − k0)3dr ≤
r1∫

r0

(
B + η

τ
− k

η

)
(v − k0)2dr,

which leads to

r0
2

r1∫
r0

|[(v − k0)2]r|2dr ≤
r1∫

r0

(
B + η

τ

)
(v − k0)2dr

≤ r0
4(r1 − r0)2

r1∫
r0

(v − k0)4dr + (r1 − r0)2

r0

r1∫
r0

(
B + η

τ

)2
dr

≤ r0
4

r1∫
r0

|[(v − k0)2]r|2dr + (r1 − r0)3

r0

(
B + M

τ

)2

.

Here we have used Poincaré’s inequality

r1∫
r0

(v − k0)4dr ≤ (r1 − r0)2
r1∫

r0

|[(v − k0)2]r|2dr.

It then follows that

‖[(v − k0)2]r‖2
L2 ≤ 4(r1 − r0)3

r2
0

(
B + M

τ

)2

.

Moreover it holds that

0 < v(r) ≤ k0 + C

√
B + M

τ

for a positive constant C depending on (r0, r1). Thus by a simple calculation, we can choose
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M = M(B, τ) ≥ k0 + C2

2τ + C

√
B + k0

τ
+ C2

4τ2

such that k0 + C

√
B + M

τ
≤ M. Then we can see that v(r) ≤ M over [r0, r1] for any k0 ≤ η ≤ M. 

Hereafter it implies by (3.7) that for a constant 0 < α0 < 1
2 ,

‖v‖Cα0 [r0,r1] ≤ C0(M,K(M), τ, k0) and ‖v‖C1+α[r0,r1] ≤ C(M,K(M), τ, k0, C0),

and we determine α = α0, Λ = C0(M, K(M), τ, k0) and Υ(Λ) = C(M, K(M), τ, k0, Λ). Now it can be 
verified that v ∈ X and X is a bounded and closed convex subset of C1[r0, r1]. Also, the operator Ψ is a 
compact map of X into itself by the compact imbedding C1+α[r0, r1] ↪→ C1[r0, r1]. Using the continuity 
theory, one can see that the operator Ψ is continuous. Hence, a fixed point of the map Ψ can be obtained by 
the Schauder fixed point theorem. In the end, (3.3) has a weak solution vk ∈ C1[r0, r1], and mk(r) = k/vk(r)
is an interior supersonic solution of (3.2) over [r0, r1].

Step 2. This step is to prove the existence of the interior supersonic solutions of (2.1). Multiplying (3.3) by 
(vk − k0)(r), and using Young’s inequality and Poincaré’s inequality, we have

(k0 − 1)
r1∫

r0

r(vk + 1)
vk

|(vk)r|2dr + 4
9

r1∫
r0

r(vk + 1)
vk

|[(vk − k0)
3
2 ]r|2dr

=
r1∫

r0

(
B + vk + k0

2τ − k

vk

)
(vk − k0)dr

≤ 2
3

r1∫
r0

(vk − k0)
3
2 dr + 1

3

r1∫
r0

(
B + vk + k0

2τ

)3

dr

≤ r0
3(r1 − r0)2

r1∫
r0

(vk − k0)3dr + (r1 − r0)3

r0
+ r1 − r0

3

(
B + M + k0

2τ

)3

≤ r0
3

r1∫
r0

|[(vk − k0)
3
2 ]r|2dr + C(B, τ,M, k0, r0, r1),

where we used

r1∫
r0

rvk
τ

(vk − k0)rdr = − 1
2τ

r1∫
r0

(vk + k0)(vk − k0)dr.

Thus, it follows that

||(k0 − 1) 1
2 (vk)r||L2 + ||(vk − k0)

3
2 ||H1 ≤ C,

for some constants C only depending on (B, τ, M, k0, r0, r1). In fact, as k0 → 1+, i.e. k → J+, given that 
a suitable choice of M, we can obtain

‖(vk − k0)
3
2 ‖L∞ ≤ C(B, τ, r0, r1),
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which gives

vk ≤ k0 + C
2
3 .

Then,

mk(r) = k

vk(r)
≥ k

k + C
2
3
≥ 1

1 + C
2
3
� 
 for r ∈ [r0, r1]. (3.8)

A direct computation yields that

(mk)r = −k(vk)r
v2
k

and ((J −mk)2)r = 4J k(vk − k0)
1
2 ((vk − k0)

3
2 )r

3v3
k

,

which together with (3.8) implies

||(k0 − 1) 1
2 (mk)r||L2 + ‖(J −mk)2‖H1 ≤ C(B, τ, r0, r1).

Finally, one can see that there exists a function m such that, as k → J+, up to a subsequence,

(J −mk)2 ⇀ (J −m)2 weakly in H1(r0, r1),

(J −mk)
3
2 ⇀ (J −m) 3

2 weakly in H1(r0, r1),

(J −mk)
3
2 → (J −m) 3

2 strongly in Cα[r0, r1], 0 < α <
1
2 ,

(k0 − 1)(mk)r → 0 strongly in L2(r0, r1).

(3.9)

Hence equation (2.1) has an interior supersonic solution m(r) over [r0, r1], and (1.11) holds. The lower 
bound of the solution m is obtained by (3.8) and (3.9), and m ∈ C1/2[r0, r1] is easily obtained as similar as 
that of Theorem 2.1.

Step 3. At the last step, we need to prove that m(r) < J over (r0, r1). If a function m satisfies m(r) ≡ J
on any interval [s1, s2] ⊂ [r0, r1], then m is not a solution of (2.1) because B + 1

τ > J . Thus, there exist 
two points ŝ1 and ŝ2 satisfying 0 < ŝ1 − r0 � 1 and 0 < r1 − ŝ2 � 1. Then let ε > 0 be a small number 
such that m(ŝ1), m(ŝ2) ≤ J − ε < J . Next, we are going to prove that m(r) ≤ J − ε over [ŝ1, ̂s2]. After 
that, set w = (J − m)2, further we know w ∈ H1

0 (r0, r1) and w(ŝ1), w(ŝ2) ≥ ε2. From (1.11), taking 
ϕ(r) = (w − ε2)−(r), we have

ŝ2∫
ŝ1

r
2J −√

w

2(J −√
w)3

|[(w − ε2)−]r|2dr +
ŝ2∫

ŝ1

rJ [(w − ε2)−]r
τ(J −√

w)
dr

+
ŝ2∫

ŝ1

(J −
√
w −B(r))(w − ε2)−dr = 0.

(3.10)

Since 2J −√
w > J −√

w ≥ 0, one can see that the first term of (3.10) is non-negative. Then, by a direct 
computation, we change the last two of (3.10) as
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ŝ2∫
ŝ1

rJ
[
(w − ε2)−

]
r

τ(J −√
w)

dr +
ŝ2∫

ŝ1

(J −
√
w −B(r))(w − ε2)−dr

= 1
τ

ŝ2∫
ŝ1

r
√
w
[
(w − ε2)−

]
r

J −√
w

dr + 1
τ

ŝ2∫
ŝ1

r[(w − ε2)−]rdr

+
ŝ2∫

ŝ1

(J −
√
w −B(r))(w − ε2)−dr

= 1
τ

ŝ2∫
ŝ1

r
√
w
[
(w − ε2)−

]
r

J −√
w

dr +
ŝ2∫

ŝ1

(
J −

√
w −B(r) − 1

τ

)
(w − ε2)−dr.

(3.11)

Here we notice that the second term on the right-hand side of (3.11) is also non-negative because of B+ 1
τ >

J . It remains to show the non-negativity of the first term on the right-hand side of (3.11). Note that

−[h(
√
w)]r := −

[
2J

√
w + w + 2J 2 ln(J −

√
w)

]
r

=
√
wwr

J −√
w
,

then it follows that

1
τ

ŝ2∫
ŝ1

r
√
w
[
(w − ε2)−

]
r

J −√
w

dr = −1
τ

ŝ2∫
ŝ1

r[h(
√
wε)]rdr = 1

τ

ŝ2∫
ŝ1

[h(
√
wε) − h(ε)]dr, (3.12)

where wε := (w − ε2)− + ε2. Hence, 0 ≤
√
wε ≤ ε. Then a simple computation yields that

h′(s) = 2J + 2s− 2J 2

J − s
< 0 for s ∈ (0, ε],

because h′′(s) < 0 on (0, ε) and h′(0) = 0. Thus, it holds that the right side of (3.12) is non-negative, which 
leads to (w − ε2)− = 0. We derive that m(r) ≤ J − ε over [ŝ1, ̂s2] for some small constants ε. The proof is 
finished. �
3.2. The case of n = 3

In the subsection, we state the results of interior supersonic solutions to (1.10) in three dimensional case.

Theorem 3.3. Assume that B > J , then system (2.13) admits an interior supersonic solution m ∈ C1/2[r0, r1]
satisfying 
̄ ≤ m(r) ≤ J over [r0, r1] for a positive constant 
̄, moreover, 0 < m(r) < J over (r0, r1).

Proof. This proof is similar as that of Theorem 3.2, so we sketch it as follows. The approximate system of 
(2.13) is the following equation

⎧⎪⎨
⎪⎩

[
r2

(
1
mk

− k2

m3
k

)
(mk)r + r2k

τmk

]
r

= mk −B(r) + 2,

mk(r0) = mk(r1) = J ,

(3.13)

with the parameter k > J . Let vk(r) :=
k , thus (3.13) can be recast as
mk(r)
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⎧⎪⎨
⎪⎩

[
r2

(
vk − 1

vk

)
(vk)r + r2vk

τ

]
r

−
(

k

vk
−B + 2

)
= 0, r ∈ (r0, r1),

vk(0) = vk(1) = k0.

(3.14)

Then we define an operator Ψ̃ : η −→ v by solving the following system

⎧⎪⎨
⎪⎩

[
r2(η + 1)

η
· (v − 1)vr

]
r

+ r2vr
τ

−
(
k

η
−B + 2 − 2rη

τ

)
= 0, r ∈ (r0, r1),

v(0) = v(1) = k0,

(3.15)

where η ∈ X. As similar to that of Theorem 3.2, and by applying the Schauder fixed point theorem, we 
show that there exists a unique solution v ∈ C1+α[r0, r1] to the quasi-linear system (3.15), and there exists 
a constant K̃ depending on η such that k0 ≤ v ≤ K̃,

‖v‖Cα[r0,r1] ≤ C0(k0, η, τ, K̃(η)) and ‖v‖C1+α[r0,r1] ≤ C(C0, k0, η, τ, K̃(η)) (3.16)

for constants K̃(η) and 0 < α < 1
2 . In the following, we only need to prove k0 ≤ vk ≤ M with a proper 

constant M. Obviously, since v ≥ k0, then we only prove vk ≤ M. Now multiplying (3.15) by (v− k0)2, we 
derive

r1∫
r0

r2(η + 1)
2η · |[(v − k0)2]r|2dr + 2

3τ

r1∫
r0

r(v − k0)3dr

≤
r1∫

r0

(
B + 2rη

τ
− 2 − k

η

)
(v − k0)2dr,

which follows from the proof in Theorem 3.2 that

‖[(v − k0)2]r‖L2 ≤ C(r0, r1, k0)
(
B + M

)
.

Thus, we get

0 < v(r) ≤ k0 + C(r0, r1, k0)
√

B + M.

Then take M = M(B, k0) sufficiently large such that

k0 + C(r0, r1, k0)
√

B + M ≤ M.

As a result, it holds that v(r) ≤ M over [r0, r1]. Next it follows from (3.16) that v ∈ X and X is also a 
bounded and closed convex subset of C1[r0, r1]. Hereafter the Sobolev imbedding theorem and the Schauder 
fixed point theorem yield that there exists a fixed point vk of the operator Ψ̃ such that

Ψ̃(vk) = vk.

Hence equation (3.14) has a weak solution vk, then a solution of (3.13) would be obtained, that is

mk(r) = k
, r ∈ [r0, r1].
vk(r)
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Next, the bound estimate of mk can be verified by

||(k0 − 1) 1
2 (mk)r||L2 + ‖(J −mk)2‖H1 ≤ C(B, k0),

whose proof is shown in Theorem 3.2. Moreover, as similar to that of Theorem 3.2, there exists a limit of 
convergence m(r) by a subsequence {mk}J<k<+∞ as k → J +, which is an interior supersonic solution of 
(2.13). For a constant 0 < 
̄ < J , it is easy to check that 
̄ ≤ m(r) < J over (r0, r1) and m ∈ C1/2[r0, r1]. 
The proof is complete. �
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