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Abstract

As shown in [17,18], for the hydrodynamic model of semiconductors represented by Euler-Poisson equa-
tions with sonic boundary and subsonic/supersonic doping profile, the structure of stationary solutions are 
very complicated. It may possess various solutions like subsonic/supersonic/transonic flows. In this paper, 
we consider a more challenging case where the doping profile is transonic, which is categorized into two 
types: subsonic-dominated and supersonic-dominated. In the subsonic-dominated case, we show that the 
system has a unique interior subsonic solution, at least one interior supersonic solution and infinitely many 
transonic solutions under the suitable assumptions. However, the difference with the case of subsonic dop-
ing profile is that the interior subsonic solution and interior supersonic solution may not exist in special 
cases when the relaxation time is small. In the supersonic-dominated case, the non-existence and existence 
of all types of solutions are also obtained. The approach adopted is the technical compactness analysis 
combining the Green’s function method. Here, the results obtained perfectly develop the existing studies.
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1. Introduction

For the charged fluid particles such as electrons and holes in semiconductor devices, the 
presented model is the hydrodynamic system of semiconductors, the so-called Euler-Poisson 
equations [6]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + P(ρ))x = ρ�x − ρu

τ
,

�xx = ρ − b(x).

t > 0, x ∈ �. (1.1)

Here ρ(t, x), u(t, x) and �(t, x) represent the electron density, the velocity and the electrostatic 
potential, respectively. P(ρ) is the pressure-density relation, physically represented by

P(ρ) = Tργ .

Here T > 0 is the constant temperature and γ ≥ 1 represents the adiabatic exponent. In the 
paper, we mainly consider the isothermal case, i.e. γ = 1. The function b(x) > 0 is the doping 
profile standing for the density of impurities in semiconductor device. The constant τ > 0 denotes 
the momentum relaxation time. � is the bounded domain. Without loss of generality, we take 
� = [0, 1] in the 1-dimensional case.

In order to study the behavior of solutions to (1.1), it is significant and necessary to classify 
the steady-state solutions in different cases.

Let J := ρu, the current density of the electrons, and E := �x , the electric field, then the 
corresponding stationary system to (1.1) is reduced to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J = constant,(
J 2

ρ
+ P(ρ)

)
x

= ρE − J

τ
, x ∈ (0,1),

Ex = ρ − b(x),

(1.2)

From gas dynamics, we call c := √
P ′(ρ) = √

T the sound speed for P(ρ) = Tρ. So the 
stationary flow is supersonic/sonic/subsonic if the fluid velocity satisfies

fluid velocity : u = J

ρ
� c = √

T : sound speed. (1.3)

In the following, we consider only the current-controlled flow; thus we assume that the current 
density J is prescribed. Note that if the couple (ρ, E)(x) is a solution to (1.2) for a given constant 
J , then the couple (ρ, −E)(1 − x) is a solution to (1.2) with respect to −J and b(1 − x). Hence, 
it is sufficient to consider only the case J ≥ 0. Without loss of generality, we assume in the paper 
that

J = T = 1.

Then, (1.2) is reduced to
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⎧⎨
⎩
(

1 − 1

ρ2

)
ρx = ρE − 1

τ
,

Ex = ρ − b(x).

(1.4)

From (1.3), it can be checked that ρ > 1 denotes the subsonic flow, ρ = 1 means the sonic flow 
and 0 < ρ < 1 stands for the supersonic flow. Thus, the sonic boundary condition to the system 
(1.4) is subjected by:

ρ(0) = ρ(1) = 1. (1.5)

Dividing the first equation of (1.4) by ρ and differentiating the resulting equation with respect to 
x, and using the second equation of (1.4), we obtain

⎧⎨
⎩
[(

1

ρ
− 1

ρ3

)
ρx

]
x

+ 1

τ

(
1

ρ

)
x

− [ρ − b(x)] = 0, x ∈ (0,1).

ρ(0) = ρ(1) = 1 (sonic boundary).
(1.6)

When the doping profile is the subsonic case, namely, b(x) > 1, we [17] first proved that, 
there exist a unique subsonic steady-state solution, at least one supersonic steady-state solutions, 
infinitely many transonic-shock solutions when the relaxation time is large, and infinitely many 
C1-smooth transonic solutions when the relaxation time is small. Furthermore, we [18] stud-
ied the case of supersonic doping profile with 0 < b(x) < 1, and classified the existence and 
non-existence of subsonic/supersonic/transonic steady-state solutions. However, when the dop-
ing profile is transonic, namely b(x) > 1 for some x in the domain and b(x) < 1 for the other part 
of the domain, the study remains open and is also more challenging. To treat such a unknown 
case is the main target of the present paper.

Throughout this paper, we denote

b := essinf
x∈(0,1)

b(x) and b := esssup
x∈(0,1)

b(x),

and assume that the doping profile b(x) ∈ L∞(0, 1) is transonic, which satisfies

b ≤ b(x) ≤ b and 0 < b < 1 < b̄, x ∈ [0,1].

Then we define a set:

M := {x ∈ [0,1] : b ≤ b(x) ≤ 1 + μ
}
, (1.7)

where μ is a strictly positive constant such that 1 + μ < b̄. Indeed, the doping profile b(x) is 
named subsonic-dominated if |M| 	 1. Here, | · | denotes the measure of a set. In the same way, 
defining

N := {x ∈ [0,1] : 1 ≤ b(x) ≤ b̄
}
, (1.8)

we call b(x) supersonic-dominated if |N | 	 1. Recalling from [17,18], we define the interior 
subsonic/transonic/supersonic solutions as follows.
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Definition 1.1 (Subsonic/supersonic solutions). ρ(x) is called an interior subsonic (correspond-
ingly, interior supersonic) solution of (1.6) if ρ(0) = ρ(1) = 1 but ρ > 1 (correspondingly, 
0 < ρ(x) < 1) for x ∈ (0, 1), and (ρ(x) − 1)2 ∈ H 1

0 (0, 1), and it holds that for any ϕ ∈ H 1
0 (0, 1)

1∫
0

(
1

ρ
− 1

ρ3

)
ρxϕxdx + 1

τ

1∫
0

ϕx

ρ
dx +

1∫
0

(ρ − b)ϕdx = 0,

which is equivalent to

1

2

1∫
0

ρ + 1

ρ3

(
(ρ − 1)2

)
x
ϕxdx + 1

τ

1∫
0

ϕx

ρ
dx +

1∫
0

(ρ − b)ϕdx = 0.

Once ρ = ρ(x) is determined by (1.6), in view of the first equation of (1.4), the electric field 
E(x) can be solved by

E(x) =
(

1

ρ
− 1

ρ3

)
ρx + 1

τρ
= (ρ + 1)[(ρ − 1)2]x

2ρ3 + 1

τρ
.

In this way, we could obtain the interior subsonic/supersonic solutions to system (1.4)-(1.5).

Definition 1.2 (Shock transonic solutions). ρ(x) > 0 is called a transonic shock solution of sys-
tem (1.4)-(1.5) if ρ(0) = ρ(1) = 1 and it is separated by a point x0 ∈ (0, 1) in the form

ρ(x) =
{

ρsup(x), x ∈ [0, x0],
ρsub(x), x ∈ (x0,1],

where 0 < ρsup(x) < 1 and ρsub(x) > 1 satisfy the entropy condition at x0

0 < ρsup(x−
0 ) < 1 < ρsub(x

+
0 ), (1.9)

and the Rankine-Hugoniot condition

ρsup(x−
0 ) + 1

ρsup(x−
0 )

= ρsub(x
+
0 ) + 1

ρsub(x
+
0 )

,

Esup(x−
0 ) = Esub(x

+
0 ).

(1.10)

Set ρl = ρsup(x−
0 ) and ρr = ρsub(x

+
0 ), it follows from (1.10) that

ρlρr = 1.

Definition 1.3 (C1-smooth transonic solutions). ρ(x) > 0 is called a C1-smooth transonic so-
lution of system (1.4)-(1.5) if ρ(0) = ρ(1) = 1 and it is separated by a point x0 ∈ (0, 1) in the 
form
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ρ(x) =
{

ρsup(x), x ∈ [0, x0],
ρsub(x), x ∈ (x0,1],

where 0 < ρsup(x) < 1 and ρsub(x) > 1, and satisfy the smoothness conditions at x0

ρsup(x−
0 ) = 1 = ρsub(x

+
0 ), ρ′

sup(x−
0 ) = ρ′

sub(x
+
0 ). (1.11)

The hydrodynamic model of semiconductors, introduced by Bløtekjær [6], has been exten-
sively concerned in recent years because of its ability of modeling hot electron effects which are 
not accounted for the classical drift-diffusion model. For more mathematical derivations on the 
hydrodynamic model, we refer to the books [15,21,22]. Regarding the existence/non-existence 
of steady-states to the stationary hydrodynamic model with different physical backgrounds and 
different boundary conditions, it has been intensively studied. In 1990 and 1993, Degond and 
Markowich [8,9] first investigated the existence and uniqueness of subsonic solutions with the 
strong subsonic background (namely the current J 	 1) in one dimension, and for potential flow 
in three dimension, respectively. Then, with the higher dimensions case and different boundary 
conditions, more discussion on the subsonic flows can be found in [2–5,13,14,16,23,24]; see 
also the references therein. For the case of the supersonic flows, Peng and Violet [25] proved 
the existence and uniqueness of supersonic solutions with a strongly supersonic background (i.e. 
J 
 1), which was extended to the two dimensions case by M.Bae [5]. In addition, the corre-
sponding investigations on the transonic flows have been drawn more interests and attention. For 
one dimension case, Ascher et al. [1] and Rosini [26] showed the existence of transonic solu-
tions by phase plane analysis. Under the assumption of a non-flat doping profile b(x), Gamba 
[10] and Gamba and Morawetz [11] constructed a transonic solution in 1-D and 2-D via artificial 
viscosity, respectively. Luo and Xin [20] then considered the Euler-Poisson system without the 
semiconductor effect 1

τ
where the structure of transonic solutions were studied thoroughly by 

phase plane analysis. Moreover, they [19] proved the existence of transonic shock solutions with 
a small perturbation of a constant doping profile.

When the system (1.2) is with sonic boundary, a critical boundary case, we [17,18] first tech-
nically classified the structure of all types of solutions to (1.2) when the doping profile is either 
subsonic or supersonic (including sonic case), respectively, and remarkably characterized the 
well-posedness and regularity of the solutions under the effect of the doping profile, semicon-
ductor and the sonic boundary. In the case of the subsonic doping profile, there exist a unique 
interior subsonic, at least one interior supersonic solution, infinitely many transonic shock solu-
tions when the relaxation time is sufficiently large (i.e. τ 
 1), and infinitely many C1-smooth 
transonic solutions when the relaxation time is sufficiently small (i.e. τ 	 1). The primary proof 
of the results consists of the technical compactness analysis, phase plane analysis and the en-
ergy method. When b(x) is supersonic or sonic, the non-existence of all type of solutions was 
discussed in the case of a small doping profile and a small relaxation time, and they proved the 
existence of supersonic and transonic shock solutions if the doping profile is close to the sonic 
line and the semiconductor effect is almost ignored (τ 
 1).

Subsequently to the first two cases with subsonic/supersonic doping profile studied in [17,18], 
it is inevitable for us to consider the more complicated case of transonic doping profile b(x) for 
the hydrodynamic model when the boundaries are on sonic line. Since it is much overcompli-
cated to focus on the case of the general transonic doping profile, we divide this case into two 
types: subsonic-dominated and supersonic-dominated. When the doping profile b(x) is subsonic-
dominated (i.e. |M| 	 1) and the semiconductor effect vanishes ( i.e. 1 = 0), we show the 
τ
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existence of a unique interior subsonic solution and at least one interior supersonic solution by 
the technical compactness analysis and the Green function method. Here, the Green’s function 
method is mainly applied to estimate the low bound of the iterative solutions in the proof of 
Schauder fixed point Theorem. Then, with the case of τ < +∞, there exist a unique interior 
subsonic solution, at least one interior supersonic solution and infinitely many transonic shock 
solution when τ 
 1 via phase plane analysis. One new phenomenon is that there may be no sub-
sonic solution nor supersonic solution with some special cases when the semiconductor effect is 
strong ( i.e. τ 	 1). Moreover, with the strong semiconductor effect, it is proved that there ex-
ist infinitely many C1-smooth transonic solutions instead of transonic shock solutions when the 
doping profile is a step function. On the other hand, when the doping profile b(x) is supersonic-
dominated (i.e. |N | 	 1), the results are partially extended from the case of a supersonic doping 
profile. There is no interior subsonic solution, interior supersonic solution or transonic shock 
solution when the doping profile is small in integral form or the relaxation time is small. Fur-
thermore, the existence of interior supersonic solutions and transonic shock solutions is proved 
again in a similar way.

The main results of the paper are summarized as follows.

Theorem 1.1 (Subsonic-dominated doping profile). Let the doping profile be subsonic-dominated, 
satisfying b(x) ∈ L∞(0, 1). There exists a constant ε0 > 0 such that 0 < |M| < ε0.

1. Assume that M ⊂ [α1, 1] with a constant α1 > 0, then system (1.4)-(1.5) admits a unique 
pair of interior subsonic solution (ρ, E)(x) ∈ C

1
2 [0, 1] × H 1(0, 1) and

1 + C sin(πx) ≤ ρ(x) ≤ b on [0,1]

where C(μ, τ) < b̄ − 1 is a small and positive constant.
2. Assume that M ⊂ [0, α2] with a constant α2 < 1, then system (1.4)-(1.5) has at least one 

pair of interior supersonic solution (ρ, E)(x) ∈ C
1
2 [0, 1] × H 1(0, 1) and

0 < ρ(x) ≤ 1.

3. Particularly, assume α1 = 0 and α2 = 1, and if the relaxation time is infinite, i.e. τ = ∞, the 
results of part 1 and 2 also hold.

4. If τ is large, (1.4)-(1.5) has infinitely many transonic shock solutions (ρtrans, Etrans)(x), 
satisfying the entropy condition (1.9) and the Rankine-Hugoniot condition (1.10) at the jump 
location x0.

5. When τ is small enough and the doping profile b(x) is a step function, (1.4)-(1.5) has in-
finitely many C1-smooth transonic solutions.

Theorem 1.2 (Supersonic-dominated doping profile). Let the doping profile be supersonic-
dominated, satisfying b(x) ∈ L∞(0, 1) and |N | 	 1. There exists a constant ε0 > 0 such that 
0 < |N | ≤ ε0, then:

1. There is no interior subsonic solution to (1.4)-(1.5);



L. Chen et al. / J. Differential Equations 269 (2020) 8173–8211 8179
2. There is no interior supersonic solution nor transonic shock solution to (1.4)-(1.5) if

b̂ :=
∫

[0,1]\N
b(x)dx 	 1

or the relaxation time τ is small and b̂ ≤ 1 − ε for a parameter ε.
3. There exist at least one interior supersonic solution and infinitely many transonic solutions 

to (1.4)-(1.5) when the doping profile b(x) satisfies

1 − ε ≤ b(x) ≤ b̄ with a small parameter ε,

and the relaxation time τ is large.

Remark 1.1.

1. In Parts 1 and 2 of Theorem 1.1, C
1
2 [0, 1] is the optimal Hölder space for the global regularity 

of the interior subsonic/supersonic solutions, which also matches the case of subsonic doping 
profile shown in [17].

2. In Parts 1 and 2 of Theorem 1.1, when α1 = 0 and α2 = 1, two spacial cases in Appendix 
imply that there may be no interior subsonic solution or supersonic solution to (1.4)-(1.5)
when τ 	 1. However, if τ is large enough, the results could be obtained with the general 
subsonic-dominated doping profile b(x).

3. In Part 5 of Theorem 1.1, there is no transonic shock solution to (1.4)-(1.5) when τ is small 
enough, just as showed in [17]. In the case of τ 	 1, (1.4)-(1.5) has only infinity many 
C1-smooth transonic solution.

The remaining part of this paper is arranged as follows. In Section 2, we mainly prove the 
existence of interior subsonic/supersonic/transonic solutions to (1.4)-(1.5) when the doping pro-
file b(x) is subsonic-dominated. When τ = +∞, there exist a unique interior subsonic solution 
and at least one interior supersonic solution. In the case 0 < τ < +∞, we have the same results 
when α1 > 0 and α2 < 1. Also, (1.4)-(1.5) has infinitely many transonic shock solutions if τ 
 1. 
In addition, Section 3 is devoted to proving the existence/non-existence of stationary solutions 
with a supersonic-dominated doping profile. We list and prove the non-existence of interior sub-
sonic/supersonic/transonic solutions when b̂ 	 1 or τ 	 1 and b̂ ≤ 1 − ε. Furthermore, there 
exist at least one interior supersonic solution and infinitely many transonic shock solutions to 
(1.4)-(1.5) when 1 − ε ≤ b ≤ b̄ and τ 
 1.

2. Subsonic-dominated doping profile

Let the doping profile b(x) be subsonic-dominated. The purpose of this section is to prove 
Theorem 1.1, which will be divided in steps for each case.

2.1. Interior subsonic solution

The subsection is devoted to investigating the interior subsonic solutions of system (1.4)-(1.5). 
When the semiconductor effect vanishes, we only assume that b(x) ∈ L∞(0, 1) and |M| 	 1. 
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Here the set M is defined by (1.7). With the strong semiconductor effect, we need to give an 
additional condition that M ⊂ [α1, 1] where α1 > 0.

1. The case of τ = ∞. In this case, we prove that there exists a unique interior solution to 
system (1.4)-(1.5). The main adopted approach is the technical compactness method from [17], 
inspired by an artificial viscosity approximation. However, due to the effect of transonic doping 
profile, we apply the Green’s function method to guarantee the lower bound of solution in the 
proof of Schauder fixed point theorem. This method has the advantage that the degree of subsonic 
dominance is intuitively observed. Then, system (1.4)-(1.5) without the term of 1

τ
becomes

⎧⎪⎪⎨
⎪⎪⎩

(
1 − 1

ρ2

)
ρx = ρE,

Ex = ρ − b(x),

ρ(0) = ρ(1) = 1.

(2.1)

Theorem 2.1. Assume that b(x) ∈ L∞(0, 1) and 0 < b < 1 < b̄, there exists a constant ε0 > 0

such that 0 < |M| < ε0, then (2.1) admits a unique interior solution ρ(x) satisfying ρ ∈ C
1
2 [0, 1]

and

1 + C sin(πx) ≤ ρ(x) ≤ b on [0,1],

where C = C(μ) < b̄ − 1 is a positive constant.

Owing to the boundary degeneration of (2.1), we first solve the following approximate system 
as similar to that of Theorem 2.1 [17]:

⎧⎪⎨
⎪⎩
[(

1

ρj

− j2

ρ3
j

)
(ρj )x

]
x

− [ρj − b(x)] = 0, x ∈ (0,1),

ρj (0) = ρj (1) = 1,

(2.2)

where the parameter j is a constant and 0 < j < 1. Thus, (2.2) is uniformly elliptic on [0, 1], 
because 1

ρj
− j2

ρ3
j

> 0 for ρj ≥ 1. Then, we continue to transform equation (2.2) as follows. 

Define a function w with respect of ρj , and let

w′(ρj ) := 1

ρj

− j2

ρ3
j

and w(1) := 0, ρj ∈ [1,+∞).

Thus, we get

w(ρj ) = lnρj + j2

2ρ2
j

− j2

2
, ρj ∈ [1,+∞). (2.3)

Since w is increasing over [1, +∞), an inverse function ρj(w) can be denoted by

ρj (w) := w−1(ρj ), w ∈ [0,+∞],
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then we extend ρj (w) to the whole space R, still labeled by ρj(w), in the form

ρj (w) :=
{

ρj (w), w ≥ 0

ρj (−w), w < 0.

From (2.2) and (2.3), one can see that w is a function of x and w(0) = w(1) = 0. Thus, (2.2) can 
be transformed to the following system:

{
wxx = ρj (w) − b(x),

w(0) = w(1) = 0.
(2.4)

Clearly, a positive solution of (2.4) always corresponds to an interior subsonic solution of (2.2). 
Hence, let us then prove the well-posedness of (2.4).

Lemma 2.1. Assume that b(x) ∈ L∞(0, 1) and 0 < b < 1 < b̄, there exists a constant ε0 > 0
such that 0 < |M| < ε0, then (2.4) admits a weak solution w(x) satisfying w ∈ H 1

0 (0, 1) and

C sin(πx) ≤ w(x) ≤ M on [0,1],
where C = C(μ) < M = ln b̄ is a small and positive constant.

Proof. Let M = ln b̄, we set

S0 :=
{
ω(x) : ω ∈ C0[0,1]| 0 ≤ ω ≤ M and ω(0) = ω(1) = 0

}
.

First, subtract κw from both sides of (2.4), that is{
wxx − κw = −[(b − 1) + β(w)],
w(0) = w(1) = 0,

(2.5)

where κ is a constant to be determined later and

β(w) := κw − (ρj (w) − 1).

Then we define an operator � : w̄ → w by solving the following linearized equation of (2.5)

{
wxx − κw = −[(b − 1) + β(w̄)],
w(0) = w(1) = 0.

(2.6)

By L2 theory of elliptic equation and Sobolev imbedding theorem [12], one can see that (2.6)
has a unique solution w ∈ C0[0, 1] for every w̄ ∈ S0, then we need to prove that 0 ≤ w(x) ≤ M

for x ∈ [0, 1]. Multiplying (2.6) by ŵ := max {0,w − M}, we obtain

1∫ (
|ŵx |2 + κwŵ

)
dx =

1∫
[(b − 1) + β(w̄)] ŵdx.
0 0
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Because b ≤ b̄ and ŵ ≥ 0, we get

0 ≤
1∫

0

|ŵx |2dx ≤
1∫

0

[
(b̄ − 1) + β(w̄) − κw

]
ŵdx. (2.7)

Suppose that κ is large enough such that β ′(M) > 0 for any j ∈ (0, 1), it is easy to see that

max
w̄∈S0

β(w̄) ≤ max {β(0), β(M)} ≤ max
{
0, κM − (b̄ − 1)

}
where we have used

ρj (M) ≥ ρj (Mj ) = b̄, Mj = ln b̄ + j2

2b̄2
− j2

2
.

Then, choose κ sufficiently large to satisfy κ ≥ b̄ − 1

M
, and it follows that

max
w̄∈S0

(b̄ − 1) + β(w̄)

κ
≤ M,

further and

(b̄ − 1) + β(w̄) − κw ≤ κ(M − w).

Thus, it follows from (2.7) that

w(x) ≤ M, x ∈ [0,1].
Next, we claim that w(x) > 0 for x ∈ (0, 1) and w(0) = w(1) = 0 when 0 < |M| < ε0. First 

of all, by the construction method of Green’s function in [7], Green’s function of (2.6) is

�(x, ξ) :=
{

C0w0(x)w1(ξ) for x ≤ ξ,

C0w0(ξ)w1(x) for x > ξ,
(2.8)

where C0 := e
√

κ − e−√
κ

2
√

κ
, w0(x) := e

√
κx − e−√

κx

e
√

κ − e−√
κ

and w1(x) := e
√

κ(1−x) − e
√

κ(x−1)

e
√

κ − e−√
κ

. 

Hence, the solution of (2.6) is described as follow:

w(x) =
1∫

0

�(x, ξ) [(b(ξ) − 1) + β(w̄)(ξ)]dξ x ∈ [0,1]. (2.9)

Then we divide the proof of the claim into two steps.
Step 1. Assume that x ∈ [s0, 1 − s0] where s0 is a number such that 0 < s0 < 1

2 . Suppose that 
κ is large enough such that
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min
x∈[0,1],w̄∈S0

β(w̄)(x) ≥ −μ

2
.

Hereafter, Select a constant κ that meets all above criteria and fix it. Thanks to the monotonicity 
of w0 and w1, it then follows from (1.7), (2.8) and (2.9) that for x ∈ [s0, 1 − s0]

w(x) ≥ C0w1(x)

x∫
0

w0(ξ)
[
(b(ξ) − 1) − μ

2

]
dξ + C0w0(x)

1∫
x

w1(ξ)
[
(b(ξ) − 1) − μ

2

]
dξ

≥ C0w1(x)

⎡
⎣μ

2

x−ε0∫
0

w0(ξ)dξ − (1 − b + μ

2
)

x∫
x−ε0

w0(ξ)dξ

⎤
⎦

+ C0w0(x)

⎡
⎣μ

2

1∫
x+ε0

w1(ξ)dξ − (1 − b + μ

2
)

x+ε0∫
x

w1(ξ)dξ

⎤
⎦

≥ μ

2
· C0w1(x)

[(
g1(x − ε0) − g1(0)

)−(1 + 2(1 − b)

μ

)
ε0g

′
1(x)

]

+ μ

2
· C0w0(x)

[(
g2(x + ε0) − g2(1)

)+(1 + 2(1 − b)

μ

)
ε0g

′
2(x)

]
,

where g1(x) := e
√

κx + e−√
κx

√
κ(e

√
κ − e−√

κ)
and g2(x) := e

√
κ(1−x) + e

√
κ(x−1)

√
κ(e

√
κ − e−√

κ)
. Thus, suppose that ε0 <

s0
2 is small enough, then we obtain that w(x) ≥ C(s0) > 0 on [s0, 1 − s0].

Step 2. Assume that x ∈ [0, s0), a direct calculation conclude that

w(x) ≥ −(1 − b + μ

2
) · C0w1(x)

x∫
0

w0(ξ)dξ

+ C0w0(x)

⎡
⎣μ

2

1∫
x

w1(ξ)dξ − (1 − b + μ)

x+ε0∫
x

w1(ξ)dξ

⎤
⎦ .

≥ −(1 − b + μ) ·
⎡
⎣C0w1(x)

x∫
0

w0(ξ)dξ + C0w0(x)

x+ε0∫
x

w1(ξ)dξ

⎤
⎦

+ μ

2
C0w0(x)

1∫
x

w1(ξ)dξ.

(2.10)

Denote

F1(x) := C0w1(x)

x∫
w0(ξ)dξ, F2(x) := C0w0(x)

1∫
w1(ξ)dξ,
0 x
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hence we directly compute that there exists a small number l > 0 such that

F ′
2(x) > F ′

1(x) ≥ 0, F ′′
1 (x) > 0 and F ′′

2 (x) < 0, x ∈ [0, l]. (2.11)

Set 0 < 2ε0 < s0 < l. First, we could suppose ε0 = ε0(μ, b, s0) sufficiently small to satisfy

(1 − b + μ)

x+ε0∫
x

w1(ξ)dξ ≤ μ

4

1∫
x

w1(ξ)dξ, x ∈ [0, s0].

From (2.10) and (2.11), we get for x ∈ [0, s0)

w(x) ≥ −(1 − b + μ)F1(x) + μ

4
F2(x)

≥ F1(x)

4

[
μ

F2(x)

F1(x)
− 4(1 − b + μ)

]

≥ F1(x)

4

[
μ

F ′
2(s0)

F ′
1(s0)

− 4(1 − b + μ)

]
.

Then, it follows from (2.11) that 
F ′

2(s0)

F ′
1(s0)

is strictly decreasing for s0 ∈ (0, l] and F ′
1(0) = 0. After 

that, we choose s0 > 0 sufficiently small and derive that w(x) > 0 for x ∈ (0, s0) and w(0) = 0. 

Similarly, because F1(x) and F2(x) are mutually symmetric with respect to the line x = 1

2
, we 

also get w(x) > 0 on (1 − s0, 1) and w(1) = 0. Combining with Steps 1-2, the claim is complete.
It is easy to see that w ∈ S0. By Arzelà-Ascoli theorem, the operator � is a compact map. In 

addition, � is continuous by a standard continuity argument. Thus, we conclude that there exists 
a fixed point of � by Schauder fixed point Theorem. So (2.4) has a unique positive solution 
w ∈ C0[0, 1]. From (2.4), it follows that wxx ∈ L∞(0, 1), then we get w ∈ H 1

0 (0, 1).
Finally, it remains to prove the lower boundedness estimate. Define �(x) := w − C sin(πx)

on [0, 1], where w is the solution of (2.6) and C is a positive constant. Then we have the next 
linear system

{
�xx − κ� = −[(b − 1) + β(w̄) − C(π2 + κ) sin(πx)],
�(0) = �(1) = 0.

(2.12)

Thus, suppose that C is small enough such that C(π2 + κ) ≤ μ
4 . By Green function method, we 

also see that (2.12) has a positive solution � ∈ S0 for every w̄ ∈ S0 when ε0 is small enough. 
Obviously, the solution w(x) of (2.4) satisfies

w(x) ≥ C sin(πx), x ∈ [0,1].

The proof is complete. �
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Proof of Theorem 2.1. From Lemma 2.1, we know that there is an approximation solution ρj(x)

of (2.1) when 0 < j < 1. Hereafter, it follows from (2.3) that

ρj (x) ≥ 1 + w(x) ≥ 1 + C sin(πx), x ∈ [0,1]

where C is a small positive constant, independent of j . From (2.2), and by phase-plane analysis, 
we have

ρj (x) ≤ b̄.

Then, recalled the proof of Theorem 2.1 [17], as j → 1−, we can obtain that (2.1) has a unique 
interior subsonic solution ρ ∈ C

1
2 [0, 1]. The proof is complete.

2. The case of 0 < τ < ∞. In this case, we also want to get the existence of the interior sub-
sonic solutions by referring to the proof of Theorem 2.1. Nevertheless, for the linearized system 
(2.6), its occurrence of a first order term would be an obstacle for proving the existence theorem. 
Therefore, we have to apply phase-plane analysis to prove the existence of interior subsonic solu-
tions. However, there may be no interior subsonic solution with the general supersonic-dominated 
doping profile when τ 	 1. Here define a step doping profile b(x), that is

b(x) :=

⎧⎪⎨
⎪⎩

b̄, x ∈ [0, α1],
b, x ∈ (α1, α2),

b̄, x ∈ [α2,1],
0 ≤ α1 < α2 ≤ 1. (2.13)

When b(x) is denoted by (2.13) and τ < 1
2
√

b̄3+b̄
, Proposition 4.1, shown in Appendix, indicates 

that no interior subsonic solution exists to (1.4)-(1.5) with the case of α1 = 0 and α2 	 1. Inspired 
by this, (1.4)-(1.5) is supplemented with an additional assumption: M ⊂ [α1, 1], α1 > 0. The 
main result is stated as follows.

Theorem 2.2. Assume that b(x) ∈ L∞(0, 1), and there exist numbers α1 > 0 and ε0 > 0 such that 
M ⊂ [α1, 1] and 0 < |M| < ε0, then system (1.4)-(1.5) has a unique interior subsonic solution 
ρ(x) satisfying ρ ∈ C

1
2 [0, 1] and

1 + C sin(πx) ≤ ρ(x) ≤ b̄ on [0,1],

where C(τ, μ) < b̄ − 1 is a positive constant.

Proof. For clarity, we divide the proof into six steps.
Step 1. Let δ and η be small numbers to be determined later satisfying 0 < δ < η 	 1. Define

b̃(x) :=
{

1 + μ, x ∈ M,

b(x), x ∈ [0,1]\M,
(2.14)

and b̃(x) is extended periodically to R+. Now let us consider the following boundary value 
problem with subsonic boundary condition
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⎧⎪⎪⎨
⎪⎪⎩

(
1 − 1

ρ2

)
ρx = ρE − 1

τ
,

Ex = ρ − b̃(x),

ρ(0) = ρ(L) = 1 + δ,

(2.15)

where L ≥ 1
4 is a positive constant and 1 +μ ≤ b̃(x) ≤ b̄ over [0, L]. From Theorem 2.1 [17], it’s 

easy to see that there exists a unique interior subsonic solution (ρ̄, Ē)(x) ∈ C
1
2 [0, 1] × H 1(0, 1)

to (2.15), and (ρ̄, Ē)(x) satisfies

1 + m sin(
πx

L
) ≤ ρ̄(x) ≤ b̄ and Ē(0) ≥ 1

τ
, x ∈ [0,L], (2.16)

where m = m(τ, μ, L) is a positive and small constant, independent of δ. Obviously, by analyzing 
the monotonicity of the solution (ρ̄, Ē)(x), we know that there exists a number x1 such that

ρ̄(x1) = max
0≤x≤L

ρ̄(x) � ρ̄0, Ē(x1) = 1

ρ̄0τ
,

thus ρ̄0(τ, μ) is a positive constant and

1 + m ≤ ρ̄0 ≤ b̄.

Let Ẽ := Ē − 1
τ ρ̄

, we first prove that

Ẽ(L) ≤ −�,

where the constant � is independent of δ. In fact, that is

dẼ

dρ̄
= (ρ̄2 − 1)(ρ̄ − b̃)

ρ̄3Ẽ
+ 1

τ ρ̄2 ≥ (ρ̄2 − 1)(ρ̄ − b̃)

ρ̄3Ẽ
.

Integrating the above inequality over [x1, L], and b̃ < b̄, we get

Ẽ2(L)

2
≥

L∫
x1

[
(1 − 1

ρ̄2 ) − b̄(ρ̄2 − 1)

ρ̄3

]
dx

= 2 + 2δ − b̄

2(1 + δ)2 + 1 + δ − b̄ ln(1 + δ) −
[

2ρ̄0 − b̄

2ρ̄2
0

+ ρ̄0 − b̄ ln ρ̄0

]

= δ[2b̄ − 2 − (2 − b̄)δ]
2(1 + δ)2 + δ − b̄ ln(1 + δ) + h(ρ̄0),

where

h(s) := 1 + 2 − b̄ − 2s − b̄ − s + b̄ ln s, s ∈ (1, b̄).

2 2s2
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Notice that h(1) = 0 and h′(s) = (s−b̄)(1−s2)

s3 > 0 for s ∈ (1, b̄). When δ is small such that 

| δ[2b̄−2−(2−b̄)δ]
2(1+δ)2 + δ − b̄ ln(1 + δ)| ≤ h(1+m)

2 , because ρ̄0 ≥ 1 + m, we obtain

Ẽ2(L) ≥ h(1 + m) > 0.

If Ẽ(L) > 0, we get ρ̄′(x) > 0 in the neighborhood of L−, which contradicts to ρ̄(L) = 1 + δ

and ρ̄(x) > 1 + δ near the end point x = L. Thus

Ẽ(L) ≤ −√h(1 + m) � −�(τ,μ,L).

Step 2. Here, let L = 1
2 and denote the corresponding solution of (2.15) by (ρ̄1, Ē1)(x). We 

assert that there exists a number 0 < x2 < 1
2 such that

∣∣∣∣12 − x2

∣∣∣∣≤ Cη2, ρ̄1(x2) = 1 + η and |Ē1(
1

2
) − Ē1(x2)| ≤ Cη2, (2.17)

where the constant C doesn’t depend on η and δ. As in Step 1, note that

ρ̄1(
1

2
)Ē1(

1

2
) − 1

τ
≤ −�1 with a positive constant �1.

In the phase-plane (ρ, E), it follows from the first two equations of (2.15) that both of the func-
tions ρ̄1 and Ē1 keep decreasing in the neighborhood of 1

2
−

. Clearly, there exists a last number 
x2 < 1

2 such that ρ̄1 attains 1 + η and

ρ̄1(x2)Ē1(x2) <
1

τ
,

where 0 < 1 + η < min

{
max

0≤x≤1/2
ρ̄1(x),1 + μ

}
. Therefore, over x ∈ [x2, 12 ], we have

Ē1(x) = Ē1(
1

2
) +

1
2∫

x

(b̃ − ρ̄1)dx ≤ − �1

1 + δ
+ 1

τ
+ b̄

(
1

2
− x2

)
.

Note that ρ̄1 ∈ [1 + δ, 1 + η] for x ∈ [x2, 12 ], then

ρ̄1(x)Ē1(x) − 1

τ
≤ η

τ
− �1 + 3b̄

2

(
1

2
− x2

)
≤ −3�1

4
+ 3b̄

2

(
1

2
− x2

)
≤ −�1

2
,

if η ≤ min
{

1
2 , τ�1

4

}
and

1 − x2 ≤ �1
. (2.18)
2 6b̄
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Hence, from the first equation of (2.15), there exists a number ζ ∈ [x2, 12 ] such that

1

2
− x2 = ρ̄1(

1
2 ) − ρ̄1(x1)

(ρ̄1)x(ζ )
= (η − δ)(1 − ρ̄2

1(ζ ))

ρ̄2
1(ζ )(ρ̄1(ζ )Ē1(ζ ) − 1/τ)

≤ 2η2(η + 2)

(1 + η)2�1
≤ 5η2

�1
if η ≤ 1

2
.

If η ≤ �1√
30b̄

, then (2.18) holds. Thus, we choose η = η(τ, b̄, μ) ≤ min
{

1
2 , τ�1

4 , �1√
30b̄

}
. After-

wards,

|Ē1(
1

2
) − Ē1(x2)| ≤

∣∣∣∣∣∣∣
1
2∫

x2

(ρ̄1 − b̃)dx

∣∣∣∣∣∣∣≤ b̄ ·
∣∣∣∣12 − x2

∣∣∣∣≤ Cη2,

where the constant C only depends on τ , μ and b̄.
Step 3. Then we discuss the ODE system with the subsonic initial value:

⎧⎪⎪⎨
⎪⎪⎩

(
1 − 1

ρ2

)
ρx = ρE − 1

τ
,

Ex = ρ − b(x),

(ρ(0),E(0)) = (1 + δ, Ē1(0))

(2.19)

where the doping profile b(x) have been extended periodically to R+. First, denote the sub-
sonic solution of (2.19) by (ρ1, E1)(x). Because M ∈ [α1, 1], one can see that b(x) = b̃(x) over 
[0, α1], thus (ρ1, E1)(x) = (ρ̄1, Ē1)(x) for x ∈ [0, α1]. In this step, taking ε0 	 1, we claim that 
there exists a number x3 > 0 such that

1

2
− Cη ≤ x3 ≤ 1

2
+ Cη,

and a subsonic solution of (2.19) satisfies

ρ1(x3) = 1 + δ and |E1(x3) − Ē1(1/2)| ≤ Cη.

Set φ := ρ̄1 − ρ1, ψ := Ē1 − E1. Here as similar to Step 3 of the proof of Theorem 4.2 [17], by 
(2.15) and (2.19), (φ, ψ) satisfies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φx = ρ̄3
1ψ

(ρ̄1 + 1)(ρ̄1 − 1)
+ ρ̄2

1ρ2
1 − ρ̄2

1 − ρ̄1ρ1 − ρ2
1)φE1

(ρ̄1 + 1)(ρ̄1 − 1)(ρ1 + 1)(ρ1 − 1)

+ (ρ̄1 + ρ1)φ

τ(ρ̄1 + 1)(ρ̄1 − 1)(ρ1 + 1)(ρ1 − 1)
,

ψx = φ + b − b̃,

(φ(α1),ψ(α1)) = 0.

(2.20)

Define the solution space

XT := {(φ,ψ) ∈ C[α1, T ]|φ(α1) = ψ(α1) = 0, |φ| ≤ η/2, |ψ | ≤ η/2}.
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Next, we would show a priori estimate

φ2(x) + ψ2(x) ≤ η2/4 on x ∈ [α1, x2]. (2.21)

Multiplying the first equation of (2.20) by φ and the second one by ψ , adding them together 
and integrating the final equation over [α1, x2], and noting that |ρ̄1 − ρ1| ≤ η/2, by Young’s 
inequality, we have

x2∫
α1

(φ2 + ψ2)xdx ≤
(

C

η2 + C

τη2

) x2∫
α1

(φ2 + ψ2)dx + C

x2∫
α1

(b̃ − b)dx,

where C is a constant independent of τ , δ and η. Then by Gronwall’s integral inequality and

x2∫
α1

(b̃ − b)dx ≤ Cε0,

one can see that

φ2 + ψ2 ≤ Cε0e

(
1

η2 + 1

τη2

)
.

Hence, taking ε0 	 1 such that Cε0e
( 1

η2 + 1
τη2 ) ≤ 1

4 , we get (2.21) and further

|ρ̄1 − ρ1| ≤ η/2, |Ē1 − E1| ≤ η/2, (2.22)

which leads to

1 + η/2 = ρ̄1(x2) − η/2 ≤ ρ1(x2) ≤ ρ̄1(x2) + η/2 ≤ 1 + 3η/2,

and

Ē1(
1

2
) − Cη ≤ Ē1(x2) − η/2 ≤ E1(x2) ≤ Ē1(x2) + η/2 ≤ Ē1(

1

2
) + cη. (2.23)

Now taking x2 as the initial value, we extend the solution (ρ1, E1) to the state satisfying ρ1 =
1 + δ. Herewith we need to prove that there exists a number x3 such that

x2 < x3 ≤ x2 + Cη2,

and a subsonic solution of (2.19) satisfies

ρ1(x3) = 1 + δ, E1(x3) <
1

and |E1(x3) − Ē1(x2)| ≤ Cη2.

τ
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In fact, it is easy to check that ρ1(x2)E1(x2) − 1/τ ≤ −�1
2 if η 	 1, then we point out that ρ1

is decreasing in the neighborhood of x+
2 . Here, near x+

2 , noticing that 1 + δ ≤ ρ1 ≤ 1 + 3η
2 , we 

have

E1(x) = E1(x2) +
x∫

x2

(ρ1 − b)dx

≤ − �1

2(1 + 3η
2 )

+ 1

τ
+ b̄(x − x2)

and further

ρ1(x)E1(x) − 1/τ ≤ − �1

2(1 + 3η
2 )

+ 3η

2τ
+ b̄(1 + 3η

2
)(x − x2)

≤ −�1

4
+ 3η

2τ
+ 2b̄(x − x2)

≤ −�1

8

if η ≤ min{ τ�1
24 , 12 } and

x − x2 ≤ �1

32b̄
. (2.24)

Therefore, as similar to Step 2, if ρ1 keeps decreasing, there exists a number x3 > x2 such that 
the solution ρ1(x) satisfies ρ1(x3) = 1 + δ, and for a number ζ̄ ∈ [x2, x3],

x3 − x2 = ρ1(x3) − ρ1(x2)

(ρ1)x(ζ̄ )
≤ 12η2( 3

2η + 2)

�1
≤ 36η2

�1
.

Clearly, if η ≤ �1

24
√

2b̄
, (2.24) holds. Then, from (2.17), (2.22) and (2.23),

1

2
− Cη ≤ x2 ≤ x3 ≤ x2 + Cη ≤ 1

2
+ Cη,

and

Ē1(
1

2
) − Cη ≤ E1(x2) − Cη ≤ E1(x3) ≤ E1(x2) + Cη ≤ Ē1(

1

2
) + Cη.

Step 4. Now, let us focus on the following system

⎧⎪⎪⎨
⎪⎪⎩

(
1 − 1

ρ2

)
ρx = ρE − 1

τ
,

Ex = ρ − b(x),

ρ(0) = ρ(1) = 1 + δ.

(2.25)
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Then, we need to prove that there exists a subsonic solution of (2.25) by a continuity method. 
Now take L = 3

2 in Steps 2-3. Denote the solution of (2.15) by (ρ̄2(x), Ē2(x)), and the solution 
of (2.19) by (ρ2(x), E2(x)), there exists a number x4 such that

3

2
− Cη ≤ x4 ≤ 3

2
+ Cη,

ρ2(x4) = 1 + δ and Ē2(
3

2
) − Cη ≤ E2(x4) ≤ Ē2(

3

2
) + Cη.

Note that the solution of (2.19) is continuously dependent on the length L with a small parameter 
ε0. Since the solution ρ̄ is unique, one can see that Ē1(0) < Ē2(0). By a continuity method, there 
exists a constant E0 ∈ [Ē1(0), Ē2(0)] such that (2.25) has a subsonic solution (ρδ(x), Eδ(x))

with the conditions:

Eδ(0) = E0 and Eδ(1) <
1

τ
.

Step 5. Let us now prove the existence of subsonic solution of (1.4)-(1.5). Referring to Step 7 
of the proof of Theorem 4.2 [17], multiplying the first equation of (2.25) by 1

ρδ ((ρ
δ − 1 − δ)2)x

and using the second equation of (2.25), we have

1∫
0

2δ(ρδ + 1)(ρδ − 1 − δ)((ρδ)x)
2

(ρδ)3 + (ρδ + 1)|((ρδ − 1 − δ)2)x |2
2(ρδ)3 dx

≤
1∫

0

(b̄ − ρδ)(ρδ − 1 − δ)2dx ≤
1∫

0

b̄(ρδ − 1 − δ)2dx

≤ 1

4

1∫
0

|((ρδ − 1 − δ)2)x |2dx + b̄2.

(2.26)

Hence, it then follows from (2.26) that

||(ρδ − 1 − δ)2||H1(0,1) ≤ C.

Moreover, by the compact imbedding H 1(0, 1) ↪→ C
1
2 [0, 1], there exists a function ρ, as δ →

0+, up to a subsequence,

(ρδ − 1 − δ)2 ⇀ (ρ − 1)2, weakly in H 1(0,1),

(ρδ − 1 − δ)2 → (ρ − 1)2, strongly in C
1
2 [0,1].

So we know that (1.4)-(1.5) has a weak interior subsonic solution (ρ(x), E(x)) for x ∈ [0, 1] that 
satisfies sonic boundary condition.

Step 6. In this step, we prove the uniqueness and the lower bound of the interior subsonic 
solution. First, the proof of uniqueness and regularity are directly given by that of Theorem 2.1 
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and Proposition 2.5 [17], respectively. Now, we only need to estimate the lower bound. We realize 
that there is an interior solution ρ̄(x) to (2.15) when δ = 0, thereinto the corresponding initial 
value Ē(0) satisfies Ē(0) = E(0) and ρ̄(x) = ρ(x) over [0, α1]. Here (ρ, E) is derived from Step 
5. As in Steps 2-3, there exists a number x5 such that x5 ≥ 1 − Cη2

0 and the solution (ρ, E)(x)

satisfies

ρ(x5) = 1 + η0, |ρ(x) − ρ̄(x)| ≤ η0

2

over [α1, x5] with fixed constants 0 < η0 	 1 and ε0 	 1. Here, we notice that ρ keeps decreas-
ing on [x5, 1]. Thus, combining with (2.16), we easily get ρ(x) ≥ min{1 + c1 sin(πx), 1 + η0

2 }
for x ∈ (0, x5) where c1 > 0 is a small constant. Next, as similar to Step 3, there exists a positive 
constant c2 such that

E(x) = E(x5) +
x∫

x5

(ρ − b)dx ≤ −c2 + 1

τ
+ b̄(1 − x5) ≤ −c2

2
+ 1

τ

if η0 	 1 and 1 − x5 ≤ c2
2b̄

. Then for x ∈ [x5, 1)

ρx(x) = ρ2(x)(ρ(x)E(x) − 1/τ)

ρ2(x) − 1
≤ (1 + η0)

2

η0(η0 + 2)
·
(
−c2

2
+ η0

τ

)
� −c3 < 0, if η0 ≤ c2τ

4
,

thus ρ(x) ≥ −c3(x − 1) over [x5, 1) for ε0 sufficiently small. We choose

C = min
{
c1,

η0

2
, c3

}
,

such that

ρ(x) ≥ 1 + C sin(πx) on [0,1].

The proof is complete. �
2.2. Interior supersonic solution

1. The case of τ = ∞. In this case, we show the existence of interior supersonic solutions of 
(1.4)-(1.5) when the relaxation time is infinite.

Theorem 2.3. Assume that b(x) ∈ L∞(0, 1), there exists a constant ε0 > 0 such that 0 < |M| <
ε0, then (2.1) admits an interior supersonic solution ρ(x) ∈ C

1
2 [0, 1] satisfying ρ ≤ ρ(x) < 1

over (0, 1) for some positive constant ρ, and ρ(0) = ρ(1) = 1.

Proof. As similar to that of Theorem 2.1, we first solve the approximate system, a uniformly 
elliptic equation,
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⎧⎪⎨
⎪⎩
[(

1

ρk

− k2

ρ3
k

)
(ρk)x

]
x

− [ρk − b(x)] = 0, x ∈ (0,1),

ρk(0) = ρk(1) = 1,

(2.27)

where 1 < k < +∞. Set the electron velocity uk(x) = k

ρk(x)
, (2.27) becomes

⎧⎨
⎩
(

(uk − 1

uk

)(uk)x

)
x

−
(

k

uk

− b

)
= 0, x ∈ (0,1),

uk(0) = uk(1) = k.

(2.28)

Omit the subscripts k for simplicity and set a function v with respect to u

v′(u) := u − 1

u
and v(k) := 0, u ∈ [k,+∞),

so we get

v(u) =
(

1

2
u2 − lnu

)
−
(

1

2
k2 − ln k

)
, u ∈ [k,+∞). (2.29)

It is easy to see from (2.29) that v is an increasing and concave function of u over [k, +∞]. Then 
we define an inverse function by

u(v) = v−1(u), v ∈ [0,+∞).

Next, set

ũ(v) :=
{

u(v), v ≥ 0,

u(−v), v < 0.

Therefore, (2.28) is transformed into the following equation

⎧⎨
⎩vxx = −

(
b(x) − k

ũ(v)

)
, x ∈ (0,1),

v(0) = v(1) = 0.

After that, we define the operator � : v̄ → v by solving the linearized system

⎧⎨
⎩vxx = −

(
b(x) − k

ũ(v̄)

)
, x ∈ (0,1),

v(0) = v(1) = 0,

(2.30)

where ũ(v̄) ≥ k. Set the solution space by

S0 := {υ(x) : υ ∈ C0[0,1]|0 ≤ υ(x) ≤ M and υ(0) = υ(1) = 0
}
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and let v̄ ∈ S0. Here M is a constant to be determined later. We only need to show that 0 ≤
v(x) ≤ M for x ∈ [0, 1]. Multiplying (2.30) by v, and using 

k

ũ(v̄)
≤ 1, we have

1∫
0

vx
2dx ≤

1∫
0

(
b − k

ũ(v̄)

)
vdx

≤ 1

2

1∫
0

(
b − k

ũ(v̄)

)2

dx + 1

2

1∫
0

v2dx

≤ 1

2

1∫
0

(
b2 + 1

)
dx + 1

2

1∫
0

vx
2dx.

Then it follows that

1∫
0

vx
2dx ≤

1∫
0

(
b2 + 1

)
dx � M.

Hence, one can show that

v ≤ M.

Next, we claim the following result: assume that b(x) ∈ L∞(0, 1), there exists ε0 > 0 such 
that 0 < |M| < ε0, then v(x) > 0 for x ∈ (0, 1) and v(0) = v(1) = 0. We can obtain Green’s 
function of (2.30) by

K(x, ξ) :=
{

(1 − ξ)x for x ≤ ξ,

(1 − x)ξ for x > ξ.

Then the solution of (2.30) is given by

v(x) =
1∫

0

K(x, ξ)

(
b − k

ũ(v̄)

)
dξ � �1(x) + �2(x).

Here,

�1(x) := (1 − x)

x∫
0

ξ(b − 1)dξ + x

1∫
x

(1 − ξ)(b − 1)dξ,

�2(x) := (1 − x)

x∫
ξ
(
1 − k

ũ(v̄)

)
dξ + x

1∫
(1 − ξ)

(
1 − k

ũ(v̄)

)
dξ.
0 x
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Because 1 − k
ũ(v̄)

≥ 0, one can see that �2(x) > 0 over (0, 1). Thus, it suffices to prove �1(x) > 0
for x ∈ (0, 1) when 0 < |M| < ε0. It is easy to check that the corresponding proof is similar to 
that in Theorem 2.1. So we conclude that v(x) > 0 for x ∈ (0, 1) and v(0) = v(1) = 0 when ε0
is small.

Hence, the existence of approximate solution ρk(x) is proved by using Schauder fixed point 
Theorem. Then, let k → 1+, we can get the uniform bound of the approximate solution and the 
lower bound as in the proof of Theorem 3.1 [17]. Also, we discover the global regularity C1/2 of 
the interior supersonic solution. The proof is complete. �

2. The case of 0 < τ < +∞. In this case, b(x) is given by (2.13). When α2 − α1 	 1, α2 = 1
and τ < 1

3
√

b̄
, there is no interior supersonic solution. Thereinto, the proof of the non-existence 

is shown by Proposition 4.2 in Appendix. Thus, we show the existence of interior supersonic 
solutions to (1.4)-(1.5) when M ⊂ [0, α2], α2 < 1. As analogous to Theorem 2.2, the main 
theorem is as follow.

Theorem 2.4. Assume that b(x) ∈ L∞(0, 1), and there exist numbers α2 < 1 and ε0 > 0 such that 
M ⊂ [0, α2] and 0 < |M| < ε0, then system (1.4)-(1.5) admits an interior supersonic solution 
ρ(x) satisfying ρ ∈ C

1
2 [0, 1].

Proof. Step 1. In this situation, different from the proof of Theorem 2.2, we want to solve the 
next ODE system (2.32) by tracing back to the initial point from the end point. To do this, we 
need to extend b(x) periodically to [−1, 1] and denote bL̄(x) := b(1 − L̄ + x) over [0, L̄], then 
define

b̃L̄(x) :=
{

bL̄(x), bL̄(x) ≥ 1 + μ,

1 + μ, bL̄(x) < 1 + μ,

where L̄ ≤ 2 is a positive constant, thus b1(x) = b(x). Here, set δ 	 1 and L̄ ≥ 1
4 . Let’s consider 

the following boundary value problem with supersonic boundary condition

⎧⎪⎪⎨
⎪⎪⎩

(
1 − 1

ρ2

)
ρx = ρE − 1

τ
,

Ex = ρ − b̃L̄(x),

ρ(0) = ρ(L̄) = 1 − δ.

(2.31)

We know that the existence of supersonic solutions of (2.31) is proved from [17], then still define 
the solution by (ρ̄, Ē)(x) such that

0 < ρ ≤ ρ̄(x) ≤ 1 − δ for x ∈ [0,1].

Hereinto there exists a minimum point y1 such that

ρ̄(y1) = min¯ ρ̄(x) = ρ < 1, Ē(y1) = 1

ρτ
.

x∈[0,L]
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As similar to the proof of Lemma 4.1 [17] and Step 1 in the proof of Theorem 2.2 before, it 
follows that

C1(L̄) ≤ ρ ≤ C2(L̄), Ē(0) − 1

τ
≥ C3(L̄),

where C1, C2 and C3 are positive constants, independent of δ. Let η be a small constant such that 
δ < η 	 1, following Step 2 of Theorem 2.2, one can see that there exists a number 0 < y2 ≤ Cη2

such that

ρ̄(y2) = 1 − η and |Ē(y2) − Ē(0)| ≤ Cη2.

Step 2. Firstly, set L̄ = 1
2 and denote the solution of (2.31) by (ρ̄1, Ē1)(x). Let us focus on the 

ODE system:

⎧⎪⎪⎨
⎪⎪⎩

(
1 − 1

ρ̂2

)
ρ̂x = ρ̂Ê − 1

τ
,

Êx = ρ̂ − b
L̂
(x),

(ρ̂(L̂), Ê(L̂)) = (1 − δ, Ē(L̄)),

(2.32)

where L̂ ≤ 2 is a positive constant to be determined later. Denote (ρ̂1, Ê1)(x) by the solution 
of (2.32). By the definition of b

L̂
(x), (ρ̂1(x), Ê1(x)) = (ρ̄1(L̄ − L̂ + x), Ē1(L̄ − L̂ + x)) over 

[L̂ − α2, L̂]. In the step, we actually try to seek the initial state of the system (2.32) when the 
end state is known. Referring to Steps 2-4 of Theorem 2.2, we know that there exists a number 
L̂1 > 0 such that |L̂1 − 1

2 | ≤ Cη and the solution of (2.32) satisfies

ρ̂1(0) = ρ̂1(L̂1) = 1 − δ, |Ê1(0) − Ē1(y2)| ≤ Cη

when ε0 	 1. In addition, let L̄ = 3
2 , and denote the corresponding solution of (2.31) by 

(ρ̄2, Ē2)(x) and the solution of (2.32) by (ρ̂2, Ê2)(x). There exists a number L̂2 such that 
|L̂2 − 3

2 | ≤ Cη, and the solution of (2.32) satisfies

ρ̂2(0) = ρ̂2(L̂2) = 1 − δ, |Ê2(0) − Ē2(0)| ≤ Cη.

Observing that the solution of (2.31) is structurally stable with respect of the length L̄, even if 
the solution may not be unique, we still could use a continuity method to obtain a supersonic 
solution (ρδ, Eδ)(x) for system (1.4) with supersonic boundary condition ρ(0) = ρ(1) = 1 − δ

when ε0 is small enough.
Step 3. As in Step 5 of the proof of Theorem 2.4 [18] and Step 5 of Theorem 2.2, it follows 

that

∥∥(1 − δ − ρδ)2
∥∥

H 1 ≤ C.

Therefore, by the compact imbedding H 1(0, 1) ↪→ C
1
2 [0, 1], there exists a function ρ0, as δ →

0+, up to a subsequence,
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(1 − δ − ρδ)2 ⇀ (1 − ρ0)2, weakly in H 1(0,1),

(1 − δ − ρδ)2 → (1 − ρ0)2, strongly in C
1
2 [0,1].

So one can show that system (1.4)-(1.5) has a weak interior supersonic solution ρ0(x) for x ∈
[0, 1]. �
2.3. Transonic shock solution

For example, with a step doping profile, there is no transonic shock solution if τ 	 1 and 
|M| 	 1, whose proof is similar to Theorem 5.13 [17]. Now we mainly consider the interior 
transonic shock solutions of system (1.4)-(1.5) when τ 
 1.

Theorem 2.5. Assume that b(x) ∈ L∞(0, 1), and there exists a number ε0 > 0 such that 
0 < |M| < ε0. Moreover, when τ 
 1, system (1.4)-(1.5) has infinitely many transonic shock so-
lutions (ρtrans, Etrans)(x) for x ∈ [0, 1], satisfying the entropy condition (1.9) and the Rankine-
Hugoniot condition (1.10) at the jump location x0.

Proof. Step 1. Let δ and η be small numbers to be defined later satisfying 0 < δ < η 	 1. Firstly, 
let us concern the following boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩

(
1 − 1

ρ2

)
ρx = ρE,

Ex = ρ − b̃(x),

ρ(0) = ρ(L) = 1 − δ,

(2.33)

where L ≥ 1
4 is a positive constant and b̃(x) ∈ L∞(R+) is define by (2.14). From [17], we 

know that (2.33) has a supersonic solution (ρ̃, Ẽ)(x) such that Ẽ(L) ≤ −C(L) < 0. Here C is 
a constant independent of τ . Next, in the case of τ 
 1 and ε0 	 1, we reconsider the ODE 
system,

⎧⎪⎪⎨
⎪⎪⎩

(
1 − 1

ρ2

)
ρx = ρE − 1

τ
,

Ex = ρ − b(x),

(ρ(0),E(0)) = (1 − δ, Ẽ(0)),

(2.34)

and the corresponding solution (ρ, E)(x). Applying the proof of Theorem 4.2 [17] and Theorem 
2.2, there exists a length L of the solution of (2.34) such that

|L −L| ≤ Cη, ρ(L) = 1 − δ and |E(L) − Ẽ(L)| ≤ Cη.

Step 2. Set ρl = 1 − η < 1 − δ and take a jump point L̂ ∈ (0, L) as the last number such that 
ρ(L̂−) = ρl , and note that

|Er − Ẽ(L)| ≤ Cη.
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Then we claim that there exists a number z such that the system (2.34) has a subsonic solution 
(ρsub, Esub)(x) on [L̂, z] satisfying

ρ(L̂+) = ρr = 1

1 − η
, ρ(z) = 1 + δ and z − L̂ ≤ Cη.

In fact, when Cη ≤ − Ẽ(L)
2 , we get

ρrEr − 1

τ
≤ 1

1 − η
(Ẽ(L) + Cη) ≤ Ẽ(L)

2
< 0.

Then, one can easily show that there exists a decreasing subsonic solution ρsub(x) near the point 
L̂, and we have

Esub(x) = Er +
x∫

L̂

(ρsub − b(x))dx

≤ Ẽ(L) + Cη + (x − L̂)ρr

≤ Ẽ(L)

4

if

|x − L̂| ≤ −(1 − η)
Ẽ(L)

4
. (2.35)

Next, we prove that z − L̂ ≤ Cη. First, from the first equation of (2.34), noting that

(ρsub)x = ρsubEsub − 1
τ

1 − 1
(ρsub)

2

≤ Ẽ(L)

4η(2 − η)
<

Ẽ(L)

8η
,

we have

z − L̂ = ρsub(z) − ρsub(L̂)∫ 1
0 (ρsub)x(sz + (1 − s)L̂)ds

≤ − η

1 − η
· 8η

Ẽ(L)
≤ 8η if η < min{− Ẽ(L)

2
,

1

2
}.

So assuming that η ≤ − Ẽ(L)
64 , it is easy to see that (2.35) holds and ρsub(z) = 1 + δ. Then, we 

can construct a transonic shock solution to (2.34) on [0, z] as follow

(ρtrans,Etrans)(x) =
{

(ρsup,Esup)(x), x ∈ [0, L̂],
(ρsub,Esub)(x), x ∈ (L̂, z],

satisfying
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ρ(0) = 1 − δ, ρ(z) = 1 + δ and 0 < ρ(L̂−) < 1 − η < ρ(L̂+).

Here, L̂ is a jump location and the R-H condition is satisfied at this point.
Step 3. Next, we argue by a continuity method. Then, we observe that the length L is continu-

ous with respect to the initial value Ẽ(0). First, set L = 1

2
and denote the corresponding solution 

of (2.34) by (ρ(1), E(1))(x). From Step 2, we conclude that there exists a number z′ such that

1

2
− Cη ≤ z′ ≤ 1

2
+ Cη, ρ(1)(z′) = 1 + δ,

and

−E(1)(
1

2
) − Cη ≤ E(z′) ≤ −E(1)(

1

2
) + Cη.

So we have a transonic solution to (2.34) on [0, z′] with L = 1
2 in the form of

(ρtrans,Etrans)(x) =
{

(ρsup,Esup)(x), x ∈ [0, L̂1],
(ρsub,Esub)(x), x ∈ (L̂1, z

′].

Here, L̂1 is a jump location and the R-H condition is satisfied at this point. If L = 3

2
(correspond-

ingly, (ρ(2), E(2))(x)), we know that there exists an interval [0, z′′] with

3

2
− Cη ≤ z′′ ≤ 3

2
+ Cη, ρ(2)(0) = 1 − δ, ρ(2)(z′′) = 1 + δ,

and

−E(2)(
3

2
) − Cη ≤ E(z′′) ≤ −E(2)(

3

2
) + Cη.

For fixed ε0, η, any Ẽ0 ∈ (E(1)(0), E(2)(0)), there exists a length z′ < L < z′′ of transonic solu-
tions, which is corresponding to the initial value Ẽ0. Thus, we realize that (1.4) has a transonic 
shock solution (ρtrans, Etrans)(x) for x ∈ [0, 1] with ρ(0) = 1 − δ, ρ(1) = 1 + δ, satisfying the 
entropy condition and the Rankine-Hugoniot condition at a jump location xδ

0 in [0, 1]. As in step 
7 of the proof of Theorem 4.2 [17], we have a transonic shock solution for (1.4)-(1.5) by letting 
δ → 0+. Because of the arbitrary choices of η, transonic shock solutions are infinitely many. The 
proof is complete. �
2.4. C1-smooth transonic solution

Theorem 2.6. Assume that τ is small and b(x) ∈ L∞(0, 1) is a step function, denoted by (2.13), 
there exists a constant ε0(τ ) > 0 such that α2 − α1 ≤ ε0, then (1.4)-(1.5) has infinitely many 
C1-smooth transonic solutions.
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Proof. Assume that b(x) ≡ b̄ > 1 and 0 < τ < τ0(b̄). Here τ0 is a small constant. From Theorem 
5.12 [17], we know that (1.4)-(1.5) has infinitely many C1-smooth transonic solutions in the form

ρ(x) =
{

ρsup(x), x ∈ [0, x0],
ρsub(x), x ∈ (x0,1],

where x0 is a the location of transition, and the solutions satisfy the smoothness condition (1.11)
at x0. Moreover,

Esup(x0) = Esub(x0) = 1

τ
, ρ′

sup(x0) = ρ′
sub(x0) = 1

4

(
1

τ
−
√

1

τ 2 − 8(b̄ − 1)

)
. (2.36)

Now, let x0 /∈ [α1, α2] and b(x) is denoted by (2.13). Then as in the proof of Theorem 2.2 and 
Theorem 2.4, we find that there exist a supersonic solution ρsup(x) on [0, x0] and a subsonic so-
lution ρsub(x) on [x0, 1], which satisfy (1.11) and (2.36) at x0. Because the choice of the location 
x0 is arbitrary, C1-smooth transonic solution are infinitely many. The proof is complete. �
3. Supersonic-dominated doping profile

In this section, we will discuss the existence/non-existence of all types of the solutions during 
supersonic-dominated doping profile, satisfying |N | 	 1. Here, the set N is defined by (1.8).

3.1. Non-existence of interior subsonic/supersonic/transonic solutions

Theorem 3.1. Assume that b(x) ∈ L∞(0, 1) is supersonic-dominated and

∫
[0,1]\N

b(x)dx ≤ 1 − ε with a parameter ε.

Afterwards, there exists a constant ε0 < ε/b̄ such that 0 < |N | ≤ ε0, then (1.4)-(1.5) has no 
interior subsonic solution.

Proof. Let ε0 > 0 be a small number, and suppose that there is an interior subsonic solution ρ(x)

of (1.4)-(1.5) when |N | = ε0. Moreover, the solution ρ(x) satisfies

ρ(x) > 0, x ∈ (0,1) and ρ(0) = ρ(1) = 1.

Then set a function of ρ,

w′(ρ) := 1

ρ
− 1

ρ3 for ρ ∈ [1,+∞), w(1) = 0,

and further

w(ρ) = lnρ + 1
2 − 1

for ρ ≥ 1.

2ρ 2
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Thus, (1.4) can be reduced to

(
wx + 1

τρ

)
x

= ρ − b(x), x ∈ (0,1). (3.1)

Then set f (x) := wx(x) + 1
τρ(x)

, and we get f ∈ H 1(0, 1) because (3.1) holds in the sense of 

distribution. By the compact imbedding H 1(0, 1) ↪→ C1/2[0, 1], we have f ∈ C1/2[0, 1]. From 
Proposition 2.5 [17], one can see that ρ ∈ C1/2[0, 1]. Thus, notice that wx = f − 1

τρ
∈ C1/2[0, 1], 

then w ∈ C1+1/2[0, 1].
Integrating (3.1) over [0, 1] with respect to x, we obtain

wx(1) − wx(0) =
1∫

0

(ρ − b)dx (3.2)

where we have used

1∫
0

(
1

τρ

)
x

dx = 0.

Noting that

w(x) > 0, x ∈ (0,1) and w(0) = w(1) = 0,

we have

wx(1) − wx(0) ≤ 0,

and

1∫
0

(ρ − b)dx ≥ 1 −
1∫

0

b(x)dx > 1 − (1 − ε + ε0b̄) > ε − ε0b̄.

Herewith we get a contradiction when 0 < ε0 < ε/b̄. Then, for any 0 < |N | ≤ ε0 < ε/b̄, there is 
no interior subsonic solution of (1.4)-(1.5). �

Next, we consider the non-existence of interior supersonic solutions and transonic shock so-
lutions when |N | 	 1. The results are as follows.

Theorem 3.2. Assume that b(x) ∈ L∞(0, 1) is supersonic-dominated, and there exists a constant 
ε0 > 0 such that 0 < |N | ≤ ε0, no interior supersonic solution to (1.4)-(1.5) exists when

∫
b(x)dx 	 1
[0,1]\N
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or the relaxation time τ is small and∫
[0,1]\N

b(x)dx ≤ 1 − ε with a parameter ε.

Proof. First of all, when |N | = ε0, we assume that ρ(x) is an interior supersonic solution of 
(1.4)-(1.5) satisfying

ρ(x) < 1, x ∈ (0,1) and ρ(0) = ρ(1) = 1.

The velocity u(x) = 1

ρ(x)
satisfies

⎧⎪⎨
⎪⎩
(

u − 1

u

)
ux = E − u

τ
,

Ex = 1

u
− b(x).

(3.3)

Case 1: b̂ 	 1, where b̂ := ∫[0,1]\N b(x)dx. Multiplying the first equation of (3.3) by 
(
(u −

1)2
)
x
, and integrating the resulting equation over (0, 1), we have

1∫
0

u(x) + 1

2u(x)

∣∣∣[(u(x) − 1)2
]
x

∣∣∣2 dx =
1∫

0

(
b(x) − 1

u(x)

)
(u(x) − 1)2dx (3.4)

where we have used

u((u − 1)2)x = 1

3
((u − 1)2(2u + 1))x.

Then, it follows from (3.4) that

1∫
0

u(x) + 1

2u(x)

∣∣∣[(u(x) − 1)2
]
x

∣∣∣2 dx

≤
1∫

0

(
b(x) − 1

u(x)

)
(u(x) − 1)2dx

≤ 1

4

1∫
0

(u(x) − 1)4dx +
1∫

0

b2(x)dx

≤ 1

4

1∫ ∣∣∣[(u(x) − 1)2
]
x

∣∣∣2 dx + (b̂ + ε0b̄
2).

(3.5)
0
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Thus, we get from (3.5) that

1∫
0

|[(u(x) − 1)2]x |2dx ≤ 4(b̂ + ε0b̄
2),

and further

u(x) ≤ 1 + [2(b̂ + ε0b̄
2)]1/2 on [0,1],

which leads to

1

1 + [2(b̂ + ε0b̄2)]1/2
≤ ρ(x) ≤ 1 on [0,1].

Similarly, we set

w(ρ) = lnρ + 1

2ρ2 − 1

2
for 0 < ρ ≤ 1.

Hence, (3.1) and (3.2) also hold. Because

w(x) > 0, x ∈ (0,1) and w(0) = w(1) = 0,

we get

wx(1) − wx(0) ≤ 0.

In addition, when ε0 is small enough and b̂ 	 1, then

1∫
0

(ρ − b)dx ≥ 1

1 + [2(b̂ + ε0b̄2)]1/2
− (b̂ + ε0b̄) > 0.

Herewith this is a contradiction.
Case 2: τ 	 1 and b̂ ≤ 1 − ε, where ε is a small constant. There exists a maximal point x̂

such that u(x) ≤ u(x̂) for x ∈ [0, 1] because u ∈ C[0, 1], and the first equation of (3.3) gives

E(x̂) = u(x̂)

τ
. (3.6)

As in (3.4), because of u(x̂) > 1 and (3.6), we have

1∫
x̂

u(x) + 1

2u(x)

∣∣∣[(u(x) − 1)2
]
x

∣∣∣2 dx =
1∫

x̂

(
b(x) − 1

u(x)

)
(u(x) − 1)2dx − (u(x̂) − 1)3

3τ

≤ b̄(u(x̂) − 1)2 − (u(x̂) − 1)3

.

(3.7)
3τ



8204 L. Chen et al. / J. Differential Equations 269 (2020) 8173–8211
Then, if u(x̂) − 1 ≥ ε/2 > 0, by choosing τ <
ε

6b̄
, one can derive from (3.7) that

1∫
x̂

u(x) + 1

2u(x)

∣∣∣[(u(x) − 1)2
]
x

∣∣∣2 dx < 0,

which is a contradiction. Otherwise, when 0 < u(x̂) −1 ≤ ε/2, b̂ ≤ 1 − ε and ε0 <
ε

2b̄
, as similar 

to the case of b̂ 	 1,

1∫
0

(ρ − b)dx ≥ 1

1 + ε/2
− (b̂ + b̄ε0) ≥ ε

2
− b̄ε0 > 0,

that is in contradiction with

wx(1) − wx(0) ≤ 0.

The proof is complete. �
Theorem 3.3. Suppose all the assumptions remain the same as mentioned in Theorem 3.2, and 
there exists a small constant ε0 > 0 such that 0 < |N | ≤ ε0, then no transonic shock solution to 
the system (1.4)-(1.5) exists.

Proof. Let (ρ, E)(x) be the pair of transonic solutions separated by a point ŷ in the form

ρ(x) =
{

ρsup(x), x ∈ (0, ŷ),

ρsub(x), x ∈ (ŷ,1),

and

ρlρr = 1, El = Er with ρl < 1 and ρr > 1.

If b̂ 	 1, we simply divide the proof into two cases, 0 < ŷ < 1
2 and 1

2 ≤ ŷ < 1. In the case 
0 < ŷ < 1

2 : first of all, one can prove that

El <
1

τ
− 1

8

when b̂ 	 1 and ε0 is small enough. In fact, if El ≥ 1/τ − 1
8 and b̂ + b̄ε0 < 1

8 ,

E(y) = Er +
y∫
(ρsub − b)dx ≥ 1

τ
− 1

8
+ 1

4
− (b̂ + b̄ε0) >

1

τ

ŷ
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for all y ∈ [ 3
4 , 1). Thus, (ρsub)x(y) > 0 for y ∈ [ 3

4 , 1), that is in contradiction with ρsub(1) = 1

and ρsub(y) > 1 over [ 3
4 , 1). Then because b̂ + b̄ε0 < 1

8 , it follows that

E(0) = El −
ŷ∫

0

(ρsup − b)dx < El +
ŷ∫

0

b(x)dx <
1

τ
− 1

8
+ (b̂ + b̄ε0) <

1

τ
.

Thus, (ρsup)x(y) > 0 because E(y) < 1
τ

near the end point y = 1, which contradicts to ρ(x) =
ρsup(x) < 1 for x ∈ (0, ŷ] and ρ(0) = 1.

Next, in the case of 1
2 ≤ ŷ < 1, we will prove that

El <
1

τ
+ b̄ε0 (3.8)

where ε0 is small enough. If El ≥ 1/τ + b̄ε0, we have

Esub(x) = El +
x∫

ŷ

(ρsub − b)ds > El − b̄ε0 ≥ 1

τ

and

ρsub(x)Esub(x) − 1

τ
> Esub(x) − 1

τ
> 0

for x ∈ [ŷ, 1). Thus, (ρsub)x(x) > 0 on [ŷ, 1), which in combination with ρr > 1 contradicts to 
ρsub(1) = 1. Hence, El < 1/τ + b̄ε0.

Then multiplying the first equation of (3.3) by 
(
(u − 1)2

)
x
, and integrating the resulting equa-

tion over (0, ŷ), we get

ŷ∫
0

u(x) + 1

2u(x)

∣∣∣[(u(x) − 1)2
]
x

∣∣∣2 dx

=
ŷ∫

0

(
b(x) − 1

u(x)

)
(u(x) − 1)2dx + (ul − 1)2

(
El − 2ul + 1

3τ

)

=
ŷ∫

0

(
b(x) − 1

u(x)

)
(u(x) − 1)2dx + (ul − 1)2

(
El − 1

τ

)
− 2(ul − 1)3

3τ
.

(3.9)

Furthermore, it is easy to check from (3.8) and (3.9) that

ŷ∫
u(x) + 1

2u(x)

∣∣∣[(u(x) − 1)2
]
x

∣∣∣2 dx <

ŷ∫
b(x)(u(x) − 1)2dx + b̄ε0(ul − 1)2.
0 0
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Then, by Hölder inequality and Sobolev imbedding theorem, it’s verified that

(u(x̆) − 1)4 ≤ C

ŷ∫
0

∣∣∣[(u(x) − 1)2
]
x

∣∣∣2 dx ≤ C

⎛
⎜⎝

ŷ∫
0

b(x)2dx + b̄ε0(u(x̆) − 1)2

⎞
⎟⎠

where u(x̆) = max
x∈[0,ŷ]

u(x) and C is a positive constant, independent of ε0. Therefore,

(u(x̆) − 1)2 ≤ C

(
b̄ε0 +

√
(b̄ε0)2 + 4(b̂ + b̄2ε0)

)
=: ϒ,

where we have used

ŷ∫
0

b(x)2dx ≤ b̂ + b̄2ε0.

Afterwards, for b̂ and ε0 sufficiently small, we get

E(ŷ) − E(0) =
ŷ∫

0

(ρsup − b)dx ≥ 1

2(1 + √
ϒ)

− (b̂ + b̄ε0) >
1

4
.

Thus,

E(0) < E(ŷ) − 1

4
≤ 1

τ
+ b̄ε0 − 1

4
≤ 1

τ
,

that is a contradiction.
If τ 	 1 and b̂ ≤ 1 − ε, we first assume that there exists a minimal point y̆ ∈ (0, ŷ) such that 

(ρsup)x(y̆) = 0, 0 < ρsup(y̆) < ρl and E(y̆) = u(y̆)

τ
. Similar to (3.9), we have

ŷ∫
y̆

u(x) + 1

2u(x)

∣∣∣[(u(x) − 1)2
]
x

∣∣∣2 dx

=
ŷ∫

y̆

(
b(x) − 1

u(x)

)
(u(x) − 1)2dx + (ul − 1)2

(
El − 2ul + 1

3τ

)

− (u(y̆) − 1)2
(

E(y̆) − 2u(y̆) + 1

3τ

)

< b̄(u(y̆) − 1)2 + b̄ε0(ul − 1)2 − 1

3τ
((ul − 1)3 + (u(y̆) − 1)3)

< 2b̄(u(y̆) − 1)2 − 1
(u(y̆) − 1)3

(3.10)
3τ
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where we have used El < 1/τ + b̄ε0 and ul < u(y̆). As showed in the case of τ 	 1 of Theorem 

3.2, we discuss the value of u(y̆): if u(y̆) − 1 ≥ δ > 0, choosing τ <
δ

6b̄
, one can obtain

ŷ∫
y̆

u(x) + 1

2u(x)

∣∣∣[(u(x) − 1)2
]
x

∣∣∣2 dx < 0.

This yields a contradiction. Then we only consider the case of 0 < u(y̆) − 1 ≤ δ. Herewith, by 
choosing b̄ε0 < ε

2 such that 
∫ 1

0 b(x)dx = b̂ + b̄ε0 < 1 − ε
2 , then there exists a number c0 > 0

such that

c0∫
0

(1 − b(x))dx =
1∫

c0

(1 − b(x))dx >
ε

4
.

Case 1: 0 < ŷ < c0. We claim that

El <
1

τ
− ε

16

when ε0 is small enough. Assume that El ≥ 1

τ
− ε

16
and b̄ε0 <

ε

16
,

E(1) = Er +
1∫

ŷ

(ρsub − b)dx

≥ Er +
1∫

c0

(1 − b)dx − b̄ε0

>
1

τ
− ε

16
+ ε

4
− b̄ε0

>
1

τ
+ ε

4
.

Thus, this is a contradiction, and further El < 1
τ

− ε
16 . Note that ρsup(x) = 1/u(x) ≥ 1

1+δ
over 

[0, ŷ], and choose δ and ε0 small such that δ + b̄ε0 < ε
16 , then it follows that

E(0) = El −
ŷ∫

0

(ρsup − b)dx

≤ El −
ŷ∫
(

1

1 + δ
− 1)dx + b̄ε0
0



8208 L. Chen et al. / J. Differential Equations 269 (2020) 8173–8211
<
1

τ
− ε

16
+ δ + b̄ε0

<
1

τ
,

which contradicts to ρ(x) = ρsup(x) < 1 for x ∈ (0, ŷ] and ρ(0) = 1.
Case 2: c0 ≤ ŷ < 1. Noting that El < 1/τ + b̄ε0, we have

E(0) = El −
ŷ∫

0

(ρsup − b)dx <
1

τ
+ 2b̄ε0 − ε

4
+ δ <

1

τ
− ε

8
,

when δ + b̄ε0 < ε
16 . This is a contradiction. Then, if ŷ is the minimal point of ρsup(x) on [0, ŷ], 

as in (3.9), we obtain

ŷ∫
0

u(x) + 1

2u(x)

∣∣∣[(u(x) − 1)2
]
x

∣∣∣2 dx < b̄(1 + ε0)(u(ŷ) − 1)2 − 1

3τ
(u(ŷ) − 1)3.

As in (3.10), when τ <
δ

6b̄
and δ + b̄ε0 <

ε

16
, we have same results. The proof is complete. �

3.2. Existence of interior supersonic/transonic solutions

In the subsection, we expect to show the existence of solutions when the doping profile b(x)

is supersonic-dominated. Of course, in the case of the supersonic doping profile (b < 1), the 
existence of the supersonic/transonic solutions have been studied in [18] when b(x) is close to 
the sonic line and the relaxation time is large. By the compactness technique and the continuity 
theorem, we have same results about the existence of interior supersonic/transonic solutions. 
Because the method used is similar to the former, by referring to the proof of Theorem 4.2 [17], 
Theorem 2.4 and Theorem 2.5 [18], and Theorem 2.2, we state the theorem and omit the proof.

Theorem 3.4. There exist at least one interior supersonic solution and infinitely many transonic 
shock solutions to (1.4)-(1.5) for |N | 	 1, when τ 
 1 and the doping profile b(x) ∈ L∞(0, 1)

satisfies

1 − ε ≤ b(x) ≤ b̄ with a small parameter ε.

4. Appendix. Non-existence of solutions

Now we give a special case that the system (1.4)-(1.5) has no subsonic solution with a 
subsonic-dominated doping profile. Referring to Section 5 of [17], we set

F = E − 1

τρ
, n = ρ − 1.

Then (1.4) is transformed to
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⎧⎪⎪⎨
⎪⎪⎩

nx = (n + 1)3F

(n + 2)n
,

Fx = n + 1 − b + (n + 1)F

τ(n + 2)n
.

(4.1)

In the phase plane, we know that all trajectories of (4.1) satisfy

dF

dn
= (n + 1 − b)(n + 2)

(n + 1)3 · n

F
+ 1

τ(n + 1)2 .

Here, the doping profile b(x) is a step function, defined in (2.13) and α1 = 0, α2 = ε0. A propo-
sition is stated as follow.

Proposition 4.1. When the parameter ε0 is sufficiently small, then, no interior subsonic solution 
exists to (1.4)-(1.5), no matter how small ε0 is.

Proof. First, we define a curve function

�(n) := −τ(n + 1 − b̄)(n + 2)n

n + 1

where the curve is determined by the equation

(n + 1 − b̄)(n + 2)

(n + 1)3 · n

F
+ 1

τ(n + 1)2 = 0.

From Lemma 5.3 [17], in the case of b ≡ b̄, we know that all trajectories to system (4.1) satisfy

F(n) ≤ 3

2
�(n) for n ≥ 0,

when 0 < τ < 1
3
√

b̄3+b̄
.

Assume that n(ε0) = n1 > 0 and choose ε0 sufficiently small such that F(n) ≥ 0 over [0, n1], 
then we want to prove F(n) > 3

2�(n) over [0, n1]. As in the proof of Lemma 5.2 [17], noting 
that

�′(n) = −τ

(
2 − b̄ + 2n − b̄

(n + 1)2

)
for n ≥ 0,

a direct calculation conclude that

(F 2 − 9

4
�2)′ = 2(F − 3

2�)

τ(n + 1)2 + 2�

[
1

2τ(n + 1)2 + 9

4
τ

(
2 − b̄ + 2n − b̄

(n + 1)2

)]

+ 2(b̄ − b)(n + 2)n

(n + 1)3

=
(

F 2 − 9

4
�2
)

· 2

τ(n + 1)2(F + 3�)
+ 2� · �1 + �2 on [0, n1]

(4.2)
2
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where �1 := 1

2τ(n + 1)2 + 9

4
τ

(
2 − b̄ + 2n − b̄

(n + 1)2

)
and �2 := 2(b̄ − b)(n + 2)n

(n + 1)3 . When 

τ 2 <
1

9(b̄3 + b̄)
, we have �1 > 0 as in the proof of Lemma 5.3 [17]. Then, one can see that 

�2 > 0 and �(n) > 0 on (0, n1], which in combination with �(0) = 0 and F(0) ≥ 0 lead to 

F(n) >
3

2
�(n) on [0, n1]. Thus, F(n1) >

3

2
�(n1). Indeed, over (n1, b̄ − 1), we also get

(F 2 − 9

4
�2)′ = (F 2 − 9

4
�2)

2

τ(n + 1)2(F + 3
2�)

+ 2� · �1 > 0, (4.3)

which gives F(n) >
3

2
�(n) on (n1, b̄ − 1). Because (b̄ − 1, 0) is a saddle point in phase plane 

(n, F) when b ≡ b̄, the trajectory of the system (4.1) will go to infinity. This is a contradiction. 
Thus, no subsonic solution to (1.4)-(1.5) exists. �

As similar to Proposition 4.1, let us reconsider (1.4)-(1.5) with the step doping profile and 
α1 = 1 − ε0, α2 = 0. Then, we will prove the non-existence of supersonic solution no matter how 
small ε0 is if τ is small enough.

Proposition 4.2. When the parameter ε0 is sufficiently small, then, no interior supersonic solu-
tion exists to (1.4)-(1.5).

Proof. We consider the interior supersonic solution n(x) < 0 over (0, 1). Assume that n(1 −
ε0) = n2 < 0, thus F(n2) < 0 when ε0 	 1. Next we will focus on the region F ≤ 0, and as in 
the proof of Lemma 5.7 [17], we only want to prove

F(n2) <
3

2
�(n2)

on [n2, 0]. Over [n2, 0], (4.2) also holds. When τ < 1
3
√

b̄
, we have �1 > 0 for n ∈ (−1, 0). 

Moreover, �2 < 0, �(n) < 0 and F(n) < 0 on [n2, 0). Thus, from (4.2), F(n) <
3

2
�(n) on 

[n2, 0], and further F(n2) <
3

2
�(n2). However, over (−1, n2), (4.3) holds, and we get

F(n) <
3

2
�(n)

on (−1, n2] by lemma 5.8 [17]. Then, we have limn→−1 F(n) = −∞. No supersonic solution to 
(1.4)-(1.5) exists. �
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