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Abstract

In this paper, we study the steady flows to the compressible Euler-Poisson system for semiconductors 
with the nonzero angular velocity in a radially symmetric way in an annulus. The main purpose here is to 
elucidate the effect of the angular velocity in the structure of the steady flows. We show the well-posedness 
of all kinds of types of radially symmetric spiral flows including radial subsonic/supersonic/transonic flows, 
and further give a specific classification of the flow patterns under the assumption of various boundary con-
ditions at the inner and the outer circle. Additionally, different from the purely radial case, the uniqueness 
of radial subsonic flow can not be obtained due to the nonlocal effect caused by the angular velocity, conse-
quently we prove the uniqueness of the radial subsonic solution in the case without the semiconductor effect 
or with a small current assumption. Moreover, some new patterns of spiral flows with or without shock are 
observed, such as a smooth transonic flow and a supersonic-supersonic shock flow for a large relaxation 
time parameter.
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1. Introduction

In this paper, we consider the steady compressible Euler-Poisson system with the semicon-
ductor effect as follows: ⎧⎪⎪⎨

⎪⎪⎩
div(ρu) = 0,

div (ρu ⊗ u + pIn) = ρ∇� − ρu

τ
,

�x� = ρ − b(x),

(1.1)

which is usually described for the local behaviors of the electron density ρ and the electron 
average velocity u in semiconductor devices. The equations (1.1) express the conservation of 
electrons, the conservation of momentum and the local change of the electrostatic potential �, 
respectively. In the second equation of (1.1), ρ∇� represents the Coulomb force of electron 
particles and ρu

τ
stands for the effect of the semiconductor damping where the constant parameter 

τ > 0 is the momentum relaxation time. The given function b(x) > 0 is the impurity density, 
also called the doping profile for semiconductors. Physically, p is the pressure as a function of 
ρ, typically stated as

the isothermal case: p(ρ) = Tρ and the isentropic case: p(ρ) = Kργ ,

where T is the constant temperature, and K > 0, γ > 1 are constants.
The system (1.1) is a hyperbolic-elliptic coupled system, which is elliptic in the subsonic 

states (|u| < c(ρ)) and hyperbolic in the supersonic states (|u| > c(ρ)) for the local sound speed 
c(ρ) = √p′(ρ). For this system, our aim of this paper is to investigate the structure of radi-
ally symmetric subsonic/supersonic/transonic steady-states with nonzero angular velocity in a 
two-dimensional annulus with different boundary data on the inner and outer circle, especially 
involving the sonic degenerate boundary.

Actually, the system (1.1) is simplified originally from the hydrodynamic model of semicon-
ductors. The full model since its first introduction by Bløtejær [5] has been paid much attention 
for its ability of simulating hot electron effects, which is not considered in the classical drift-
diffusion model [24]. Here we refer to [23,27] for more derivation in physics and mathematics. 
Importantly, the study of the stationary flows is known to be the cornerstone of the whole re-
search subject for the hydrodynamic model of semiconductors. Especially for the unipolar steady 
model represented by Euler-Poisson equations, Degond and Markowich [10,11] first investigated 
the existence and uniqueness of subsonic steady-state with a strong subsonic condition in one di-
mension and for potential flow, in three dimension, respectively. Thereafter more contributions 
related to the steady subsonic flows were made in [2,3,17,18,26], see also the references therein. 
On the other hand, Peng and Violet [28] proved the existence of a unique supersonic steady-state 
with a strong supersonic background in one dimension, and Bae et al. [4] studied the case of two-
dimensional supersonic flow without the semiconductor effect, i.e., τ = ∞. Regarding the steady 
transonic flows, Ascher et al. [1] and Rosini [29] first observed the transonic shocks via phase 
plane analysis, where the boundary was subsonic but the doping profile was supersonic. Then, 
Gamba [14] and Gamba and Morawetz [15] technically constructed the transonic shocks via vis-
cosity vanishing method, but the artificial boundary layers were presented. After then, Luo and 
Xin [22] and Luo et al. [21] studied the well-posedness of the one-dimensional transonic steady-
states with non-sonic boundary conditions without the semiconductor effect. To sum up, all the 
results mentioned here were related to the non-degenerate states only.
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When the boundary is assumed to be sonic, a degenerate case of the boundary, Li-Mei-Zhang-
Zhang [19,20] first showed in great depth the structure of all types of the one-dimensional 
steady-states to the system (1.1) when the doping profile is restricted in subsonic/supersonic 
states. Latterly for one-dimensional case, there are some remarkable contributions in this topic, 
such as the transonic doping profile case [6], the case of structural stability [12,13], the case of 
C∞-smoothness [30] of transonic steady-states, and even the bipolar case [25]. For the multi-
dimensional case, Chen, et al. [7,8] only concerned purely radial flows in an annulus where the 
angular velocity is not considered, and they further proved the well-posedness of all types of 
radial steady-states to the system (1.1) with sonic boundary.

Subsequently to the previous work [7,8], it is quite natural for us to study spiral flows [9, Sec-
tion 104] of the system (1.1), which are the superpositions of symmetric flows with the angular 
velocity and radial velocity being both nonzero. The so-called spiral flows substantially possess 
richer and more interesting properties on the structure of these steady-states due to the nonzero 
angular velocity. Particularly for transonic spiral flows with/or without shocks, we expect to dis-
cover more new flow patterns compared with the purely radial case. Therefore, combining the 
ideas of the obtained results for the steady Euler system [31] and Euler-Poisson system [7,8], we 
will study the well-posedness of radially symmetric spiral steady-state solutions of the system 
(1.1), and give a fairly complete classification to these solutions with suitable boundary condi-
tions on the inner and outer circle of a two-dimensional annulus

A := {x = (x1, x2) : r0 < r =
√

x2
1 + x2

2 < r1}, 0 < r0 < r1 < +∞.

Here the most significant point is that we consider the degenerate boundary in this paper.
For this purpose, we introduce the polar coordinate (r, θ) as

x1 = r cos θ, x2 = r sin θ,

and denote the radially symmetric spiral solutions to (1.1) of the form

u = u1(r)er + u2(r)eθ , ρ = ρ(r), E = ∇� = E(r)er

and the corresponding boundary conditions

(ρ,ρu)||x|=r0 = (ρ0, ρ0u0), ρ||x|=r1 = ρ1, (1.2)

with

er =
(

cos θ

sin θ

)
, eθ =

(− sin θ

cos θ

)
, u0 = u10er + u20eθ .

Based on the assumption of the radial condition b = b(r) ∈ L∞(r0, r1), the system (1.1) can be 
written as ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(rρu1)r = 0, r0 < r < r1,

(rρu2
1)r − ρu2

2 + rpr = rρ
(
E − u1

τ

)
, r0 < r < r1,

(rρu1u2)r + ρu1u2 = − rρu2

τ
, r0 < r < r1,

(rE) = r(ρ − b), r < r < r ,

(1.3)
r 0 1
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and the boundary conditions (1.2) become

ρ(r0) = ρ0, (1.4)

ρ(r1) = ρ1, (1.5)

(u1(r0), u2(r0)) = (u10, u20), (1.6)

for positive constants (ρ0, ρ1, u10) and a nonzero parameter u20. Consequently, the goal of our 
work below is to look for the steady-state solutions of system (1.3) with the conditions (1.4)-(1.6).

To solve the problem (1.3)-(1.6), one can set a steady current in the radial direction by

J1 = ρu1,

and gets from the first equation of (1.3) and (1.6) that

rJ1(r) = r0J1(r0) = r0ρ0u10 =: r0J10 for r ∈ [r0, r1]. (1.7)

Thus, one has

u1 = J1

ρ
= r0ρ0u10

rρ
= r0J10

rρ
. (1.8)

For convenience, let us denote a new variable

n(r) := rρ

r0J10
= ρ

J1
= 1

u1
, (1.9)

and consider the isothermal case, i.e., p(ρ) = Tρ. Here let T = 1 without loss of generality such 
that the local sound speed c2(ρ) = p′(ρ) = 1 and the Mach number M can be defined by

M2 := |u|2
c2(ρ)

= u2
i , i = 1,2,

then the flow is referred to be in the subsonic/sonic/supersonic state if

|u|2 = u2
1 + u2

2 � 1 : the local sound speed.

Now from (1.7), (1.8) and (1.9), the system (1.3) is reduced to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 − 1

n2

)
nr = n

(
E + 1

r
+ u2

2

r
− 1

τn

)
, r0 < r < r1,

(u2)r = −
(

1

r
+ n

τ

)
u2, r0 < r < r1,

(rE)r = n − rb, r0 < r < r1,

(1.10)

with the corresponding boundary conditions
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n(r0) = n0, (1.11)

n(r1) = n1, (1.12)

u2(r0) = u20, (1.13)

for the constants n0 = ρ0
J10

> 0, n1 = r1ρ1
r0J10

> 0 and u20 �= 0.
What’s more, from the second equation of (1.10) and the condition (1.13), it’s easy to get

u2(r) = u20r0

r
exp

⎧⎨
⎩− 1

τ

r∫
r0

n(s)ds

⎫⎬
⎭ , r ∈ [r0, r1]. (1.14)

Defining a function Ê by

Ê(r) := E(r) + 1

r
+ u2

2(r)

r
, r ∈ (r0, r1), (1.15)

we can simplify the system (1.10)-(1.13) to the following problem

⎧⎪⎪⎨
⎪⎪⎩

(
1 − 1

n2

)
nr = nÊ − 1

τ
, r ∈ (r0, r1),

(rÊ)r = n − rb − K(r;n),

n(r0) = n0, n(r1) = n1,

(1.16)

where the function K(r; n) is denoted by

K(r;n) := 2u2
20r

2
0

(
1

r3 + n

τr2

)
exp

⎧⎨
⎩− 2

τ

r∫
r0

n(s)ds

⎫⎬
⎭ . (1.17)

Similarly as formula (7) in [19], the system (1.16) can be changed as a nonlinear elliptic system

⎧⎨
⎩
[
r

(
1

n
− 1

n3

)
nr + r

τn

]
r

= n − rb − K(r;n), r ∈ (r0, r1),

n(r0) = n0, n(r1) = n1.

(1.18)

It is clear that equation (1.18) is uniformly elliptic when n(r) > 1 or 0 < n(r) < 1 for r ∈ [r0, r1]. 
Meanwhile, equation (1.18) will be degenerate at the boundary points when n0 = 1 or n1 = 1. 
We realize that, given different boundary data n0 and n1, the system (1.18) may present entirely 
different properties. Therefore, our goal of the paper is to investigate the well-posedness of the 
system (1.18) when the constants n0 and n1 are in a variety of sizes, and make a fairly complete 
classification of solutions as far as possible.

To this end, we first assume a doping function b(r) := rb(r) ∈ L∞(r0, r1), and

b := essinf
r∈[r0,r1]

rb and b := esssup
r∈[r0,r1]

rb.

Then some different types of the solutions to (1.16)/(1.18) are introduced as follows.
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Definition 1.1. Suppose that a function n satisfies

r1∫
r0

[
r

(
1

n
− 1

n3

)
nr + r

τn

]
ϕrdr +

r1∫
r0

(n − b− K(r;n))ϕdr = 0,

equivalently,

1

2

r1∫
r0

[
r(n + 1)

n3

(
(n − 1)2

)
r
+ r

τn

]
ϕrdr +

r1∫
r0

(n − b− K(r;n))ϕdr = 0, (1.19)

for any test function ϕ ∈ H 1
0 (r0, r1), and (n − 1)2 ∈ H 1(r0, r1). Now we define that

(i) If 0 < n(r) < 1 for r ∈ (r0, r1) with 0 < n0 ≤ 1 and 0 < n1 ≤ 1 such that u1(r) ≥ 1 and 
|u|(r) > 1 over [r0, r1] with u20 �= 0, then
• we call n(r) a radial supersonic/or supersonic-sonic and totally supersonic solution to 

(1.18).
(ii) If n(r) > 1 for r ∈ (r0, r1) with n0 ≥ 1 and n1 ≥ 1 (correspondingly, 0 < u1(r) ≤ 1 over 

[r0, r1]), then the solution n(r) is called to be
• if |u|(r) < 1 on [r0, r1], a totally subsonic solution to (1.18);
• if |u|(r) > 1 on [r0, r1], a radial subsonic/or subsonic-sonic but totally supersonic solution 

to (1.18);
• if |u| > 1 and |u| < 1 both exist on [r0, r1], accordingly a radial subsonic/or subsonic-

sonic but totally transonic solution to (1.18).

Particularly, when n0 �= 1 and n1 �= 1, it follows that n ∈ H 1(r0, r1); when n0 = n1 = 1, one gets 
(n − 1)2 ∈ H 1

0 (r0, r1) for the weak solution n.

Definition 1.2. Let (n, Ê)(r) be a pair of the solution to the system (1.16).

(iii) If (n, Ê) ∈ C1(r0, r1) × W 1,∞(r0, r1) with 0 < n0 ≤ 1 and n1 ≥ 1, and there exists a point 
z0 ∈ (r0, r1) such that

(n, Ê)(r) =
{

(nsup, Êsup)(r) for r ∈ [r0, z0],
(nsub, Êsub)(r) for r ∈ [z0, r1],

where 0 < nsup(r) < 1 on (r0, z0), nsub(r) > 1 on (z0, r1), and

nsup(z0) = nsub(z0) = 1, n′
sup(z0) = n′

sub(z0) and Êsup(z0) = Êsub(z0), (1.20)

then n(r) is called to be a C1-smooth transonic solution in the radial direction, corresponding 
to
• a totally supersonic solution when |u|(r) > 1 on [r0, r1];
• a totally transonic solution when |u|(r) < 1 on some intervals of [r0, r1].
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(iv) If 0 < n0 ≤ 1 and n1 ≥ 1, and the function n(r) is split by a point z0 in the form of

n(r) =
{

nsup(r) < 1 for r ∈ (r0, z0),

nsub(r) > 1 for r ∈ (z0, r1),

satisfying the entropy condition at z0,

0 < nsup(z0) < 1 < nsub(z0), (1.21)

and the Rankine-Hugoniot condition,

nsup(z−
0 ) + 1

nsup(z−
0 )

= nsub(z
+
0 ) + 1

nsub(z
+
0 )

, Êsup(z−
0 ) = Êsub(z

+
0 ), (1.22)

then n(r) is called to be a transonic shock solution in the radial direction, corresponding to
• a totally supersonic shock solution for |u|(r) > 1 on [r0, r1];
• a totally transonic shock solution for |u|(r) < 1 on a subset of [r0, r1].

For the smooth solutions in Definition 1.1 and 1.2, once we solve the boundary value problem 
(1.18) for the solution n, in virtue of the first equation of (1.16), then the solution (n, Ê) of the 
problem (1.16) can be derived where

Ê =
(

1

n
− 1

n3

)
nr + 1

τn
= n + 1

2n3

[
(n − 1)2

]
r
+ 1

τn
,

which in combination with (1.14) and (1.15) gets a solution (n, u2, E) of the system (1.10)-(1.13), 
and further coincides with a corresponding solution (ρ, u1, u2, E) to the system (1.3)-(1.6).

Now by Definition 1.2, we are able to study the shock solutions to the system (1.3) with differ-
ent boundary values. Recall that, a piecewise smooth function (u±

1 , u±
2 , ρ±, E±) ∈ [C1(A±)]3 ×

W 1,∞(A±) with a jump on a circle r = z0 is a radially symmetric spiral shock solution to the 
system (1.3) in A, if (u±

1 , u±
2 , ρ±, E±) satisfy the system (1.3) in A±, respectively, and satisfy 

the entropy condition [p] > 0 and the Rankine-Hugoniot conditions

{
[ρu1] = [ρu2

1 + p] = 0,

[ρu1u2] = [E] = 0,

where [X] = X+(z0) − X−(z0), which exactly corresponds to the conditions (1.21) and (1.22).
From now on, according to Definition 1.1 and 1.2, we divide the well-posedness problems 

(1.16)/(1.18) into the following four problems. That is,

(i) find the smooth solutions of (1.18) satisfying 0 < n ≤ 1, if 0 < n0 ≤ 1, 0 < n1 ≤ 1;
(ii) find the smooth solutions of (1.18) satisfying n ≥ 1, if n0 ≥ 1, n1 ≥ 1;
(iii) find radial transonic solutions without shock to (1.16), if 0 < n0 ≤ 1, n1 ≥ 1;
(iv) find radial transonic solutions with shock to (1.16), if 0 < n0 ≤ 1, n1 ≥ 1.
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For the above four problems, in the case of zero angular velocity, it has been proved in [7,8] that 
there exists at least one interior supersonic solutions 0 < n(r) ≤ 1, a unique interior subsonic 
solution n(r) ≥ 1 over [r0, r1], infinitely many transonic shock solutions for τ � 1, and infinitely 
many C1-smooth transonic solutions for τ � 1 when the boundary is radially sonic and the 
doping profile is greater than the sonic curve, i.e., b> 1.

In this paper, the presence of the nonzero angular velocity brings us more new phenomena on 
the structure of solutions. For this case, we observe the following features of problems (i)-(iv): 
(1) when the boundary is radially sonic, the difficulty caused by the degeneracy of the equation 
is still a key point we need to solve such like that of [7,8], which will affect the well-posedness 
and regularity of solutions. Precisely, for the degenerate equation, the standard methods applied 
for the uniformly elliptic equations in [10,28] can’t be effective and the solutions only belong 
to C

1
2 Hölder continuous at the degenerate points; (2) the system (1.16) is non-autonomous, 

however, different from a truly one-dimensional autonomous system, we can not work on the 
overall phase plane by the phase plane analysis, thus the local analysis method will be the only 
way to solve the problems; (3) with the joining of the nonzero angular velocity, it could be a 
barrier to obtain the well-posedness of the solutions and draw a clear classification of the flow 
patterns.

In order to overcome these difficulties, we still adopt the approaches combined by the techni-
cal compactness method, the phase plane analysis and the local singularity analysis in the critical 
position (see [7,8]), to deal with a non-autonomous system with the degenerate boundary. More 
importantly, our purpose here is to explain the effect of the nonzero angular velocity in proving 
the well-posedness and classifying the flow patterns of all solutions. Based on the rigorous proof, 
we have two findings for the role of the angular velocity played in this paper. The first finding is 
that the nonzero angular velocity will bring a nonlocal term in the equations, which mainly pre-
vents the proof of the uniqueness of the radial subsonic/subsonic-sonic flow. So we are obliged 
to confirm the uniqueness results for the radial subsonic flow without the semiconductor effect or 
with a small current condition. The second finding is that the system possesses more new types 
of the flows, and particularly there exist a smooth transonic flow of being subsonic in the radial 
direction and a supersonic-supersonic shock flow of being transonic in the radial direction when 
the relaxation time is large enough, that is quite different from the case of zero angular velocity. 
The representations are given in Theorem 2.1, Theorem 3.1, Theorem 4.1 and 4.3.

The paper is organized as follows. In section 2, we prove the existence of the supersonic 
solutions of problem (i) with the flow being supersonic in the radial direction. In section 3, 
we show the existence of the steady-states with |u20| ≤ C

√
τ and the uniqueness of solution 

with τ = +∞ or a small current constant J10 = r0ρ0 to problem (ii) when the radial velocity is 
subsonic/or subsonic-sonic, and classify the flow patterns by the size of |u20|. In section 4, our 
aim is to investigate the steady flows with being transonic in the radial direction. We show that 
there exist infinitely many smooth radial transonic solutions of problem (iii) if τ � 1, and there 
exist infinitely many transonic shock solutions if τ � 1 and |u20| � 1, and supersonic shock 
solutions if τ � 1 and |u20| � 1 for problem (iv).

Remark 1.3. Note that all there conclusions in this paper are obtained in the isothermal case, 
which can be similarly extended to the isentropic case. Besides, all radial spiral flows we study 
above start from the inner circle to the outer one. For the fluid flows from the outer circle to the 
inner direction, we believe there exist still some corresponding results.
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2. Supersonic/supersonic-sonic flows in the radial direction

In this section, we consider the steady-state solutions to the system (1.18) where the radial 
velocity is supersonic/or supersonic-sonic with the boundary condition 0 < n0 ≤ 1 and 0 < n1 ≤
1. For the elliptic system

⎧⎨
⎩
[
r

(
1

n
− 1

n3

)
nr + r

τn

]
r

= n − b− K(r;n), r ∈ (r0, r1),

n(r0) = n0, n(r1) = n1,

(2.1)

according to Definition 1.1, we summarize the following problem and results.
Problem I. Find the smooth function 0 < n ≤ 1 in Type (i) of Definition 1.1, which solves the 

system (2.1) with the boundary conditions:

0 < n0 ≤ 1 and 0 < n1 ≤ 1,

when the doping function is in the subsonic state, i.e., b> 1.

Theorem 2.1 (the steady-states of Type (i)). Let the doping profile satisfy b ∈ L∞(r0, r1) and 
b> 1. When 0 < n0 ≤ 1 and 0 < n1 ≤ 1, there exists at least one smooth steady-state solution n ∈
C

1
2 [r0, r1] for the degenerate case, or n ∈ C1+α[r0, r1] with 0 < α < 1

2 for the non-degenerate 
case, to the system (2.1), satisfying

0 < n ≤ n(r) < 1 on (r0, r1),

where n = n(n0, n1, b, τ, r0, r1, u2
20) is a positive constant. Then in view of the fact that

u1(r) = 1

n(r)
≥ 1 and |u|(r) > 1 on [r0, r1],

the solution n(r) corresponds to the totally supersonic flow of the equations (1.1).

Remark 2.2. In Theorem 2.1, the condition b > 1 can be replaced by a weaker condition, i.e., 
b + 1

τ
> 1. Indeed, with a case of a strong supersonic background, just like 0 < n0, n1 � 1, the 

above condition can be further weakened, inspired of [7,28]. Nevertheless, when the boundary 
data n0, n1 are less than the sonic value 1, there maybe exist no solution for the problem (see 
[20] for instance), which confirms the necessity of the condition b> 1.

Remark 2.3. In Theorem 2.1, for the non-degenerate case 0 < n0, n1 < 1, we further obtain 
a solution (ρ, u1, u2, E) ∈ [C1+α[r0, r1]

]2 × C2+α[r0, r1] × W 1,∞(r0, r1) to the system (1.3). 

However, the fact is that (ρ, u1, u2, E) ∈
[
C

1
2 [r0, r1]

]2 × C1+ 1
2 [r0, r1] × W 1,∞(r0, r1) for the 

degenerate case of n0 = 1 or n1 = 1.

Proof of Theorem 2.1. For this situation, we are interested to get a radial velocity u1(r) =
1/n(r) ≥ 1 over [r0, r1]. Thus it implies by (1.14) that the total velocity |u| =

√
u2

1 + u2
2 > 1, 

physically corresponding to the totally supersonic flow.
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Note that (1.18) is a degenerate system whenever n0 = 1 or n1 = 1. To deal with the case of 
the degenerate boundary, we define an approximate system of (1.18) as follows (see [7]):

⎧⎪⎨
⎪⎩
[
r

(
1

nk

− k2

(nk)3

)
(nk)r + rk

τnk

]
r

= nk − b− K(r;nk), r ∈ (r0, r1),

nk(r0) = n0, nk(r1) = n1,

(2.2)

with a constant k > 1. Let the function vk = k/nk , then system (2.2) is changed as

⎧⎨
⎩
[
r

(
vk − 1

(vk)3

)
(vk)r + rvk

τ

]
r

= k

vk

− b− K(r; k/vk), r ∈ (r0, r1),

vk(r0) = k/n0 ≥ k, vk(r1) = k/n1 ≥ k.

(2.3)

Clearly, (2.3) is a system of non-degenerate and nonlinear elliptic equation. So our task is to find 
a weak solution vk ∈ H 1(r0, r1) to (2.3) such that k ≤ vk < +∞. Recalling [7, Theorem 3.2, Step 
1], we first establish a mapping F : η → v by solving the following quasi-linear elliptic equation

⎧⎨
⎩
[
r(η + 1)

η
(v − 1)vr

]
r

+ rvr

τ
= k

η
− b− η

τ
− K(r; k/η), r ∈ (r0, r1),

v(r0) = k/n0 > 1, v(r1) = k/n1 > 1,

(2.4)

with η ∈D. Here the solution space D ∈ C1[r0, r1] is denoted by

D := {ω ∈ C1[r0, r1]
∣∣k ≤ ω ≤ M,ω(r0) = k/n0,ω(r1) = k/n1,

‖ω‖Cα[r0,r1] ≤ �,‖ω‖C1[r0,r1] ≤ ϒ(�)}

for some undetermined constants M, � and ϒ(�). Next our intention is to look for a unique 
fixed point of the operator F in D by the Schauder fixed point theorem [16], that is exactly a 
solution of (2.3).

In order to obtain the fixed point, the first step is to assert that (2.4) has a unique solution 
v ∈ C1+α[r0, r1] for 0 < α < 1. To prove this, an operator F0 : ζ → ξ is defined for any fixed 
η ∈D by solving the linear equations

⎧⎨
⎩
[
r(η + 1)

η
(ζ − 1)ξr

]
r

+ rξr

τ
+ G(r;η) = 0, r ∈ (r0, r1),

ξ(r0) = k/n0 > 1, ξ(r1) = k/n1 > 1,

(2.5)

where

ζ ∈ D0 :=
{
ν ∈ C0[r0, r1]

∣∣k ≤ ν ≤ K, ν(r0) = k/n0, ν(r1) = k/n1

}
for a constant K to be determined later and

G(r;η) := K(r; k/η) + b+ η − k
.

τ η
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We prove that (2.5) has a solution ξ ∈ H 1(r0, r1), and by the compact imbedding H 1(r0, r1) ↪→
C0[r0, r1], the image set F0(D0) is precompact. Also, it is seen that the operator F0 is continuous. 
Next we will prove F0(D0) ⊂ D0. As in [7, Theorem 3.2, Step 1], it is directly shown by b +
1/τ > 1 and K(r; k/η) > 0 that

ξ(r) ≥ k for r ∈ [r0, r1],
and

‖(ξ − k)r‖L2(r0,r1)
≤ r1 − r0

r0(k − 1)
‖G(r;η)‖L2(r0,r1)

,

so it follows from Poincaré’s inequality that

ξ ≤ k + C(r0, r1, k)‖G(r;η)‖L2(r0,r1)
≤ C(r0, r1, k, τ,b, u2

20,M) =:K(M),

which implies the result that ξ ∈ D0. Therefore, applying the Schauder fixed point theorem, one 
easily gets a fixed point v ∈ D0 for the operator F0 such that F0(v) = v, that is the solution of 
(2.4). Further, with the help of the regularity theory [16] and Sobolev imbedding theory, it holds 
that v ∈ C1+α[r0, r1] with 0 < α < 1

2 and k ≤ v ≤ K(M) satisfying

‖v‖Cα[r0,r1] ≤ C1(r0, r1, k, τ,b, u2
20,M),

‖v‖C1+α[r0,r1] ≤ C2(C1, r0, r1, k, τ,b, u2
20,M),

for constants C1 and C2. At the same time, the uniqueness of the solution v is directly obtained 
by using [7, Lemma 3.1]. Thus, the above assertion is proved.

Now the second step is to verify the condition F(D) ⊂D. As similar as [7, Theorem 3.2, Step 
1], it is checked that

k ≤ v ≤ k + C(r0, r1)

√
Kmax + b+ M

τ
, (2.6)

where

K(r; k/η) ≤ 2u2
20

(
1

r0
+ 1

τ

)
=: Kmax(u

2
20, r0, τ ). (2.7)

One can see from (2.6) that v(r) ≤ M over [r0, r1] when M is large enough by taking

M ≥ k + C2(r0, r1)

2τ
+ 1

2

√(
2k + C2(r0, r1)

τ

)2

+ 4C2(r0, r1)(Kmax + b) − 4k2.

Finally, we choose � = C1(r0, r1, k, τ, b, u2
20) and ϒ(�) = C2(C1, r0, r1, k, τ, b, u2

20) such 
that F(D) ⊂ D is qualified. Meanwhile, we know that the continuous operator F is compact de-
fined in the closed convex set D ⊂ C1[r0, r1] due to the compact imbedding C1+α ↪→ C1[r0, r1]. 
Therefore, a unique fixed point vk is a solution of (2.3) for any fixed k, which is obtained by the 
Schauder fixed point theorem. What’s more, we find that nk = k is the solution of (2.2).
vk
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As in [7, Theorem 3.2, Step 2-3], we give a uniformly bounded estimate of the function vk for 
any k > 1. Hence let k → 1+, then the limit of the sequence solution {nk}k>1 is a solution to the 
system (2.1) satisfying formula (1.19) and

0 < n ≤ n(r) < 1 for r ∈ (r0, r1),

where a constant n is a constant only depending on (r0, r1, τ, b, u2
20) with the degenerate case. 

But for the non-degenerate case of 0 < n0, n1 < 1, it implies by [28] that the lower bound n is 
also dependent on n0 and n1. Afterwards we discuss the regularity of the solution n. Especially 
for the degenerate case of n0 = 1 or n1 = 1, the optimal regularity we only get is n ∈ C

1
2 [r0, r1] ∪

C1(r0, r1). But if 0 < n0, n1 < 1, the regularity of n will be raised to n ∈ C1+α[r0, r1] for any 
0 < α < 1

2 by the regularity theory and the Sobolev imbedding theorem. We can see [7,19] for 
details.

Thus we complete the whole proof. �
3. Subsonic/subsonic-sonic flows in the radial direction

Our purpose of this section is to investigate the essential effect of the nonzero angular ve-
locity on well-posedness and the flow pattern of the system (1.18) when the radial velocity is 
subsonic/or subsonic-sonic. Main problem and results are stated below.

Problem II. Find the smooth function n ≥ 1 in Type (ii) of Definition 1.1, which solves the 
system (2.1) with the boundary conditions:

n0 ≥ 1 and n1 ≥ 1,

when b> 1.

Theorem 3.1 (the steady-states of Type (ii)).

P1. the existence result: Assume that b ∈ L∞(r0, r1) and b > 1 hold. For n0 ≥ 1 and n1 ≥ 1, 
there exists a constant σ0 = σ0(

√
τ) such that if

0 < |u20| ≤ σ0,

then the system (2.1) admits a radial subsonic-sonic smooth solution n ∈ C
1
2 [r0, r1] for the 

degenerate case, or a radial subsonic smooth solution n ∈ C1+α[r0, r1] with 0 < α < 1
2 for 

the non-degenerate case. In addition, we have

1 + λ sin

(
π · r − r0

r1 − r0

)
≤ n(r) ≤ C for r ∈ [r0, r1], (3.1)

where λ = λ(r0, τ, b, n0, n1) and C = C(r0, τ, ̄b, |u20|, n0, n1) are the positive constants.
P2. the uniqueness result: (u1) if |u20| > 0 with τ = +∞, the above solution is unique;

(u2) if 0 < |u20| � 1 with 0 < τ < +∞, further assume the constant J10 = ρ0u10 is small 
enough, then there exists at most one smooth solution n ∈ C1+α[r0, r1] to the system (2.1).
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P3. the flow patterns: Assume that the relaxation time τ is large enough, i.e., τ � 1.
(1) For the degenerate case of n0 = 1 or n1 = 1 or n0 = n1 = 1, it is proved that

Subcase 1.1. if |u20| � 1, then n(r) is called a totally supersonic solution with the fact 
that |u|(r) > 1 over [r0, r1];

Subcase 1.2. If |u20| � 1, then n(r) is called a totally transonic solution where the cases 
of |u|(r) < 1 and |u|(r) > 1 both exist for r ∈ [r0, r1].

In particular, there exists a positive constant σ = σ1 such that if |u20| = σ1, then n(r) is 
called a totally supersonic-sonic solution, corresponding to |u|(r) ≥ 1 over [r0, r1].

(2) For the non-degenerate case of n0 > 1 and n1 > 1, we have
Subcase 2.1. if |u20| � 1, then n(r) is a totally supersonic solution. That is, |u|(r) > 1

on [r0, r1];
Subcase 2.2. if |u20| � 1, then n(r) is a totally subsonic solution with the fact that 

|u|(r) < 1 over [r0, r1];
Subcase 2.3. if |u20| belongs to a domain [σ2, σ3] with the constants 0 < σ2 < σ3, then 

there exist both |u|(r) < 1 and |u|(r) > 1, so n(r) is known to be a totally transonic 
solution on [r0, r1].

In addition, there must exist two constants σ ′
2 and σ ′

3 such that 0 < σ ′
2 ≤ σ2 < σ3 ≤ σ ′

3, 
then for |u20| = σ ′

2, n(r) is a totally subsonic-sonic solution, i.e., |u|(r) ≤ 1 over [r0, r1], 
and for |u20| = σ ′

3, n(r) is a totally supersonic-sonic solution, i.e., |u|(r) ≥ 1 on [r0, r1].
Assume that τ and |u20| is small enough, i.e., τ � 1 and |u20| � 1, there are still corre-
sponding classifications of solutions as similar as the case of τ � 1.

Remark 3.2. In P1 of Theorem 3.1, we emphasize the fact that the restriction |u20| ≤ C
√

τ is 
needed in the case of 0 < τ < +∞. Obviously, the above condition is not necessary for the Euler-
Poisson system without the effect of semiconductor, i.e., τ = +∞. Additionally, the Hölder index 
1
2 is optimal only in the degenerate case, which is also found in [7,19].

Remark 3.3. The uniqueness of the purely radial case, 0 < τ < +∞ and u20 = 0, has been 
proved in [7]. However, in P2 of Theorem 3.1, the uniqueness results are obtained only in the 
two special case when u20 �= 0. In fact, we have no way to prove the uniqueness of solutions 
in the general case since the comparison principle applied in [7,19] can’t work owing to the 
nonlocal effect caused by the nonzero angular velocity.

Remark 3.4. In P3 of Theorem 3.1, the solution n ≥ 1 only represents a subsonic-sonic flow 
in the radial direction, and physically the final categories of the solutions of system (2.1) are 
determined by the size of |u20|. Therefore, it is essentially different from the purely radial result 
[7, Theorem 2.1].

Proof of Theorem 3.1. Part 1. The proof of the existence result. The part of the proof is split 
into three steps.

Step 1. We first deal with the degenerate case with n0 = 1 or n1 = 1 or n0 = n1 = 1, and focus 
on the solution n(r) ≥ 1, i.e., u1(r) ≤ 1 to (2.1) over [r0, r1]. Without loss of generality, let’s 
directly consider the case: n0 = n1 = 1. To prove this, one constructs an approximate system of 
(2.1) as follows:
371



L. Chen, M. Mei and G. Zhang Journal of Differential Equations 373 (2023) 359–388
⎧⎪⎨
⎪⎩
[
r

(
1

nj

− j2

(nj )3

)
(nj )r + r

τnj

]
r

= nj − b− K(r;nj ), r ∈ (r0, r1),

nj (r0) = nj (r1) = 1,

(3.2)

with a constant 0 < j < 1. Here the function K is given by (1.17).
Step 2. the existence of the approximate solution nj ∈ C1[r0, r1] to (3.2). Concretely, we 

define a mapping T : S → C0[r0, r1], T (m) = n̄j by solving the linearized system of (3.2)

⎧⎪⎨
⎪⎩
[
r

(
1

m
− j2

m3

)
(n̄j )r

]
r

− r

τm2 (n̄j )r = n̄j − b− 1

τm
− K(r;m), r ∈ (r0, r1),

n̄j (r0) = n̄j (r1) = 1,

(3.3)

where we have denoted a closed subset of C0[r0, r1] by

S := {ω ∈ C0[r0, r1]|1 ≤ ω ≤ C,ω(r0) = ω(r1) = 1} for an undermined constant C,

and m ∈ S . Therefore we have a solution n̄j ∈ H 1(r0, r1) to (3.3) by the elliptic theory, and it 
is easy to see that T is continuous and compact by the continuity argument and the Sobolev 
imbedding theorem respectively. Now it suffices to prove the condition T (S) ⊂ S in applying 
the Schauder fixed point theorem. Similarly to the proof of [7, Lemma 2.3], and by the weak 
maximum principle [16, Theorem 8.1], one has

1 ≤ n̄j ≤ C,

provided that

1 ≤ b+ 1

τm
+ K(r;m) ≤ C for any m ∈ S. (3.4)

To get (3.4), noting that b> 1 and

b+ 1

τm
+ K(r;m) ≤ b+ 1

τ
+ 2u2

20

(
1

r0
+ m

τ

)
exp

⎧⎨
⎩− 2

τ

r∫
r0

m(s)ds

⎫⎬
⎭ ,

we choose

|u20| ≤
√

τ

2

and

C = 2

(
b+ 1

τ
+ 2u2

20

r0

)
, (3.5)

such that
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b+ 1

τ
+ 2u2

20

(
1

r0
+ m

τ

)
≤ C.

So the condition (3.4) holds. Therefore the system (3.2) admits a solution nj ∈ C0[r0, r1] for any 
0 < j < 1 by using the Schauder fixed point theorem. Also, nj ∈ C1[r0.r1] directly follows from 
the regularity theory and the Sobolev imbedding theorem.

Step 3. the existence and regularity of a weak solution n(r) ≥ 1 of the system (2.1). For any 
0 < j < 1, the uniformly bounded estimate of (nj − 1)2 in H 1

0 (r0, r1) is derived by the same 
methods in [7, Theorem 2.1]. Let j → 1−, then the system (2.1) has a limit solution n(r) ≥ 1 on 
[r0, r1] satisfying (1.19) and (n − 1)2 ∈ H 1

0 (r0, r1).
From the proof of [7, Theorem 2.1] and [19, Theorem 2.1], we can see that the optimal reg-

ularity is n ∈ C
1
2 [r0, r1] for the degenerate case: n0 = n1 = 1, so does the case of n0 = 1 or 

n1 = 1. In addition, we define the solution of (3.3) by mj when K(r; m) ≡ 0, and it follows from 
[7, Lemma 2.3] that

mj(r) ≥ 1 + λ sin

(
π · r − r0

r1 − r0

)
, r ∈ [r0, r1],

where λ = λ(r0, τ, b) is a small constant independent of j . Imitating the idea of the comparison 
principle in [7, Lemma 2.2], and due to K > 0, it is easy to obtain that

nj (r) ≥ mj(r) for r ∈ [r0, r1].

Furthermore, we consider the non-degenerate boundary case: n0, n1 > 1. Actually, as in [10, 
Theorem 1], there exists a solution n ∈ H 2(r0, r1) ↪→ C1+α[r0, r1] with 0 < α < 1

2 , and

1 < Ĉ1(min{n0, n1},b) ≤ n(r) ≤ Ĉ2(max{n0, n1},b, |u20|), (3.6)

for the bounded constants Ĉ1 and Ĉ2. Therefore, the inequality (3.1) is true.
Part 2. the proof of the uniqueness result.
Case 1. |u20| > 0 with τ = +∞ for the degenerate case. When τ = +∞, it is checked that 

K(r; n) = 2u2
20r

2
0

r3 . In this case, we also have

nj (r) ≥ 1 + λ sin

(
π · r − r0

r1 − r0

)
, r ∈ [r0, r1],

where λ = λ(r0, b) is a small constant independent of j . Afterwards the uniqueness of the limit 
solution n in Part 1 is obtained by coping the idea of the proof of [7, Theorem 2.1].

Case 2. 0 < |u20| � 1 with 0 < τ < +∞ and 0 < J10 � 1 for the non-degenerate case. In 
this case, we have the equations for the solution n̂ := rρ

r0
= J10

u1
= J10n as follows:

⎧⎪⎨
⎪⎩
[
r

(
1

n̂
− J 2

10

n̂3

)
n̂r + rJ10

τ n̂

]
r

= r0n̂ − b− K(r; n̂/J10), r ∈ (r0, r1),

n̂(r0) = ρ0 > 1, n̂(r1) = r1ρ1 > 1.

(3.7)
r0
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Here the solution n̂ ∈ C1[r0, r1] has been derived by Part 1 satisfying n̂ > 1. Now referring to 
[10, Theorem 2], it suffices to show the uniqueness of the solution n̂. Let n̂1 and n̂2 be two 
solutions of the system (3.7), then subtracting two equations one gets

[r(a1(r)e)r ]r − J0(ra2(r)e)r = r0e − a3(r) (3.8)

where e(r) = n̂2 − n̂1 and

a1(r) =
1∫

0

F ′(n̂1 + η(n̂2 − n̂1))dη > 0, F ′(n̂) = 1

n̂
− J 2

10

n̂3 ,

a2(r) = 1

τ n̂1n̂2
> 0, a3(r) = K(n̂2) − K(n̂1).

Multiplying (3.8) by a1e and integrating it over [r0, r1] we have

r1∫
r0

r|(a1e)r |2dr − J10

r1∫
r0

ra2e(a1e)rdr +
r1∫

r0

r0a1e
2 − a1a3edr = 0. (3.9)

We estimate, using Young’s inequality:

∣∣∣∣∣∣
r1∫

r0

ra2e(a1e)rdr

∣∣∣∣∣∣≤
1

2

r1∫
r0

r
√

a1a2e
2dr + 1

2

r1∫
r0

r
a2√
a1

|(a1e)r |2dr, (3.10)

and calculate a3:

a3(r) = u2
20[g1(r; n̂2)e(r) + g2(r; n̂1, n̂2)], r ∈ [r0, r1],

where

g1(r; n̂2) = 2r2
0

J10τr2 exp

⎧⎨
⎩− 2

J10τ

r∫
r0

n̂2(s)ds

⎫⎬
⎭≤ 2

J10τ

and

g2(r; n̂1, n̂2) = 2r2
0

(
1

r3 + n̂1

J10τr2

)⎛⎝exp

⎧⎨
⎩− 2

J10τ

r∫
r0

n̂2(s)ds

⎫⎬
⎭− exp

⎧⎨
⎩− 2

J10τ

r∫
r0

n̂1(s)ds

⎫⎬
⎭
⎞
⎠

≤ C(r0, τ,b)

J 2
10

∣∣∣∣∣∣
r∫

r0

(n̂2 − n̂1)(s)ds

∣∣∣∣∣∣≤
C(r0, r1, τ,b)

J 2
10

‖n̂2 − n̂1‖L2(r0,r1)
,

such that
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r1∫
r0

a1a3edr =
r1∫

r0

a1e(g1e + g2)dr

≤ 2u2
20

J10τ

r1∫
r0

a1e
2dr + C(r0, r1, τ,b)u

2
20

J 2
10

‖n̂2 − n̂1‖L2(r0,r1)

r1∫
r0

a1edr

≤ 2u2
20

J10τ

r1∫
r0

a1e
2dr + C(r0, r1, τ,b)u

2
20

J 2
10

‖a1‖L2(r0,r1)

r1∫
r0

e2dr,

(3.11)

where we have used Hölder’s inequality. Therefore it follows from (3.9), (3.10) and (3.11) that

r1∫
r0

r

(
1 − J10a2

2
√

a1

)
|(a1e)r |2dr

+
r1∫

r0

[
r0a1 − J10

2
r
√

a1a2 − 2u2
20

J10τ
a1 − C · u2

20

J 2
10

‖a1‖L2(r0,r1)

]
e2dr ≤ 0.

(3.12)

Accordingly, there exists a small constant Ĵ10 = Ĵ10(r0, r1, τ, b) such that if 0 < J10 < Ĵ10 and 
0 < |u20| < Û2 for a small constant Û2 = Û2(r0, r1, τ, b, J10), then both terms on the left hand 
side of (3.12) are positive, which get a contradiction to the assumption that n̂1 �= n̂2. The proof 
of uniqueness result is complete.

Part 3. the classification of flow patterns. We note from (1.14) that

|u|2(r) = u2
1 + u2

2 = 1

n2 + u2
20

r2
0

r2 exp

⎧⎨
⎩− 2

τ

r∫
r0

n(s)ds

⎫⎬
⎭ ,

and the function u2
2 is strictly decreasing in r . Here let’s define

uM := max
r∈[r0,r1]

|u|2(r) and um := min
r∈[r0,r1]

|u|2(r).

For the degenerate case, it is seen that

uM ≥ max
{
|u|2(r0), |u|2(r1)

}
> 1,

and one has

um = min
{
|u|2(r0), |u|2(r1), |u|2(rM)

}

≥ 1

n(r )2 + u2
20

r2
0
2 exp

{
−2(r1 − r0)n(rM)

τ

}

M r1
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where rM is the maximum point of the function n(r) in (r0, r1). By (3.5), we get 1 < n(rM) ≤
4(b+ 2u2

20
r0

) if τ ≥ r0

r0b+2u2
20

. Thus, it’s checked that

um ≥ u2
20

r2
0

r2
1

exp

⎧⎨
⎩−8(r1 − r0)(b+ 2u2

20
r0

)

τ

⎫⎬
⎭ .

Now if τ � 1 such that

u2
20 ≤ ln 2 · r0τ

8(r1 − r0)
− r0b≤ ln 2 · r0τ

16(r1 − r0)
, (3.13)

we have 8(r1 − r0)(b+ 2u2
20

r0
) ≤ ln 2 · τ . Thus,

um ≥ r2
0u2

20

2r2
1

.

So it follows from (3.13) that um > 1 for sufficiently large τ and r1

r0
√

2
< |u20| ≤ ln 2

4

√
r0τ

(r1−r0)
, 

which means that the flow is totally supersonic. As we know by [7], the flow is subsonic-sonic 
when |u20| = 0. When 0 < |u20| � 1, it is easy to see from (3.1) that uM > 1 > um. This is a 
totally transonic flow. Of course, due to the continuous dependence on the parameter |u20| > 0
for the solution n(r), there must exist a constant σ1 ∈ [0, r1

r0
√

2
] such that |u20| = σ1, satisfying 

uM > um = 1, which corresponds to a totally supersonic-sonic flow.
For the non-degenerate case with n0, n1 > 1, we show that the flow is also totally supersonic 

if τ � 1 and |u20| � 1 similarly to the foregoing case. In fact, it is checked from (3.6) that

n(rm) := min
r∈[r0,r1]

n(r) ≥ Ĉ1(min{n0, n1},b) > 1.

Hence if τ � 1 and |u20| � 1, it is easy to see that 0 < um < uM < 1. This is certainly a totally 
subsonic flow. What’s more, because of the continuous dependence between the function |u| and 
the parameter |u20|, there exist two critical points σ ′

2 and σ ′
3 such that

|u20| = σ ′
2 ⇒ um < uM = 1 (the subsonic-sonic flow),

and

|u20| = σ ′
3 ⇒ um = 1 < uM (the supersonic-sonic flow).

When |u20| belongs to a certain subarea of [σ2, σ3] ⊆ [σ ′
2, σ

′
3], we can show that uM > 1 > um, 

which points directly at a totally transonic flow.
All the above are the results of τ � 1. Then when τ � 1, it is easy to get that the flow is totally 

transonic only if |u20| � 1 for the degenerate case, and the flow is totally subsonic if |u20| � 1
for the non-degenerate case.

The proof is complete. �
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4. Transonic flows in the radial direction

In this section, we concern with the steady flows being transonic in the radial direction. Here 
the system (1.16) is written as

⎧⎪⎪⎨
⎪⎪⎩

(
1 − 1

n2

)
nr = nÊ − 1

τ
, r ∈ (r0, r1),

(rÊ)r = n − b− K(r;n),

n(r0) = n0, n(r1) = n1.

(4.1)

4.1. Radial transonic flows without shock

We now study the structure of the smooth solutions with a transonic flow in the radial direc-
tion.

Problem III. Find the smooth function n in Type (iii) of Definition 1.2, which solves the 
system (4.1) with the boundary conditions:

0 < n0 ≤ 1 and n1 ≥ 1,

when b> 1.

Theorem 4.1 (the steady-states of Type (iii)). Let b ∈ L∞(r0, r1) and b > 1. For 0 < n0 ≤ 1 and 
n1 ≥ 1,

(1) if τ is large enough, then there is no smooth steady-state solution of Definition 1.2 to the 
system (4.1);

(2) if τ is small enough with n0 = n1 = 1, and assume that |u20| ≤ C
√

τ and b ∈ C0[r0, r1], 
then there exist infinitely many C1-smooth radial transonic solutions to (4.1) satisfying

0 < n(r) < 1 on (r0, z0), n(r) > 1 on (z0, r1),

with a point z0 ∈ (r0, r1), and the smoothness condition (1.20) follows.

Remark 4.2. From Theorem 4.1(2), we can recognize the C1-smooth radial transonic solutions 
in the situation of n0 = n1 = 1, and the conclusions are true even when the boundary value n0, n1
be extremely close to the sonic state, i.e., 1 − n0 ≤ Cτ and n1 − 1 ≤ Cτ . But for more general 
cases with any n0 < 1 or n1 > 1, it is found that whether the continuous solution exists remains 
unanswered.

Proof of Theorem 4.1. (1) The non-existence of the smooth solutions with τ � 1. For conve-
nience, we denote

F = r

(
Ê − 1

τn

)
, � = n − 1,

then (4.1) can be converted into
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⎧⎪⎪⎨
⎪⎪⎩

�r = (� + 1)3

r(� + 2)
· F

�
,

Fr = � + 1 − b+ � + 1

τ(� + 2)
· F

�
− 1

τ(� + 1)
− K(r;� + 1),

(4.2)

and

�(r0) = n0 − 1 ≤ 0, �(r1) = n1 − 1 ≥ 0. (4.3)

Obviously, each solution of (4.2)-(4.3) always corresponds to a solution of (4.1). Here and in 
what follows, we extend the continuous function b(r) periodically to [r0, +∞). Therefore, all 
trajectories of the non-autonomous system (4.2) satisfy

dF

d�
= r(� + 1 − b)(� + 2)

(� + 1)3 · �

F
+ r

τ (� + 1)2 − r(� + 2)

τ (� + 1)4 · �

F
− r(� + 2)K(r;� + 1)

(� + 1)3 · �

F
.

(4.4)
Now suppose that (�, F)(r) is a smooth solution to the system (4.2)-(4.3) over [r0, r1] such 

that

(�,F )(r) =
{

(�sup,Fsup)(r), r ∈ [r0, z0],
(�sub,Fsub)(r), r ∈ [z0, r1],

where

−1 < �sup(r) < 0 on (r0, z0), �sub(r) > 0 on (z0, r1),

�sup(z0) = �sub(z0) = 1, Fsup(z0) = Fsub(z0) with z0 ∈ (r0, r1).

Firstly, let’s assert that Fsup(z0) < 0 for a sufficiently large τ . Aiming to get a contradiction, 
we assume that Fsup(z0) ≥ 0. For this situation, we argue by two cases. That is, Fsup(r) > 0 and 
Fsup(r) < 0 as r tends to z−

0 . As a result, if �sup(r) < 0 and Fsup(r) > 0 near z−
0 , we get from 

(4.2)1 and (4.4) that �r(r) < 0 and dF
d�

> 0 in a small neighborhood of z−
0 , which implies that 

the trajectory of the smooth solution can’t be close to the sonic line � = 0 in the region of F > 0. 
This is a contradiction to �sup(z0) = 1. If �sup(r) < 0 and Fsup(r) < 0 near z−

0 , we should prove 
Fsup(z−

0 ) = 0. Now it implies by (4.2)1 that �r > 0 near z−
0 . From (4.4), it follows that

dF

d�
≤ 1

(� + 1)2

[
−C(r0, max

r∈[r0,r1]
�sup(r),b, |u20|) �

F
+ r1

τ

]
< 0,

if �
F

≤ C
τ

near z−
0 and τ � 1. Hence, the trajectory of the solution can’t go to the line F = 0 at the 

point r = z0, which leads to a contradiction; so we have to consider the case of dF
d�

≥ 0, however, 

it is check that dF
d�

≤ C
τ

near z−
0 . Clearly, if τ � 1, then the trajectory of the solution also can’t 

reach to the point (0,0) in the (�, F) plane at r = z0. Therefore, the assertion of Fsup(z0) < 0 is 
true.

Secondly, since Fsub(z0) = Fsup(z0) < 0, then �r < 0 near z+
0 . Due to �sub(z0) = 1, it is 

impossible to derive a radial subsonic trajectory of � > 0 on (z0, r1). Thus the smooth solution 
does not exist if τ � 1.
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(2) The existence of infinitely many C1-smooth transonic solutions with n0 = n1 = 1 and 
τ � 1. In this case, our goal is to find the C1-smooth steady-state (�, F)(r) over (r0, r1) to 
equations (4.2) with the boundary conditions

�(r0) = �(r1) = 0. (4.5)

satisfying

�(r) < 0 for r ∈ (r0, z0),

�(r) > 0 for r ∈ (z0, r1),

and

�(z−
0 ) = �(z+

0 ) = 0, �′(z−
0 ) = �′(z+

0 ), F (z−
0 ) = F(z+

0 )

for a number z0 ∈ (r0, r1).
In other words, by analyzing the characters of the trajectories of (4.4), we will construct a C1-

smooth radial transonic trajectory to equations (4.2) with the sonic boundary (4.5) in the (�, F)

plane. The proof is divided into three steps.
Step 1. The radial supersonic part of the trajectory. In this step, we prove that there exists a 

number z0 ∈ (r0, r1), then the system (4.2) with (4.5) has a trajectory in radial supersonic region 
−1 < � < 0 over (r0, z0), such that this trajectory ends at the point (0, 0) in the (�, F) plane.

To do this, for � ≤ 0, we denote an autonomy system

⎧⎪⎪⎨
⎪⎪⎩

�r = (� + 1)3

z0(� + 2)
· F1

�
,

(F1)r = � + 1 − b+ � + 1

τ(� + 2)
· F1

�
− 1

τ(� + 1)
− Kmax,

for r0 ≤ r ≤ z0, (4.6)

where Kmax is defined by (2.7). Thus,

dF1

d�
= z0

(
(� + 1 − b)(� + 2)

(� + 1)3 · �

F1
+ 1

τ(� + 1)2 − (� + 2)

τ (� + 1)4 · �

F1
− (� + 2)Kmax

(� + 1)3 · �

F1

)

=: z0 · H(�,F1;b,Kmax).

(4.7)

With regard to the equation H(�, F1; b, Kmax) = 0, the critical curve is shown as follows:

�(�) = (� + 2)�

(� + 1)2 + τ(� + 2)�Kmax

� + 1
− τ(� + 1 − b)(� + 2)�

� + 1

= [2u2
20(� + 1) + 1](� + 2)�

(� + 1)2 − τ(� + 1 − 2u2
20

r0
− b)(� + 2)�

� + 1

=: [2u2
20(� + 1) + 1](� + 2)�

2 + �(�).

(4.8)
(� + 1)
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Thanks to the fact that

�′(�) = −τ

⎛
⎝2� + 2 − 2u2

20

r0
− b−

2u2
20

r0
+ b

(� + 1)2

⎞
⎠ ,

�′′(�) = −2τ

⎛
⎝1 +

2u2
20

r0
+ b

(� + 1)3

⎞
⎠ ,

we check from b> 1 that

�(�) < �(0) = 0,

�′(�) = 2u2
20 + 2[u2

20(� + 1) + 1]
(� + 1)3 + �′(�) > 2τ(b− 1) > 0, (4.9)

�′′(�) < 0, lim
�→−1

�(�) = −∞,

on the domain � ∈ (−1, 0).
Suppose that F1(0) = −l/2 < 0, and because of dF1

d�
(0) = 1

τ
> 0, we will consider the region 

of � ≤ 0 and F ≤ 0. As similar as [8, Lemma 3.4], it is seen from (4.7) and (4.8) that

dF1

d�
= z0

τ(� + 1)2 ·
(

F1 − β�

F1
+ (β − 1)�

F1

)
, (4.10)

where β > 1 is a constant to be determined later. From (4.9) and (4.10), we show

(F 2
1 − β2�2)′ = 2F1F

′
1 − 2β2��′

= 2z0(F1 − β�)

τ(� + 1)2 + 2�

[
z0(β − 1)

τ (� + 1)2 − β2�′
]

= 2z0(F
2
1 − β2�2)

τ (� + 1)2(F1 + β�)
+ 2� · I (�),

(4.11)

where

I (�) = z0(β − 1)

τ (� + 1)2 − 2u2
20β

2 − 2u2
20β

2

(� + 1)2 − 2β2

(� + 1)3 + β2τ

⎛
⎝2� + 2 − 2u2

20

r0
− b−

2u2
20

r0
+ b

(� + 1)2

⎞
⎠ .

First observing that the function I (�) must change sign in (−1, 0), but as in [8, Lemma 3.4], one 
can get

I (�) > 0 for � ∈
[
−1 + 1

k0
,0

]
, 1 ≤ k0 < +∞,
2
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,

with a sufficiently small constant τ = τ1(r0, z0, k0, b, u2
20) and a constant β = β1

(
z0,

1
τ

)
> 1. 

Therefore it follows from (4.10), (4.11) and F 2
1 (0) − β2�2(0) > 0 that

F 2
1 (�) − β2�2(�) > 0 for � ∈

[
−1 + 1

2k0
,0

]
,

and further

F1(�) < β�(�) < 0 for � ∈
[
−1 + 1

2k0
,0

]
. (4.12)

From (4.10), we obtain

dF1

d�
(�) > 0 for � ∈

[
−1 + 1

2k0
,0

]
.

Now let F̂ := F − F1 and suppose that F(0) = −l < 0, so F̂ (0) = F(0) − F1(0) = −l/2 < 0. 
Note that

dF̂

d�
= rH(�,F ;b,Kmax)−z0H(�,F1;b,Kmax)+ rT (�)�

F
for −1+ 1

2k0
≤ � ≤ 0, r0 ≤ r ≤ z0

where we know

T (�) = (b− b+ Kmax − K(r;� + 1))(� + 2)

(� + 1)3 > 0 for − 1 + 1

2k0
≤ � ≤ 0, r0 ≤ r ≤ z0.

By local continuation method similarly as [8, Lemma 3.3], it is easy to see that

dF

d�
(�) >

dF1

d�
(�) > 0 for � ∈

[
−1 + 1

2k0
,0

]
,

which leads to

F(�) ≤ β�(�) < 0 for � ∈
[
−1 + 1

2k0
,0

]
.

Now it is certain that the trajectory ending at (0, −l) with l > 0 can pass through the line F = 0 at 

a point r = s0 for � ∈
[
−1,−1 + 1

2k0

]
. As a result, by integrating the equation (2.1) over (s0, z0), 

we have

[
r(� + 2)�

(� + 1)3 �r + r

τ (� + 1)

] ∣∣∣r=z0

r=s0
=

z0∫
s0

(� + 1 − b− K(r))dr.

Notice by the first equation of (4.2) that
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F = r(� + 2)�

(� + 1)3 �r ≤ 0 on (s0, z0),

then it implies

[
r

τ (� + 1)

] ∣∣∣r=z0

r=s0
= 1

τ

(
z0 − s0

�(s0) + 1

)
≥

z0∫
s0

(� + 1 − b− K)(r)dr,

which indicates to

s0

�(s0) + 1
− z0 ≤ τ(z0 − s0) sup

r∈(s0,z0)

(b+ K − 1 − �)(r) ≤ Cτ(z0 − s0), if |u20| ≤ C
√

τ .

Choose τ sufficiently small such that �(s0) + 1 ≤ 1
2k0

≤ r0
r1+1 , then we obtain

z0 − s0 ≥ C

τ

(
2k0s0 − z0

)
≥ C

τ

(
r1 + 1

r0
s0 − z0

)
≥ C

τ
, if τ � 1,

which is contradiction to 0 < r0 < s0 < z0 < r1 < +∞. Hence the trajectory of radial supersonic 
solutions ending at the point (0, −l) can’t satisfy the boundary condition �(r0) = 0. Obviously, 
the trajectory can’t end at the point (0, l). In conclusion, the solution trajectory of (4.4) with (4.5)
ends at the point (0, 0) in the (�, F) plane if |u20| ≤ C

√
τ .

Step 2. The radial subsonic part of the trajectory. In this step, we prove the existence of a 
radial subsonic solution � > 0 to the following system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�r = (� + 1)3

r(� + 2)
· F

�
, r ∈ (z0, r1)

Fr = � + 1 − b+ � + 1

τ(� + 2)
· F

�
− 1

τ(� + 1)
− K0(r;� + 1),

�(z0) = �(r1) = 0,

(4.13)

with

K0(r;� + 1) = 2u2
20r

2
0

(
1

r3 + � + 1

τr2

)
exp

⎧⎨
⎩− 2

τ

⎛
⎝ z0∫

r0

(�̂(s) + 1)ds +
r∫

z0

(�(s) + 1)ds

⎞
⎠
⎫⎬
⎭ .

Here −1 < �̂ ≤ 0 is the radial supersonic solution of (4.2) and (4.5) on [r0, z0]. The second result 
we want to show is that the solution trajectory of (4.13) starts from the original point (0, 0) in 
radial subsonic region � > 0 of the plane (�, F).

First of all, it is known from Theorem 3.1 that the solution �(r) > 0 of (4.13) exists over 
[z0, r1] when |u20| ≤ C

√
τ . Then let’s consider the system (4.6) on [z0, r1]. That is,

⎧⎪⎪⎨
⎪⎪⎩

�r = (� + 1)3

z0(� + 2)
· F2

�
,

(F2)r = � + 1 − b+ � + 1 · F2 − 1 − Kmax,

for z0 ≤ r ≤ r1. (4.14)
τ(� + 2) � τ(� + 1)
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Assume that �(z0) = 0 and F2(z0) = l
2 > 0. Similar as the proof of [8, Lemma 3.3], we can 

get the results that

F2(�) ≥ β�(�) ≥ 0 for 0 ≤ � ≤ b+ 2u2
20

r0
,

and

dF2

d�
> 0 for � ≥ b+ 2u2

20

r0
,

with a small constant τ = τ2(r0, z0, b, u2
20) � 1 and a constant β = β2

(
r0,

1
τ

)
> 1. Therefore the 

trajectories of (4.14) starting from the point (0, l2 ) go to infinity. Let F(z0) = l, then we apply 
the local continuation method in [8, Lemma 3.3] to obtain

dF

d�
> 0 for � ≥ 0,

which indicates that the trajectories of (4.13) starting from the point (0, l) can’t go back to the 
line � = 0. Furthermore, it is impossible that the trajectories of (4.13) start from the point (0, −l). 
So the second result is proved if τ � 1.

Step 3. C1-smoothness of the solution. From Step 1-2, it has been shown that there exists a 
continuous solution to the system (4.2) and (4.5) with a critical point z0. Thus it just needs to 
prove the C1-smoothness of the continuous solution in the neighborhood of z0.

By (4.4), the slope of F(�) at the point � = 0 can be calculated in the form of

θ1 = 1

2

(
z0

τ
−
√(z0

τ

)2 − 8z0
[
(b(z0) − 1) + 1/τ + ĉ

])

or

θ2 = 1

2

(
z0

τ
+
√(z0

τ

)2 − 8z0
[
(b(z0) − 1) + 1/τ + ĉ

])

where

ĉ = 2u2
20r

2
0

(
1

z3
0

+ 1

τz0

)
exp

⎧⎨
⎩− 2

τ

z0∫
r0

(�sup(s) + 1)ds

⎫⎬
⎭ .

Then copying the methods used in the proof of [8, Theorem 3.6], one can get

lim
�→0−

dF(�)

d�
exists = lim

�→0+
dF(�)

d�
exists = F ′(0) = θ1.

Accordingly we have a C1-smooth solution of (4.1) with n0 = n1 = 1. Since the choice of the 
smooth point z0 ∈ (r0, r1) is arbitrary, the C1-smooth radial transonic solutions are infinitely 
many. The proof is finished. �
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4.2. Radial transonic flows with shock

In the study of radial transonic flows with shock, we find that the radial velocity will jump 
from supersonic to subsonic and the angular velocity is continuous across the shock, but the total 
velocity may be supersonic, sonic or subsonic after the shock. Based on this, we prepare to list 
various types of the flows with shock with different conditions.

Problem IV. Find the discontinuous function n in Type (iv) of Definition 1.2, which solves 
the system (4.1) with the boundary conditions:

0 < n0 ≤ 1 and n1 ≥ 1,

when b> 1.

Theorem 4.3. Let b ∈ L∞(r0, r1) and b> 1, and 0 < n0 ≤ 1 and n1 ≥ 1, then

(a) assume further that τ is large enough, i.e., τ � 1; the system (4.1) admits a shock solution 
in the form of

(n, Ê)(r) =
{

(nsup, Êsup)(r), r ∈ (r0, z0),

(nsub, Êsub)(r), r ∈ (z0, r1),
(4.15)

satisfying the entropy condition (1.21) and the Rankine-Hugoniot condition (1.22) at the 
jump point z0, where z0 can be uniquely determined when the value of nsup(z0) is fixed, and 
since the choice of nsup(z0) is arbitrary, the shock solutions will be infinitely many.
Furthermore, we have the following results:
1. for |u20| � 1, there exists a supersonic-supersonic shock at the point z0, and the pair of 

the shock solution (n, Ê)(r) is totally supersonic;
2. for |u20| � 1, there exists a supersonic-subsonic shock at the point z0, and the pair of the 

shock solution (n, Ê)(r) is totally transonic. Here the solution jumps from supersonic to 
subsonic at the critical point z0.

(b) assume further that τ is small enough, i.e., τ � 1; there is no shock solution to the system 
(4.1) with n0 = n1 = 1.

Remark 4.4. In Theorem 4.3(a), when |u20| = σ4 with a constant σ4 and n1 > 1, the solution 
(4.15) is totally supersonic-sonic. If |u20| belongs to a subset of [0, σ4), there may exist a totally 
transonic solution and a supersonic-supersonic shock, and the solution (4.15) changes smoothly 
from supersonic to subsonic in (z0, r1).

Proof of Theorem 4.3. (a) the existence of the infinitely many shock solutions with τ � 1.
Without loss of generality, let’s consider the degenerate case of n0 = n1 = 1 directly, whose 
adopt method can be also used in the non-degenerate situation. The proof is divided into four 
steps.
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Step 1. First we focus on the following system with τ � 1,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − 1

n2

)
nr = nÊ − 1

τ
, r ∈ (r0, r0 + L),

(rÊ)r = n − b− K(r;n),

n(r0) = 1, n(r0 + L) = 1,

(4.16)

where L ≥ r1−r0
4 is a length of interval, and the doping function b has been periodically extended 

from [r0, r1] to [r0, +∞] here and below. It follows from Theorem 2.1 that there exists a solution 
(nL, ÊL)(r) to (4.16) on [r0, r0 + L].

For the solution (ñL, ẼL) of the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − 1

ñ2

)
ñr = ñẼ, r ∈ (r0, r0 + L),

(rẼ)r = ñ − b− 2u2
20

r2 ,

ñ(r0) = 1, ñ(r0 + L) = 1,

(4.17)

by [7, Lemma 2.1] and a standard energy estimate, it is seen that

ẼL(r0 + L) ≤ −μ(L, |u20|,b) < 0.

Then as in [19, Theorem 4.2, Step 3], and subtracting (4.16) by (4.17) we have

|nL − ñL| + |ÊL − ẼL| ≤ C

τ
.

Therefore it holds that

ÊL(r0 + L) ≤ ẼL(r0 + L) + C

τ
≤ −μ

2
if τ � 1. (4.18)

Step 2. Let ε be a small number such that 0 < ε � 1. In light of (4.18), it is easy to observe 
that the solution nL(r) of (4.16) keeps decreasing in r near the end point r = r0 + L. So as 
in the proof of [19, Theorem 4.2] and [8, Theorem 2.2], we show that there exists a number 
r0 < y1 < r0 + L at which the solution n last arrives the line n = 1 − ε, and it follows that

|ÊL(y1) − ÊL(r0 + L)| ≤ Cε, nL(y1) = 1 − ε, r0 + L − y1 ≤ Cε.

Hence, for the ODE system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − 1

n2

)
nr = nÊ − 1

τ
, r > r0,

(rÊ)r = n − b− K(r;n),

n(r0) = n0 ≤ 1, Ê(r0) = ÊL(r0),

(4.19)

we are able to construct a shock solution on an interval [r0, y2] for a number y2 in the form of
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(n, Ê)(r) =
{

(nsup, Êsup)(r), r ∈ [r0, y1],
(nsub, Êsub)(r), r ∈ [y1, y2],

where we have 0 < nsup ≤ 1, nsub ≥ 1, (nsup, Êsup)(r) = (nL, ÊL)(r) for r ∈ [r0, y1], and

nsup(y1) = 1 − ε < 1, nsub(y1) = 1

1 − ε
> 1, Êsup(y1) = Êsub(y1).

Indeed, it follows that

nsub(y2) = 1, |Êsub(y2) − Êsub(y1)| ≤ Cε, y2 − y1 ≤ Cε,

whose proof is referred to [8, Theorem 2.2, Step 2] and necessarily needs the inequality (4.18) in 
Step 1 and the conditions b> 1 and K > 0.

Step 3. We will apply the continuity argument to obtain a shock solution. Let L = L1 = r1−r0
2

and we denote the solution of the system (4.16) by (nL1, ÊL1). Thus there exist a jump point z1

and a number y3, such that the corresponding shock solution of (4.19), denoted by (n(1), Ê(1)), 
satisfies

n(1)(z−
1 ) = 1 − ε, n(1)(z+

1 ) = 1

1 − ε
> 1, Ê(1)(z1) < 0,

n(1)(y3) = 1,

∣∣∣∣y3 − r0 + r1

2

∣∣∣∣≤ Cε and

∣∣∣∣Ê(1)(y3) − ÊL1

(
r0 + r1

2

)∣∣∣∣≤ Cε.

That is, we derive a shock solution by Step 1-2 as follows:

(n(1), Ê(1))(r) =
{

(n
(1)
sup, Ê

(1)
sup)(r), r ∈ [r0, z1],

(n
(1)
sub, Ê

(1)
sub)(r), r ∈ [z1, y3],

where the Rankine-Hugoniot condition and the entropy condition are satisfied at the point z1.
Similarly, let L = L2 = 2(r1 − r0), so there exist a jump point z2 and a number y4, then it 

shows a shock solution (n(2), Ê(2)) to the system (4.19) in the form of

(n(2), Ê(2))(r) =
{

(n
(2)
sup, Ê

(2)
sup)(r), r ∈ [r0, z2],

(n
(2)
sub, Ê

(2)
sub)(r), r ∈ [z2, y4],

satisfying

|y4 − (2r1 − r0)| ≤ Cε, n
(2)
sub(y4) = 1,

∣∣∣Ê(2)
sub(y4) − ÊL2(2r1 − r0)

∣∣∣≤ Cε,

n(2)
sup(z2) = 1 − ε < 1 <

1

1 − ε
= n

(2)
sub(z2),

which also meets the Rankine-Hugoniot condition and the entropy condition at the point z2.
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Hence we could take ε small such that r1 ∈ [y3, y4]. It is seen that the solution of (4.19)
continuously depends on the initial value Ê(r0). Then by the continuity argument, there must 
exist a constant Êr1−r0(r0) ∈ [ÊL1(r0), ÊL2(r0)] as a initial value of (4.19), corresponding to the 
length of interval r1 − r0. As a consequence, we obtain a shock solution to (4.19), written by

(nshock, Êshock)(r) =
{

(nf ront , Êf ront )(r), r ∈ [r0, z0],
(nback, Êback)(r), r ∈ [z0, r1], (4.20)

satisfying 0 < nf ront (r) < 1 on (r0, z0), nback(r) > 1 on (z0, r1), and

nf ront (z0) = 1 − ε ≤ 1 <
1

1 − ε
= nback(z0), Êf ront (z0) = Êback(z0) < 0,

nf ront (r0) = 1, nback(r1) = 1.

Clearly, the function (4.20) is truly a shock solution to (4.1) with n0 = n1 = 1. Additionally, there 
exists a constant ε0 such that 0 < ε < ε0, and due to the arbitrary choice of ε, the shock solutions 
are infinitely many.

Step 4. As in the proof of Part 3 of Theorem 3.1, it is known that the shock solution pro-
duced in Step 1-3 is totally supersonic if τ � 1 and |u20| � 1, and naturally the solution jumps 
from supersonic to supersonic at the point z0. Here we call the shock supersonic-supersonic. 
Additionally, the shock solution is totally transonic if τ � 1 and |u20| � 1, and the shock is 
supersonic-subsonic.

(b) the non-existence of the radial transonic shock solution with τ � 1. If τ � 1, we know 
that there exist infinitely many smooth steady-states shown in Theorem 4.1. Applying the proof 
by contradiction similar as [19, Theorem 5.13], we prove that there is no radial transonic shock 
solution to (4.1).

The proof is complete. �
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