
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{M}\mathrm{A}\mathrm{T}\mathrm{H}. \mathrm{A}\mathrm{N}\mathrm{A}\mathrm{L}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 55, \mathrm{N}\mathrm{o}. 4, \mathrm{p}\mathrm{p}. 2813--2837

QUASI-NEUTRAL LIMIT TO STEADY-STATE HYDRODYNAMIC
MODEL OF SEMICONDUCTORS WITH DEGENERATE

BOUNDARY*

LIANG CHEN\dagger , DONGFANG LI\ddagger , MING MEI\S , AND GUOJING ZHANG\P 

Abstract. This paper is concerned with the quasi-neutral limit to a one-dimensional steady
hydrodynamic model of semiconductors in the form of Euler--Poisson equations with degenerate
boundary, a difficult case caused by the boundary layers and degeneracy. We establish a so-called
convexity structure of the sequence of subsonic-sonic solutions near the boundary domains in this
limit process, which efficiently overcomes the degenerate effect. We first show the strong convergence

in the L2 norm with the order O(\lambda 
1
2 ) for the Debye length \lambda when the doping profile is continuous.

Then we derive the uniform error estimates in the L\infty norm with the order O(\lambda ) when the doping
profile has higher regularity. The proof of L\infty boundedness is based on a new bounded estimate
method, which is used to replace the maximum principle utilized in the nondegenerate case. These
newly proposed techniques in asymptotic limit analysis develop and improve the existing studies.

Key words. quasi-neutral limit, hydrodynamic model of semiconductors, degenerate boundary,
boundary layers, subsonic-sonic solutions
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1. Introduction.

Modeling equations. Hydrodynamic modeling of semiconductors, first intro-
duced by Bl{\e}tej{\ae}r [2], simulates the motion of a charged carrier in submicron semi-
conductor devices. This model contains several physical phenomena, such as hot
electrons and velocity overshoots, which are missing in the classical drift-diffusion
model. Related mathematical derivation of this model can be found in [22, 28, 29].
In the present paper, our aim is to investigate the quasi-neutral limit with degen-
erate sonic boundary for this model in the case of a one-dimensional steady-state
system.
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2814 L. CHEN, D. LI, M. MEI, AND G. ZHANG

Let the unknowns \rho , u, and \Phi be the electron density, the electron average velocity,
and the electrostatic potential, respectively; the one-dimensional transient model here
is virtually governed by the unipolar Euler--Poisson equations

(1.1)

\left\{       
\rho t +div(\rho u) = 0,

(\rho u)t +
\bigl( 
\rho u2 + p(\rho )

\bigr) 
x
= \rho \Phi x  - 

\rho u

\tau 
,

\lambda 2\Phi xx = \rho  - b(x).

Here the function p(\rho ) is the pressure density relation, the parameter \tau is the mo-
mentum relaxation time, and the fixed function b(x) is the doping profile for semi-
conductors. The physical parameter \lambda > 0 represents the scaled Debye length, and
its approximate value is always extremely small in actual semiconductors. Therefore,
it is significant to study the zero-Debye-length (i.e., quasi-neutral) limit as \lambda \rightarrow 0 in
(1.1).

The objective of this paper is concerned with the stationary equations of (1.1)
in the bounded domain [0,1]. For the sake of clarity in studying this steady-state
system, the following notation and assumptions are used throughout this paper:

(A1) b\in L\infty (0,1) and 0< b\leq b(x)\leq b for x\in (0,1), where

b := essinf
x\in (0,1)

b(x) and b := esssup
x\in (0,1)

b(x).

(A2) \rho 2p\prime (\rho ) is strictly increasing with respect to \rho from [0,+\infty ) to [0,+\infty ). For
convenience, we assume that

p(\rho ) =
\rho \gamma 

\gamma 
with the adiabatic exponent \gamma \geq 1,

where \gamma = 1 represents the isothermal case and \gamma > 1 denotes the isentropic
case.

(A3) It is assumed that the relaxation time \tau \geq \tau 0 > 0 is independent of \lambda for a
constant \tau 0.

Now we denote a prescribed constant current j := \rho u. From assumption (A2),
the steady-state system of (1.1) then reduces to

(1.2)

\left\{   (F (\rho ) - \Phi )x = - j

\tau \rho 
,

\lambda 2\Phi xx = \rho  - b(x),
x\in (0,1),

where

(1.3) F (\rho ) :=

\left\{       
j2

2\rho 2
+
\rho \gamma  - 1

\gamma  - 1
for \gamma > 1,

j2

2\rho 2
+ ln\rho for \gamma = 1.

For smooth solutions, after differentiating the first equation of (1.2) with respect to x
and using the second equation of (1.2) to substitute \Phi in the resultant equation, we
get the density function \rho , satisfying

(1.4) \lambda 2F (\rho )xx + \lambda 2
\biggl( 
j

\tau \rho 

\biggr) 
x

 - (\rho  - b(x)) = 0.
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QUASI-NEUTRAL LIMIT TO HYDRODYNAMIC MODEL 2815

Note that, equation (1.4) is elliptic if F \prime (\rho ) > 0, i.e., \rho > J := j
2

\gamma +1 , which actually
corresponds to subsonic flows (see [7]). In particular, since \rho = J denotes the sonic
state, we can impose a certain meaningful boundary condition, such as

(1.5) sonic boundary: \rho (0) = \rho (1) = J,

which causes the degeneracy at the boundary, the so-called degenerate boundary. In
this situation, once we solve the BVP (1.4) and (1.5) for the solution \rho , then we may
obtain the solution \Phi from the second equation of (1.2) by using the supplementary
condition

(1.6) \Phi (0) = 0

and the relation given by (1.2), (1.5), and (1.6),

\Phi (1) =\Phi (0) +

\int 1

0

\biggl( 
F (\rho )x +

j

\tau \rho (x)

\biggr) 
dx=

j

\tau 

\int 1

0

1

\rho (x)
dx.

As proved in [24], when b > J , the problem (1.2), (1.5), (1.6) possesses a smooth
subsonic-sonic solution in C

1
2 [0,1].

In order to consider the quasi-neutral limit, we rewrite the problem (1.2), (1.5),
(1.6) in the form

(1.7)

\left\{       
(F (\rho \lambda ) - \Phi \lambda )x = - j

\tau \rho \lambda 
,

\lambda 2(\Phi \lambda )xx = \rho \lambda  - b(x),

\rho \lambda (0) = \rho \lambda (1) = J, \Phi \lambda (0) = 0.

x\in (0,1),

Following the methods and results of [24], here we give the existence and uniqueness
of the subsonic-sonic solution to (1.7) with respect to \lambda .

Proposition 1.1 ([24]). Under assumptions (A1)--(A3) and the subsonic doping
profile b > J , for any \lambda > 0, system (1.7) admits a unique pair of subsonic-sonic
solutions (\rho \lambda ,\Phi \lambda )\in C1/2[0,1]\times H2(0,1) satisfying (\rho \lambda  - J)2 \in H1(0,1) and

(1.8) J +C sin(\pi x)\leq \rho \lambda (x)\leq b, x\in [0,1],

where C =C(\tau 0, b) is a positive constant independent of \lambda .

In Proposition 1.1, the H\"older index 1
2 is optimal for the global regularity of the

solution \rho \lambda . From (1.8), one can see that the solution \rho \lambda is degenerate only at the
boundary points x= 0 and x= 1. On this premise, we prepare to investigate the limit
as \lambda \rightarrow 0 in (1.7).

Study background. We now draw a picture of the progress on the studies of
well-posedness for the hydrodynamic model of semiconductors. For the stationary
model over bounded domain, Degond and Markowich [7, 8] first proved the existence
and uniqueness of subsonic solutions with the strong subsonic background in one
dimension [7] and for potential flow in three dimensions [8], respectively. More results
of stationary solutions in this model were studied in [1, 12, 38] and the references
therein. Additionally for the one-dimensional case, the existence of the global weak
solutions was shown in [30, 41], and the asymptotic stability of the stationary solution
was investigated in [15, 17, 23, 31, 33]. Inspired by these results on the well-posedness,
a series of studies were concerned with the asymptotic limits in the hydrodynamic
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2816 L. CHEN, D. LI, M. MEI, AND G. ZHANG

model, such as the zero-relaxation-time limits [16, 19, 20, 37, 39], the zero-electron-
mass limits [13, 14, 21], the quasi-neutral limits [6, 9, 10, 18, 34, 35, 36, 40], and even
the Newtonian limits in the speed of light for the relativistic Euler--Poisson equations
[26, 27, 32], for instance. These studies are significant and interesting but, to the
best of our knowledge, do not involve the degenerate phenomenon and the relevant
singularity.

For the system (1.7) with the degenerate sonic boundary and any fixed \lambda > 0, Li
et al. [24] first presented the existence and uniqueness of the sonic-subsonic solution,
the existence of sonic-supersonic solutions, and the existence of transonic solutions
when the doping profile is subsonic, i.e., b > J . For more results about the well-
posedness problem of (1.7), we refer the reader to [3, 25] for the supersonic doping
profile (0< b < J) and the transonic doping profile (0< b < J < \=b). One-dimensional
results have been extended to the high-dimensional model for the radial solutions
in [4, 5]. However, the quasi-neutral limits problem related to the system with the
degenerate boundary has not yet been touched upon and has remained open due to
technical reasons.

Main difficulties and strategies. The main goal of this paper is to consider
the quasi-neutral limit for the subsonic-sonic solution of (1.7) with the degenerate
sonic boundary when b > J , namely, the asymptotic analysis of the solution when
the Debye length tends to zero as well as analysis of the relevant error estimates and
convergence rates. Since the density function \rho \lambda at the boundary is sonic, and the
semiconductor doping function b(x) is completely subsonic in the whole domain [0,1],
the boundary layers will appear in the quasi-neutral limit problem. We are going to
prove that when the doping profile b(x) belongs to H1, the solution sequence (\rho \lambda ,\Phi \lambda )
will converge to the corresponding limit state in L2 as the Debye length \lambda \rightarrow 0+, and
the corresponding convergence rate will be presented; further, when the doping profile
b(x) belongs to W 2,1, the solution sequence (\rho \lambda ,\Phi \lambda ) will converge to the asymptotic
state containing the boundary layers in L\infty , and the corresponding convergence rate
will be shown, too, which clearly characterizes the quasi-neutral limit of the sonic-
subsonic steady-state solution.

There are two essential difficulties in the study of quasi-neutral limit to the degen-
erate sonic boundary problem (1.7). The first difficulty is caused by the degeneracy of
the sonic boundary. In the case when we consider the quasi-neutral limit problem, the
degeneracy effect and the boundary layer effect will occur at the same time, and the
singularity of the corresponding solution sequence will become very strong, so that
the estimation near the boundary becomes particularly difficult and complicated. The
second difficulty is that the maximum principle does not hold for the sonic degenerate
boundary problem (1.7). When establishing the L\infty boundedness of the error terms,
the boundary degeneracy causes the coefficients and inhomogeneous terms of the er-
ror equations to no longer belong to L\infty but only to L1, so the existing procedure by
the maximum principle for treating the case for the completely subsonic solutions no
longer applies for the case of degenerate subsonic-sonic solutions.

In order to overcome these difficulties, we propose some new ideas for the proof.
To treat the first obstacle mentioned above, we heuristically observe the special con-
vexity structure of the solution sequence v\lambda = F (\rho \lambda ) near the boundary points such
that the uniform bound estimate of order O(\lambda 

1
2 ) can be technically derived. To over-

come the second obstacle, we artfully develop a more useful energy method to get
this convergence result, which is mainly based on the special properties of degeneracy
equations.
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QUASI-NEUTRAL LIMIT TO HYDRODYNAMIC MODEL 2817

Main results. In this paper, the main convergence results in L2(0,1) and L\infty (0,1)
are shown as follows.

Theorem 1.2 (L2-estimate). Let the doping profile be b \in H1(0,1). When the
boundary layer profiles appear, there are a sequence of solutions (\rho \lambda ,\Phi \lambda )\lambda >0 to sys-
tem (1.7) and a pair of corresponding limit solutions (\varrho ,\phi ) such that the following
L2-estimates hold for an arbitrary small constant \lambda :

\| \rho \lambda  - \varrho \| L2(0,1) \leq C\lambda 
1
2 , \| \Phi \lambda  - \phi \| L2(0,1) \leq C\lambda 

1
2 ,

where the limit solution \varrho satisfies \varrho = b, and C is a general constant independent
of \lambda .

Theorem 1.3 (L\infty -estimate). Let the doping profile b \in W 2,1(0,1) hold; then
there exist the boundary layers profiles n0 and n1 satisfying the estimate

\| \rho \lambda  - b - n0(\cdot , \lambda ) - n1(\cdot , \lambda )\| L\infty (0,1) \leq C\lambda ,

with

| n0(x,\lambda )| \leq Ce - 
Cx
\lambda and | n1(x,\lambda )| \leq Ce - 

C(1 - x)
\lambda for x\in [0,1].

Here C are some positive constants independent of \lambda , and \rho \lambda is the solution to (1.7).

Remark 1.4. In Theorem 1.2, the continuity of the doping profile b(x) is necessary.
However, if the function b(x) is discontinuous, the interior layers can appear in the
neighborhood of the discontinuous points. In Theorem 1.3 for the L\infty (0,1) bounded
result, the higher regularity of b(x) is required.

Remark 1.5. In the proofs of Theorems 1.2 and 1.3, we realize that the thickness
of the boundary layers is precisely equal to \lambda . A similar argument was obtained in
[36].

The paper is organized as follows. Section 2 derives some crucial properties of
the solution v\lambda = F (\rho \lambda ). Section 3 is devoted to establishing the L2(0,1)-estimates of
order O(\lambda 

1
2 ), with the boundary layer profiles under the assumption of b\in H1(0,1), so

that Theorem 1.2 can be proved. Section 4 shows the convergence estimate in L\infty (0,1)
with the convergence rate O(\lambda ) when the doping profile has better smoothness, which
can guarantee Theorem 1.3. Finally, in section 5 we present some numerical simula-
tions, which perfectly demonstrate and confirm our theoretical results.

2. Preliminary observation. In this section, to circumvent the effect of de-
generate boundary, we are going to introduce some fundamental properties of the
solution to equations (1.7) for sufficiently small \lambda > 0.

It is well known that (\rho \lambda ,\Phi \lambda )\lambda >0 is a sequence of solutions to (1.7) and that from
(1.3) F is strictly increasing on \rho \lambda > J in (1.7). Thus, we may denote v\lambda := F (\rho \lambda )
and f := F - 1 and rewrite (1.4) and (1.5) as follows:

(2.1)

\left\{   \lambda 2
d2v\lambda 
dx2

+ \lambda 2
j

\tau 

d

dx

\biggl( 
1

f(v\lambda )

\biggr) 
 - (f(v\lambda ) - b) = 0, x\in (0,1),

v\lambda (0) = v\lambda (1) = F (J).

Here f satisfies \rho \lambda (x) = f(v\lambda (x)) for x \in [0,1] and is also increasing on the region
v\lambda >F (J). See Figure 1 for details about the functions F and f with \gamma > 1. Herewith
F \prime (J) = 0 and f \prime (F (J)) =\infty exactly correspond to some degenerate points.
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2818 L. CHEN, D. LI, M. MEI, AND G. ZHANG

Fig. 1. subsonic-sonic case.

Before investigating the quasi-neutral limit to the problem (1.7), we need to illus-
trate some preliminaries about the functions v\lambda and f \prime (v\lambda ) in the following
lemmas.

Lemma 2.1. There exist a small number \delta > 0 and a constant B1 > 0 independent
of \lambda such that for sufficiently small \lambda < \delta , it follows that

v\lambda (x)\geq F (J) +B1
x

\lambda 
, x\in [0, \lambda ],

v\lambda (x)\geq F (J) +B1x, x\in [\lambda , \delta ].

At the same time, it holds for a constant B2 independent of \lambda that

v\lambda (x)\geq F (J) +B2
1 - x

\lambda 
, x\in [1 - \lambda ,1],

v\lambda (x)\geq F (J) +B2(1 - x), x\in [1 - \delta ,1 - \lambda ].

Proof. First, we notice that the function v\lambda (x) has some similar features with
respect to \lambda near the endpoints x = 0+ and x = 1 - . Therefore, let \delta > 0 be a small
number independent of \lambda satisfying \delta > \lambda > 0; then it suffices to prove the inequalities
on [0, \delta ],

v\lambda (x)\geq F (J) +B1
x

\lambda 
, x\in [0, \lambda ],

and

v\lambda (x)\geq F (J) +B1x, x\in [\lambda , \delta ],

for sufficiently small \lambda . For simplicity, this proof is divided into four steps as follows.
Step 1. Denote (\rho \lambda ,\Phi \lambda , v\lambda ) by (n,\Psi , v) and reconsider (1.7) as the following

equations:

(2.2)

\left\{     
n\gamma +1  - J\gamma +1

n3
nx =\Psi x  - 

J
2

\gamma +1

\tau n
,

\Psi xx =
n - b

\lambda 2
.
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QUASI-NEUTRAL LIMIT TO HYDRODYNAMIC MODEL 2819

Now we set the electric field E :=\Psi x and let

\~E :=E  - J
2

\gamma +1

\tau n
, c\gamma :=

n3(n - J)

n\gamma +1  - J\gamma +1
;

then we reduce the system (2.2) to

(2.3)

\left\{     nx = c\gamma \cdot 
\~E

n - J
,

\~Ex =
n - b

\lambda 2
+

nx
\tau n2

.

Moreover, the boundary conditions are subject to n(0) = n(1) = J . Of course, it is
easy to see that the solution (n, \~E) of (2.3) satisfies

(2.4)
d \~E

dn
=
n - b

\lambda 2c\gamma 

\Big/ \~E

n - J
+

1

\tau n2
.

From the trajectories (n, \~E) of (2.4), we are ready to acquire some local features of
the function v= F (n) near x= 0+.

Step 2. In this step, we will show the existence of a constant B1 > 0 and a small
parameter \varepsilon > 0 independent of \lambda such that for sufficiently small \lambda ,

\~E(n)\geq B1

\lambda 
, n\in [J,J + \varepsilon ].

Suppose that there is a point \v n \in [J,J + \varepsilon ] such that 0 < \~E(\v n) < B1

\lambda . In this
situation, choose B1 = \eta < 2\eta < \varepsilon with a constant \eta independent of \lambda . Next, as
shown in Figure 2, we notice that the point (\v n, \~E(\v n)) must be in one of the areas
(A) and (B). Here the triangular area (A) is bounded by the lines n = J , \~E = \eta 

\lambda ,

and \~E = c1(n - J)
\lambda , and the trapezoidal area (B) is bounded by the lines \~E = c1(n - J)

\lambda ,

n= J + \varepsilon , \~E = 0, and \~E = \eta 
\lambda , where the constant c1 is independent of \lambda , \varepsilon . Note that

d \~E

dn
\leq 1

\tau n2
\leq 1

\tau 0J2

in the area (A) and let \lambda be small enough. Hence if the point is in the area (A), it

is easy to see that the trajectory (n, \~E) of (2.4) must intersect the line \~E = c1(n - J)
\lambda 

on the regions n\in [J,J + \varepsilon ] and \~E \in [0, 2\eta \lambda ]. Additionally, if the trajectory passes the

area (B), then we derive that
\~E

n - J \leq c1
\lambda and

d \~E

dn
\leq  - c2

\lambda 
for a constant c2 > 0 independent of \lambda and \varepsilon .

From this, the trajectory also intersects with the line \~E = c1(n - J)
\lambda in the above

rectangular region [J,J + \varepsilon ]\times [0. 2\eta \lambda ] for sufficiently small \lambda .

Next, we take a number x1 such that the point (n(x1), \~E(x1)) is the intersection

of the trajectory (n, \~E) and the line \~E = c1(n - J)
\lambda . From the first equation of (2.3), it

holds that

n(x1) = n(0) +

\int x1

0

c\gamma \cdot 
\~E

n - J
dx\geq J +

cc1x1
\lambda 

,
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2820 L. CHEN, D. LI, M. MEI, AND G. ZHANG

Fig. 2. Counterexample 1: 0< \~E(n)< B1
\lambda 

for some points n.

and then

x1 \leq 
\varepsilon \lambda 

cc1
,

where \=c and c are the upper and lower bounds of c\gamma independent of \lambda . Starting from
the point x1, it is noted that the green trajectory in Figure 2 intersects with the line
\~E = 0 at the point (n(x2),0). In this process, we can easily get from

0< \~E \leq c1(n - J)

\lambda 
and

d \~E

dn
\leq  - C

\lambda 

that n\leq J + 2\varepsilon when \lambda is sufficiently small. Therefore, one can see from (2.3) that

\~E(x2) = \~E(x1) +

\int x2

x1

\biggl( 
n - b

\lambda 2
+

nx
\tau n2

\biggr) 
dx\leq 2\eta 

\lambda 
+

\int x2

x1

\biggl( 
J + 2\varepsilon  - b

\lambda 2
+

\=cc1
\tau J2\lambda 

\biggr) 
dx.

Choosing \varepsilon \leq b - J
4 and \lambda \leq \tau (b - J)J2

\=cc1
, we have

\~E(x2) - 
\varepsilon 

\lambda 
\leq 
\biggl( 
J  - b

2\lambda 2
+

\=cc1
\tau J2\lambda 

\biggr) 
(x2  - x1)\leq 

J  - b

4\lambda 2
(x2  - x1),

which leads to
x2 \leq (x2  - x1) + x1 \leq 

4\lambda 2

b - J

\Bigl( \varepsilon 
\lambda 
 - \~E(x2)

\Bigr) 
+
\varepsilon \lambda 

cc1
\leq 4\lambda \varepsilon 

b - J
+
\varepsilon \lambda 

cc1
=:C\lambda \ll 1.

In the proof of this step, we only discuss the shape of the trajectory in the region
\~E \geq 0; the case of \~E < 0 can be proved in a similar way. In conclusion, if \lambda is
sufficiently small, we have shown that the length of the green trajectory of Figure 2 is
less than 1. This is a contradiction. Thus, we have \~E(n)\geq \eta 

\lambda = B1

\lambda for J \leq n\leq J + \varepsilon .
Step 3. In this step, we are going to prove that

v(x)\geq F (J) +B1x on [0, \delta ]

for a constant \delta .
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QUASI-NEUTRAL LIMIT TO HYDRODYNAMIC MODEL 2821

From the first equation of (2.2) and the result of Step 2, it follows that

vx = F (n)x = \~E \geq B1

\lambda 
for n\in [J,J + \varepsilon ];

then there is a number \delta 0(\varepsilon )> 0 such that v first reaches the line v| x=\delta 0 = F (J + \varepsilon ).
Thus, for all x\in [0, \delta 0], it holds that

v(x)\geq F (J) +
B1x

\lambda 
.

Now we denote a small constant \delta > \delta 0, and we claim that v(x)>F (J + \varepsilon ) on (\delta 0, \delta ].
In fact, if this is not true, then the function v must go back to the line v = F (J + \varepsilon )
at a constant \delta 1 \in (\delta 0, \delta ]. Without loss of generality, we set \delta 1 = \delta . In this situation,
we derive from (2.2) that near x= \delta +,

vxx(x) =
n(x) - b

\lambda 2
+
nx(x)

\tau n2
\leq n(x) - b

\lambda 2
\leq J + \varepsilon  - b

\lambda 2
\leq J  - b

2\lambda 2
< 0 if 0< \varepsilon \leq b - J

2
.

Hence, by Taylor expansion

v(x) = v(\delta ) + vx(\delta )(x - \delta ) +

\int x

\delta 

(x - s)vss(s)ds for x> \delta ,

we have

(2.5) v(x) - v(\delta )\leq (x - \delta )2 max
s\in [\delta ,x]

vss(s)\leq 
J  - b

2\lambda 2
(x - \delta )2.

If v(\delta 2) = J at x= \delta 2 > \delta , then it holds from (2.5) that

\delta 2 = (\delta 2  - \delta ) + \delta \leq C\lambda + \delta < 2\delta \ll 1,

which contradicts the known condition \delta 2 = 1. See the blue trajectory in Figure 3 as
a counterexample for details. Since, we get from

v(x)\geq F (J) +
B1x

\lambda 
on [0, \delta 0]

and

v(x)>F (J + \varepsilon ) on (\delta 0, \delta ]

that

v(x)\geq F (J) +B1x on [0, \delta ].

Step 4. In this step, we prove that if \lambda is small enough, then

v(x)\geq F (J) +
B1x

\lambda 
on [0, \lambda ].

From Step 3, we get

v(x)\geq F (J) +
B1x

\lambda 
on [0, \delta 0].
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2822 L. CHEN, D. LI, M. MEI, AND G. ZHANG

Fig. 3. Counterexample 2.

Now if \lambda \leq \delta 0, then the result of this step directly holds. When \delta 0 < \lambda < \delta , we get
from B1 = \eta < \varepsilon that

F (J) +
B1

\lambda 
x\leq F (J) + \eta for x\in [0, \lambda ];

see the red part of Figure 3. So, we redefine the constant B1 := min\{ \eta ,F (J + \varepsilon ) - 
F (J)\} , and then this step can be finished.

Thus, this lemma is proved.

Lemma 2.2. f \prime (v\lambda ) is uniformly bounded in L1(0,1) with respect to \lambda satisfying

(2.6)

\int 1

0

f \prime (v\lambda (x))dx\leq B3,

where B3 > 0 is a constant independent of \lambda .

Proof. First, from f = F - 1 and J \leq \rho \lambda \leq \=b, we note that

(2.7) f \prime (v\lambda ) =
1

F \prime (\rho \lambda )
=

\rho 3\lambda 
\rho \gamma +1
\lambda  - J\gamma +1

=O

\biggl( 
1

\rho \lambda  - J

\biggr) 
,

where we have used

\rho \gamma +1
\lambda = J\gamma +1 + (\gamma + 1)\xi \gamma 1 (\rho  - J) with some \xi 1 \in [J,\rho \lambda ].

From F \prime (J) = 0 and the bound of F \prime \prime in [J,\=b], we obtain, for some \xi 2 \in [J,\rho \lambda ],

v\lambda  - F (J) = F (\rho \lambda ) - F (J) =
F \prime \prime (\xi 2)(\rho \lambda  - J)2

2
=O((\rho \lambda  - J)2),

which yields from (2.7) that

(2.8) f \prime (v\lambda ) =O

\Biggl( 
1\sqrt{} 

v\lambda  - F (J)

\Biggr) 
if v\lambda \in [J,J + \delta ] with a small number \delta > 0. It follows from Lemma 2.1 and (2.8) that\int \delta 

0

f \prime (v\lambda (x))dx\leq C

\int \delta 

0

x - 
1
2 dx\leq C\delta ,

\int 1

1 - \delta 

f \prime (v\lambda (x))dx\leq C

\int 1

1 - \delta 

(1 - x) - 
1
2 dx\leq C\delta .
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QUASI-NEUTRAL LIMIT TO HYDRODYNAMIC MODEL 2823

Additionally, we derive from (1.8) and (2.7) that\int 1 - \delta 

\delta 

f \prime (v\lambda (x))dx\leq C

\int 1 - \delta 

\delta 

dx

sin(\pi x)
\leq C

\delta 
,

where C > 0 is a constant independent of \lambda .
Hence, let \delta \geq \delta 0 > 0 for a constant \delta 0; then (2.6) follows immediately. The proof

is complete.

Remark 2.3. Lemmas 2.1 and 2.2 explain some fundamental properties of the
sequence of solutions (v\lambda )\lambda >0 to equations (2.1) in the neighborhood of the boundary
points, which will be a key point in removing the effects of the degenerate boundary
in the proof of the following convergence estimates.

3. \bfitL 2-estimate results. For the case when the boundary is degenerate, the
purpose of this section is to show an L2-estimate of order O(\lambda 

1
2 ) to the error term

\rho \lambda  - b, just as the results in [34]. In view of Sobolev imbedding H1(0,1) \lhook \rightarrow C0[0,1],
we state the following assumption to make sense of b0 := b(0) and b1 := b(1):

(A4) b\in H1(0,1).
Let (\rho \lambda ,\Phi \lambda )\lambda >0 be a sequence of solutions to equations (1.7), and let (\varrho ,\phi ) be its

limit as \lambda \rightarrow 0. Formally, (\varrho ,\phi ) satisfies

(3.1)
d (F (\varrho ) - \phi )

dx
= - j

\tau \varrho 
, \varrho = b(x).

Since b(0) > J and b(1) > J , the boundary layers will occur near x = 0 and x = 1,
respectively.

In order to solve the limit (\varrho ,\phi ), some boundary conditions are needed. For this
purpose, we define

(3.2) G\lambda := F (\rho \lambda ) - \Phi \lambda and G := F (\varrho ) - \phi ,

which yield from (1.7) that

(3.3)
dG\lambda 

dx
= - j

\tau \rho \lambda 
.

From (3.3), J \leq \rho \lambda \leq \=b, and Poincar\'e's inequality, it is concluded that G\lambda is bounded
in H1(0,1) independent of \lambda . Then from (3.2), G\lambda \in L\infty (0,1), and \rho \lambda \in L\infty (0,1), it
follows that \Phi \lambda is bounded in L\infty (0,1) independent of \lambda . Therefore, it is clear that
G is bounded in H1(0,1), which, together with \varrho = b\in H1(0,1), leads to \phi \in H1(0,1).
Due to the compact imbedding H1(0,1) \lhook \rightarrow C0[0,1], (G\lambda )\lambda >0 is uniformly convergent
to the limit G. Thus, we give the boundary condition \phi (0) as

(3.4) \phi (0) = F (\varrho (0)) - F (\rho \lambda (0)) +\Phi \lambda (0) = F (\varrho (0)) - F (J), \varrho (0) = b0.

It is obvious that system (3.1), (3.4) admits a unique solution (\varrho ,\phi ). Also, we obtain
the following relation:

(3.5) \phi (1) = \phi (0) +

\int 1

0

(F (\varrho ) - G)xdx= F (b1) - F (J) +

\int 1

0

j

\tau b(x)
dx.

After that, to show some key information about the boundary layers, the solution
(\rho \lambda ,\Phi \lambda ) in a neighborhood of x= 0 may be approximated by

(\rho \lambda ,\Phi \lambda ) := (\varrho (0) + \varrho 0(y), \phi (0) +\varphi (y))
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2824 L. CHEN, D. LI, M. MEI, AND G. ZHANG

for a fast variable y= x
\lambda . Similarly, we have also, in a neighborhood of x= 1, that

(\rho \lambda ,\Phi \lambda ) := (\varrho (1) + \varrho 1(z), \phi (1) +\psi (z)),

with the fast variable z = 1 - x
\lambda . Next, plugging the approximate solutions (\varrho (0) +

\varrho 0(y), \phi (0)+\varphi (y)) and (\varrho (1)+ \varrho 1(z), \phi (1)+\psi (z)) into equations (1.7) and neglecting
the error term O(\lambda ), we obtain the following boundary layer equations:

(3.6)
F (\varrho 0 + b0)y =\varphi y, \varphi yy = \varrho 0, y \in [0,+\infty ),
F (\varrho 1 + b1)z =\psi z, \psi zz = \varrho 1, z \in [0,+\infty ).

In general, the L2(0,1)-estimate of \rho \lambda  - \varrho depends exactly on \lambda , so that from the
formulas (3.4) and (3.5), the boundary conditions of (3.6) are denoted by

(3.7)
\varrho 0(0) = J  - b0, \varphi (0) = F (J) - F (b0), lim

y\rightarrow +\infty 
\varrho 0(y) = 0, lim

y\rightarrow +\infty 
\varphi (y) = 0,

\varrho 1(0) = J  - b1, \psi (0) = F (J) - F (b1), lim
z\rightarrow +\infty 

\varrho 1(z) = 0, lim
z\rightarrow +\infty 

\psi (z) = 0.

Recalling the results in [11, 36], we can prove the existence of two pairs of solutions
(\varrho 0,\varphi ) and (\varrho 1,\psi ) to equations (3.6) and (3.7) and show the results below.

Lemma 3.1. Let (A1)--(A4) hold; then the equations (3.6) and (3.7) admit the
solutions (\varrho 0,\varphi ) and (\varrho 1,\psi ), respectively, satisfying

(3.8)
| \varrho 0| , | \varrho \prime 0(y)| , | \varphi (y)| , | \varphi \prime (y)| \leq C1e

 - C2y,

| \varrho 1| , | \varrho \prime 1(z)| , | \psi (z)| , | \psi \prime (z)| \leq C3e
 - C4z

for any y, z \in (0,+\infty ). Here Ci (i= 1,2,3,4) are positive constants.

Proof. Let mi(y) = \varrho (0)+ \varrho 0(y) and me(z) = \varrho (1)+ \varrho 1(z). We can directly check
from (3.6) and (3.7) that F (mi) = \varphi + F (b0), F (me) = \psi + F (b1), and F \prime (J) = 0.
Therefore, we get a smooth, strictly increasing function f , given by f = F - 1, such
that

\varphi yy = f(\varphi + F (b0)) - b0 =: f1(\varphi ),

\psi zz = f(\psi + F (b1)) - b1 =: f2(\psi ).

Here the function f1 (resp., f2) is of class C0 in \varphi (resp.,\psi ), strictly increasing for
\varphi \in [F (J) - F (b0),0] (resp.,\psi \in [F (J) - F (b1),0]) and f1(0) = 0 (resp., f2(0) = 0).

Let us replace \varphi by \=\varphi = - \varphi , satisfying

\=\varphi yy = b0  - f(F (b0) - \=\varphi ) =: \=f1( \=\varphi ),

\=\varphi (0) = F (b0) - F (J)> 0, \=\varphi (\infty ) = 0.
(3.9)

Indeed, we derive, for \=\varphi \in [0, F (b0) - F (J)], that

( \=f1) \=\varphi ( \=\varphi ) = f \prime (F (b0) - \=\varphi )> 0,

and there is a constant c0 > 0 depending on F (b0) such that ( \=f1) \=\varphi ( \=\varphi )\geq c0. However,
we note that

(3.10) ( \=f1) \=\varphi (F (b0) - F (J)) = f \prime (F (J)) =+\infty ,
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QUASI-NEUTRAL LIMIT TO HYDRODYNAMIC MODEL 2825

which exactly corresponds to the degenerate boundary. Referring to Lemma 2.1 in
[11], we see that problem (3.9) has a unique solution \=\varphi satisfying

y=

\int F (b0) - F (J)

\=\varphi 

ds\sqrt{} 
2\scrF (s)

,

where

(3.11) \scrF (s) =

\int s

0

\=f1(t)dt.

So, it is easy to see that \=\varphi is deceasing in y, corresponding to the relation

0\leq \=\varphi (y)\leq F (b0) - F (J) for any y \in [0,+\infty ).

In fact, based on \scrF (0) = 0 and \scrF \prime (0) = \=f1(0) = 0, we get, for any s\in [0, F (b0) - F (J)],
that

(3.12) \scrF (s) = ( \=f1) \=\varphi (\xi ) \cdot 
s2

2
with \xi \in [0, s].

Thus, it holds that

0\leq y\leq 
\int F (b0) - F (J)

\=\varphi 

ds
\surd 
c0s

\leq 1
\surd 
c0

ln

\biggl( 
F (b0) - F (J)

\=\varphi 

\biggr) 
,

and further,

0\leq \=\varphi \leq [F (b0) - F (J)]e - 
\surd 
c0y.

In addition, from (3.11), (3.12), and the relation \=\varphi y =  - 
\sqrt{} 
\scrF ( \=\varphi ), we have for some

\xi \in [0, \=\varphi ] that

\=\varphi y = - 
\sqrt{} 

( \=f1) \=\varphi (\xi )

2
\cdot \=\varphi = - 

\sqrt{} \int \=\varphi 

0

\=f1(s)ds \forall \=\varphi \in [0, F (b0) - F (J)],

which implies that ( \=f1) \=\varphi (\xi ) is bounded for any \=\varphi \in [0, F (b0) - F (J)] although (3.10)
holds. As a result, it follows that

| \=\varphi y| \leq C| \=\varphi | \leq C1e
 - C2y.

Thus, the first inequality of (3.8) follows immediately.
In the same way, one can see that the second result of (3.8) also holds. Hence,

the proof is complete.

Now we are going to investigate the quasi-neutral limit of (1.7) as \lambda \rightarrow 0 and to
obtain the convergence rate of the solution (\rho \lambda ,\Phi \lambda ).

Theorem 3.2. Assume that (A1)--(A4) hold, let (\rho \lambda ,\Phi \lambda )\lambda >0 be a sequence of
solutions to system (1.7), and let (\varrho ,\Phi ) be the unique solution to equations (3.1) and
(3.4). Then, as \lambda \rightarrow 0, it holds that

\| \rho \lambda  - \varrho \| L2(0,1) \leq C\lambda 
1
2 , \| \Phi \lambda  - \Phi \| L2(0,1) \leq C\lambda 

1
2 ,

with some positive constants C independent of \lambda .
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Proof. In the proof of this lemma, all the constants C denote general constants
independent of \lambda . Let R\lambda (x) := \rho \lambda (x) - b(x) - m0(x) - m1(x) so that

R\lambda (0) = - m1 (0) and R\lambda (1) = - m0 (1) ,

where m0(x) := \varrho 0
\bigl( 
x
\lambda 

\bigr) 
and m1(x) := \varrho 1

\bigl( 
1 - x
\lambda 

\bigr) 
. In view of the Poisson equation (1.7)2,

we get

\| R\lambda \| 2L2(0,1)

=

\int 1

0

(\rho \lambda (x) - b(x) - m0(x) - m1(x))R\lambda (x)dx

=

\int 1

0

(\rho \lambda (x) - b(x))R\lambda (x)dx - 
\int 1

0

(m0(x) +m1(x))R\lambda (x)dx

= \lambda 2
\int 1

0

(\Phi \lambda )xxR\lambda (x)dx - 
\int 1

0

(m0(x) +m1(x))R\lambda (x)dx

= - \lambda 2
\int 1

0

(\Phi \lambda )x(\rho \lambda (x) - b(x) - m0(x) - m1(x))xdx - 
\int 1

0

(m0(x)m1(x))R\lambda (x)dx

 - \lambda 2 [(\Phi \lambda )x(0)m1(0) + (\Phi \lambda )x(1)m0(1)]

= - \lambda 2
\int 1

0

(\Phi \lambda )x[f(v\lambda )]xdx+ \lambda 2
\int 1

0

(\Phi \lambda )x(b(x) +m0(x) +m1(x))xdx

 - 
\int 1

0

(m0(x) +m1(x))R\lambda (x)dx - \lambda 2 [(\Phi \lambda )x(0)m1 (0) + (\Phi \lambda )x(1)m0 (1)]

= - \lambda 2
\int 1

0

f \prime (v\lambda )| (\Phi \lambda )x| 2dx - \lambda 2
\int 1

0

f \prime (v\lambda )(\Phi \lambda )x(G\lambda )xdx

+ \lambda 2
\int 1

0

(\Phi \lambda )x(b(x) +m0(x) +m1(x))xdx - 
\int 1

0

(m0(x) +m1(x))R\lambda (x)dx

 - \lambda 2 [(\Phi \lambda )x(0)m1 (0) + (\Phi \lambda )x(1)m0 (1)]

=: - \lambda 2
\int 1

0

f \prime (v\lambda )| (\Phi \lambda )x| 2dx+ I1 + I2 + I3 + I4,

where v\lambda = F (\rho \lambda ) =G\lambda +\Phi \lambda and f(v\lambda ) = f(G\lambda +\Phi \lambda ). Since \{ G\lambda \} \lambda >0 is bounded in
L\infty (0,1), H\"older's inequality and (2.6) imply

I1 = - \lambda 2
\int 1

0

f \prime (v\lambda )(\Phi \lambda )x(G\lambda )xdx\leq 
\lambda 2

4

\int 1

0

f \prime (v\lambda )| (\Phi \lambda )x| 2dx+ \lambda 2
\int 1

0

f \prime (v\lambda )| G\lambda )x| 2dx

\leq \lambda 2

4

\int 1

0

f \prime (v\lambda )| (\Phi \lambda )x| 2dx+ \lambda 2| | G\lambda )x| | 2L\infty (0,1)

\int 1

0

f \prime (v\lambda )dx

\leq \lambda 2

4

\int 1

0

f \prime (v\lambda )| (\Phi \lambda )x| 2dx+C\lambda 2.

Note from Lemma 3.1 that \{ \lambda (m0)x\} \lambda >0 and \{ \lambda (m1)x\} \lambda >0 are bounded in L\infty (0,1).
Additionally, the elliptic condition \rho \lambda \geq J, together with (2.7), yields that f \prime (v\lambda )\geq C
for some constant C > 0. Therefore, the above conditions combined with b\in H1(0,1)
give
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QUASI-NEUTRAL LIMIT TO HYDRODYNAMIC MODEL 2827

I2 = \lambda 2
\int 1

0

(\Phi \lambda )x(b(x) +m0(x) +m1(x))xdx

\leq C\lambda 2

4

\int 1

0

| (\Phi \lambda )x| 2dx+
\lambda 2

C

\int 1

0

| (b(x) +m0(x) +m1(x))x| 2dx

\leq C\lambda 2

4

\int 1

0

| (\Phi \lambda )x| 2dx+C\lambda .

On the other hand, again from Lemma 3.1, it is concluded that

\| m0\| L1(0,1),\| m1\| L1(0,1) \leq C\lambda and | m0(1)| , | m1(0)| \leq C\lambda ,

which, in combination with the L\infty (0,1) boundedness of the sequences \{ R\lambda \} \lambda >0 and
\{ \lambda 2(\Phi \lambda )x\} \lambda >0, implies that

I3+I4 = - 
\int 1

0

(m0(x)+m1(x))R\lambda (x)dx - \lambda 2 [(\Phi \lambda )x(0)m1 (0) + (\Phi \lambda )x(1)m0 (1)]\leq C\lambda .

Consequently, it is easy to verify that

\| R\lambda \| 2L2(0,1) +
C\lambda 2

2
\| (\Phi \lambda )x\| 2L2(0,1)dx\leq C\lambda .

Noticing by (3.8) that \| m0\| L2(0,1) \leq C\lambda 
1
2 and \| m1\| L2(0,1) \leq C\lambda 

1
2 , we easily get

\| \rho \lambda  - b\| L2(0,1) \leq C\lambda 
1
2 .

Afterwards, it follows from (3.1), (3.3), \varrho = b, and Poincar\'e's inequality that

\| G\lambda  - G\| H1(0,1) \leq C\| \rho \lambda  - \varrho \| L2(0,1),

and then, from the definition of G\lambda and G, it holds that

\| \Phi \lambda  - \Phi \| L2(0,1) \leq C
\bigl( 
\| \rho \lambda  - \varrho \| L2(0,1) + \| G\lambda  - G\| L2(0,1)

\bigr) 
\leq C\| \rho \lambda  - \varrho \| L2(0,1) \leq C\lambda 

1
2 .

Thus, we end the proof of this theorem.

Finally, Theorem 1.2 can be obtained directly by Theorem 3.2.

4. \bfitL \infty -estimate results. In section 3, we mainly studied the quasi-neutral limit
as \lambda \rightarrow 0 for the solution (\rho \lambda ,\Phi \lambda ) of system (1.7) and showed an L2-estimate of order
O(\lambda 

1
2 ) for \rho \lambda  - b when the boundary is degenerate and the doping profile b(x) satisfies

b \in H1(0,1). In [36], a stronger estimate in L\infty (0,1) has been obtained with the
assumption of higher regularity of the function b(x) for the case of nondegenerate
boundary. Therefore, when the boundary is degenerate, we also want to study an
L\infty (0,1)-estimate of \rho \lambda  - b  - n0  - n1, where n0 and n1 are the boundary layers
profiles.

It is obvious that finding the solution v\lambda of (2.1) is essentially consistent with
solving the subsonic-sonic solution \rho \lambda of (1.7). Thus, owing to the existence of a unique
solution J \leq \rho \lambda \leq \=b, the limit equation of v\lambda can be denoted by v = F (\varrho ) = F (b). In
addition, since b(0) \not = J and b(1) \not = J , there exist the boundary layer profiles v0(y)
and v1(z) satisfying

(4.1)

\left\{     
d2v0
dy2

= f(F (b0) + v0) - b0, y \in (0,+\infty ),

v0(0) = F (J) - F (b0), lim
y\rightarrow +\infty 

v0(y) = 0,
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2828 L. CHEN, D. LI, M. MEI, AND G. ZHANG

(4.2)

\left\{   
d2v1
dz2

= f(F (b1) + v1) - b1, z \in (0,+\infty ),

v1(0) = F (J) - F (b1), lim
z\rightarrow +\infty 

v1(z) = 0.

As showed in Lemma 3.1, the unique solution v0 (resp., v1) decays exponentially
as y\rightarrow +\infty (resp., z\rightarrow +\infty ), that is,

(4.3) | v0(y)| , | v\prime 0(y)| \leq Ce - \mu 1y
\bigl( 
| v1(z)| , | v\prime 1(z)| \leq Ce - \mu 2z

\bigr) 
,

where C, \mu 1, and \mu 2 are the positive constants independent of \lambda .
Now define v\lambda (x) = F (b(x)) + v0

\bigl( 
x
\lambda 

\bigr) 
+ v1

\bigl( 
1 - x
\lambda 

\bigr) 
+ \lambda r\lambda (x). Due to the uniqueness

of the solutions v0 and v1, we find that the existence of a unique solution r\lambda is actually
equivalent to the existence of a unique solution v\lambda of (2.1). Therefore, substituting
the solution v\lambda into equation (2.1), we have a unique solution r\lambda to the equation

 - \lambda 
d2r\lambda 
dx2

 - \lambda g(F (b) + v0 + v1 + \lambda r\lambda )
dr\lambda 
dx

+
1

\lambda 2
\bigl[ 
f(F (b) + v0 + v1 + \lambda r\lambda ) - f(F (b) + \chi [0,1 - \delta ]v0 + \chi [\delta ,1]v1)

\bigr] 
=
d2F (b)

dx2
+ g(F (b) + v0 + v1 + \lambda r\lambda )

d(F (b) + v0 + v1)

dx

+
d2(v0 + v1)

dx2
 - 1

\lambda 2
\bigl[ 
f(F (b) + \chi [0,1 - \delta ]v0 + \chi [\delta ,1]v1) - f(F (b))

\bigr] 
=: h(x;\lambda , r\lambda , v0, v1),

(4.4)

with the boundary conditions

(4.5) r\lambda (0) = - 1

\lambda 
v1

\biggl( 
1

\lambda 

\biggr) 
and r\lambda (1) = - 1

\lambda 
v0

\biggl( 
1

\lambda 

\biggr) 
.

Here we have defined g(F (b) + v0 + v1 + \lambda r\lambda ) =
j

\tau 

f \prime 

f2
(v\lambda ) and

f(F (b) + \chi [0,1 - \delta ]v0 + \chi [\delta ,1]v1) =

\left\{     
f(F (b) + v0), x\in [0, \delta ],

f(F (b) + v0 + v1), x\in (\delta ,1 - \delta ),

f(F (b) + v1), x\in [1 - \delta ,1],

for characteristic functions \chi [0,1 - \delta ](x) and \chi [\delta ,1](x). By the theory of elliptic equa-
tions, one can easily see that \| r\lambda \| H1(0,1) \leq C

\lambda 2 for all fixed \lambda > 0. Moreover, if \lambda 
is sufficiently small, then F (b) + \chi [0,1 - \delta ]v0 + \chi [\delta ,1]v1 always stays in the domain of
definition of f for all x\in [0,1] and for a constant \delta independent of \lambda .

Based on the above fact, the equality v\lambda  - F (b)  - v0  - v1 = O(\lambda ) follows if r\lambda 
is uniformly bounded in L\infty (0,1) with respect to \lambda . Therefore, we need to show an
L\infty (0,1) uniform bounded estimate of r\lambda in the following lemma.

Lemma 4.1. Assume that the doping profile satisfies b \in W 2,1(0,1); then there
exists a constant M0 independent of \lambda such that for sufficiently small \lambda > 0,

(4.6) \| r\lambda \| L\infty (0,1) \leq M0.

In order to prove Lemma 4.1, we first state two key propositions as follows.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/1

6/
23

 to
 1

42
.1

57
.2

07
.1

74
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



QUASI-NEUTRAL LIMIT TO HYDRODYNAMIC MODEL 2829

Proposition 4.2. Denote

H(x) :=H(v0, F (b), F (b0))(x)

=

\int 1

0

\int 1

0

f \prime \prime 
\bigl( 
(1 - \eta )[\theta (F (b)+v0)+(1 - \theta )F (b)] + \eta [\theta (F (b0) + v0)

+(1 - \theta )F (b0)]
\bigr) 
d\eta d\theta .

Let b\in W 2,1(0,1); then, for sufficiently small \lambda > 0, it follows that

(4.7)

\int \delta 

0

\bigm| \bigm| \bigm| \bigm| [F (b) - F (b0)]v0
\lambda 2

\cdot H(x)

\bigm| \bigm| \bigm| \bigm| dx\leq C,

where the constants C and \delta are independent of \lambda .

Proof. Clearly, it is checked from (4.1) that (F (b) + v0)| x=0 = (F (b0) + v0)| x=0 =
F (J); also note from (2.8) that

f \prime \prime (s) =O

\biggl( 
1

(s - F (J))
3
2

\biggr) 
near s= F (J)+.

Hence, we get from b > J that

| H(v0, F (b), F (b0))| \leq max\{ f \prime \prime (F (b) + v0), f
\prime \prime (F (b0) + v0)\} .

If b(x)\leq b0 near x=0+, then f \prime \prime (F (b)+v0)> f \prime \prime (F (b0)+v0), so that | H(v0, F (b),
F (b0))| \leq f \prime \prime (F (b) + v0). From (4.3), b \in C0[0,1], and F (b) + v0 \geq F (J), it follows
that near x= 0+,

| H(v0, F (b), F (b0))| \leq 
C

[(v0 + F (b0) - F (J)) + F (b) - F (b0)]
3
2

\leq C

[v0  - (F (J) - F (b0)) - Cx]
3
2

\leq C

[(1 - e
 - Cx

\lambda ) - Cx]
3
2

,

where we can see that 1 - e
 - Cx

\lambda \geq Cx for sufficiently small \lambda and near x= 0+. Now
for x\in [0, \lambda ], a direct calculation indicates that there exists a constant \^c independent
of \lambda such that (1 - e - 

Cx
\lambda ) - Cx\geq \^cx

\lambda when \lambda is small enough. Therefore, we have

(4.8)

\int \lambda 

0

\bigm| \bigm| \bigm| \bigm| [F (b) - F (b0)]v0
\lambda 2

\cdot H(x)

\bigm| \bigm| \bigm| \bigm| dx\leq C

\int \lambda 

0

xe - 
Cx
\lambda 

\lambda 2
1

\^c(x\lambda )
3
2

dx\leq C

\int 1

0

e - Cy

\surd 
y
dy\leq C.

In addition, if \delta is small enough, then

(1 - e
 - Cx

\lambda ) - Cx\geq (1 - e - C) - C\delta \geq 1 - e - C

2

for x\in [\lambda , \delta ]. Hence, it follows that\int \delta 

\lambda 

\bigm| \bigm| \bigm| \bigm| [F (b) - F (b0)]v0
\lambda 2

\cdot H(x)

\bigm| \bigm| \bigm| \bigm| dx\leq C

\int \delta 

\lambda 

xv0
\lambda 2

dx\leq C

\int \delta 

\lambda 

xe - 
Cx
\lambda 

\lambda 2
dx

\leq C

\int \infty 

1

ye - Cydy\leq C,

which, together with (4.8), leads to (4.7).
When b(x)\geq b0 near x= 0+, we have the same result by a similar way. Thus, the

proof is complete.
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2830 L. CHEN, D. LI, M. MEI, AND G. ZHANG

Proposition 4.3. Let b\in W 2,1(0,1); then for sufficient small \lambda ,

\| h\| L1(0,1) \leq C,

where the constant C is independent of \lambda , and the function h is defined as in (4.4).

Proof. Now set h(x) := h1(x) + h2(x), where

h1(x) =
d2F (b)

dx2
+ g(F (b) + v0 + v1 + \lambda r\lambda )

d(F (b) + v0 + v1)

dx

and

h2(x) =
d2(v0 + v1)

dx2
 - 1

\lambda 2
\bigl[ 
f(F (b) + \chi [0,1 - \delta ]v0 + \chi [\delta ,1]v1) - f(F (b))

\bigr] 
.

To derive h\in L1(0,1), it suffices to show h1 \in L1(0,1) and h2 \in L1(0,1) in the rest of
proof.

First, by the definition of g(v\lambda ), we can get\int 1

0

| g(v\lambda )(v0+v1)x| dx\leq C

\int 1 - \delta 

\delta 

| (v0+v1)x| dx

+
C

\lambda 

\Biggl[ \int \delta 

0

f \prime (v\lambda )e
 - Cx

\lambda dx+

\int 1

1 - \delta 

f \prime (v\lambda )e
 - C(1 - x)

\lambda dx

\Biggr] 
.

Hereunto, we have\int 1 - \delta 

\delta 

| (v0 + v1)x| dx\leq 
\int 1 - \delta 

\delta 

\Bigl[ 
e - 

Cx
\lambda + e - 

C(1 - x)
\lambda 

\Bigr] 
dx\leq C\delta ,

1

\lambda 

\int \delta 

0

f \prime (v\lambda )e
 - Cx

\lambda dx\leq 
\int \lambda 

0

f \prime (v\lambda )
e - 

Cx
\lambda 

\lambda 
dx+

\int \delta 

\lambda 

f \prime (v\lambda )
e - 

Cx
\lambda 

\lambda 
dx

\leq C

\int \lambda 

0

e - 
Cx
\lambda 

(x\lambda )
1
2\lambda 
dx+C

\int \delta 

\lambda 

e - 
Cx
\lambda 

\lambda 
dx

\leq 
\int 1

0

e - C\xi \xi  - 
1
2 d\xi +C

\int \delta 
\lambda 

1

e - C\xi d\xi 

\leq C,

where we have applied (2.8), (4.3), and Lemma 2.1. Similarly, it is easy to see that

1

\lambda 

\int 1

1 - \delta 

f \prime (v\lambda )e
 - C(1 - x)

\lambda dx\leq C.

Thus, we obtain \int 1

0

| g(v\lambda )(v0 + v1)x| dx\leq C.

Obviously, by the regularity of b(x), it holds that dF (b)
dx \in L\infty (0,1) and d2F (b)

dx2 \in L1(0,1)
with respect to \lambda . From (2.6), g(v\lambda )\in L1(0,1) for any \lambda > 0. As a result, it is directly
checked that h1 \in L1(0,1) for any \lambda .
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QUASI-NEUTRAL LIMIT TO HYDRODYNAMIC MODEL 2831

In addition, from (4.1) and (4.2), one can prove that

h2(x, v0, v1, F (b))

=
1

\lambda 2

\Bigl\{ \bigl[ 
f(F (b0) + v0) - f(F (b0))

\bigr] 
+
\bigl[ 
f(F (b1) + v1) - f(F (b1))

\bigr] 
 - 
\bigl[ 
f(F (b) + \chi [0,1 - \delta ]v0 + \chi [\delta ,1]v1) - f(F (b))

\bigr] \Bigr\} 
=

1

\lambda 2

\Bigl[ 
v0

\int 1

0

f \prime (\theta (F (b0) + v0) + (1 - \theta )F (b0))d\theta + v1

\int 1

0

f \prime (\theta (F (b1) + v1)

+ (1 - \theta )F (b1))d\theta  - 
\bigl( 
\chi [0,1 - \delta ]v0 + \chi [\delta ,1]v1

\bigr) \int 1

0

f \prime (\theta (F (b) + \chi [0,1 - \delta ]v0 + \chi [\delta ,1]v1)

+ (1 - \theta )F (b))d\theta 
\Bigr] 
.

To show h2 \in L1(0,1), we next prove the three parts h2 \in L1(0, \delta ), h2 \in L1(\delta ,1 - \delta ),
and h2 \in L1(1 - \delta ,1), respectively.

Part 1. Proof of h2 \in L1(\delta ,1 - \delta ). In the case of x\in [\delta ,1 - \delta ], one can see that

h2(x) =
1

\lambda 2

\biggl[ 
v0

\int 1

0

f \prime (\theta (F (b0) + v0) + (1 - \theta )F (b0))d\theta 

+ v1

\int 1

0

f \prime (\theta (F (b1) + v1) + (1 - \theta )F (b1))d\theta 

 - 
\bigl( 
v0 + v1

\bigr) \int 1

0

f \prime (\theta (F (b) + v0 + v1) + (1 - \theta )F (b))d\theta 

\biggr] 
.

Here f \prime (\theta (F (b0)+v0)+(1 - \theta )F (b0)), f \prime (\theta (F (b1)+v1)+(1 - \theta )F (b1)), and f \prime (\theta (F (b)+
v0+ v1)+ (1 - \theta )F (b)) are bounded for all \theta \in [0,1] and x\in [\delta ,1 - \delta ] independently of
\lambda . Hence, for sufficiently small \lambda , we have\int 1 - \delta 

\delta 

| h2(x)| dx\leq C\delta 

\int 1 - \delta 

\delta 

v0 + v1
\lambda 2

dx\leq C\delta 

\delta 2
\leq C\delta 0 ,

where \delta > 0 is a constant satisfying \delta \in [\delta 0,1/2], and the constant C\delta 0 depends only
upon \delta 0 > 0 independently of \lambda .

Part 2. Proof of h2 \in L1(0, \delta ). That is, over [0, \delta ],

h2(x) =
v0
\lambda 2

\int 1

0

\Bigl[ 
f \prime (\theta (F (b0) + v0) + (1 - \theta )F (b0)) - f \prime (\theta (F (b) + v0) + (1 - \theta )F (b))

\Bigr] 
d\theta 

+
v1
\lambda 2

\int 1

0

f \prime (\theta (F (b1) + v1) + (1 - \theta )F (b1))d\theta 

=
[F (b0) - F (b)]v0

\lambda 2

\int 1

0

\int 1

0

f \prime \prime 
\bigl( 
(1 - \eta )[\theta (F (b) + v0) + (1 - \theta )F (b)]

+ \eta [\theta (F (b0) + v0) + (1 - \theta )F (b0)]
\bigr) 
d\eta d\theta 

+
v1
\lambda 2

\int 1

0

f \prime (\theta (F (b1) + v1) + (1 - \theta )F (b1))d\theta 

=
[F (b) - F (b0)]v0

\lambda 2
\cdot H(v0, F (b), F (b0)) +

v1
\lambda 2

\int 1

0

f \prime (\theta ,F (b1), v1)d\theta ,

where the functionH is as denoted in Proposition 4.2. From (4.7), we have [F (b) - F (b0)]v0

\lambda 2 \cdot 
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2832 L. CHEN, D. LI, M. MEI, AND G. ZHANG

H \in L1(0, \delta ). Then a direct calculation indicates that by (2.6) and (4.3),\int \delta 

0

\bigm| \bigm| \bigm| \bigm| v1\lambda 2
\int 1

0

f \prime (\theta ,F (b1), v1)d\theta 

\bigm| \bigm| \bigm| \bigm| dx\leq C \int \delta 

0

f \prime (F (b1) + v1)v1
\lambda 2

dx\leq C

\lambda 2

\int \delta 

0

e - 
1 - x
\lambda dx

\leq C e
 - 1 - \delta 

\lambda 

\lambda 2
\leq C,

where we have applied e - 
C
\lambda /\lambda 2 \leq C for all \lambda > 0 with a constant C independent of \lambda .

Therefore, we realize that, for some constant C independent of \lambda ,\int \delta 

0

| h2(x)| dx\leq C.

Part 3. Proof of h2 \in L1(1 - \delta ,1). The proof is similar to Part 2. In a word, we
get the result that h\in L1(0,1) for any \lambda . The proof is finished.

Proof of Lemma 4.1. By rearranging equation (4.4), we have

1

\lambda 2
\bigl[ 
f(F (b) + v0 + v1 + \lambda r\lambda ) - f(F (b) + \chi [0,1 - \delta ]v0 + \chi [\delta ,1]v1)

\bigr] 

=
1

\lambda 
\cdot 

\left\{                   

v1 + \lambda r\lambda 
\lambda 

\int 1

0
f \prime (F (b) + v0 + \vargamma (v1 + \lambda r\lambda ))d\vargamma for x\in [0, \delta ],

\int 1

0
f \prime (F (b) + v0 + v1 + \vargamma \lambda r\lambda )d\vargamma \cdot r\lambda for x\in [\delta ,1 - \delta ],

v0 + \lambda r\lambda 
\lambda 

\int 1

0
f \prime (F (b) + v1 + \vargamma (v0 + \lambda r\lambda ))d\vargamma for x\in [1 - \delta ,1],

=
r\lambda 
\lambda 

\cdot 
\Bigl[ 
\chi [0,\delta ]

\int 1

0

f \prime (F (b)+v0+\vargamma (v1+\lambda r\lambda ))d\vargamma +\chi [\delta ,1 - \delta ]

\int 1

0

f \prime (F (b) + v0 + v1 + \vargamma \lambda r\lambda )d\vargamma 

+\chi [1 - \delta ,1]

\int 1

0

f \prime (F (b)+v1+\vargamma (v0+\lambda r\lambda ))d\vargamma 
\Bigr] 
+
\chi [0,\delta ]v1

\lambda 2

\int 1

0

f \prime (F (b)+v0+\vargamma (v1+\lambda r\lambda ))d\vargamma 

+
\chi [1 - \delta ,1]v0

\lambda 2

\int 1

0

f \prime (F (b) + v1 + \vargamma (v0 + \lambda r\lambda ))d\vargamma 

=:
r\lambda 
\lambda 

\cdot l1 + l2,

where we note that (F (b) + v0 + \vargamma (v1 + \lambda r\lambda ))x\in [0,\delta ], (F (b) + v0 + v1 + \vargamma \lambda r\lambda )x\in [\delta ,1 - \delta ],
and (F (b) + v1 + \vargamma (v0 + \lambda r\lambda ))x\in [1 - \delta ,1] are certainly in the domain of definition of f \prime 

for all \theta \in [0,1] and sufficiently small \lambda . In what follows, equations (4.4) and (4.5)
become

(4.9)

\left\{     
 - \lambda (r\lambda )xx  - \lambda g(v\lambda )(x)(r\lambda )x +

l1(x)

\lambda 
r\lambda = (h - l2)(x), x\in (0,1),

r\lambda (0) = - 1

\lambda 
v1

\biggl( 
1

\lambda 

\biggr) 
, r\lambda (1) = - 1

\lambda 
v0

\biggl( 
1

\lambda 

\biggr) 
.

Here we check by Lemma 2.2 and Proposition 4.3 that g(v\lambda )\in L1(0,1) and h\in L1(0,1)
for any \lambda . Furthermore, it is easy to verify that l1(x) \geq \kappa > 0 for all x \in [0,1]
and a constant \kappa independent of \lambda . From the properties of the function f \prime , we get
l2 \in L1(0,1).

One can see that r\lambda \in W 1,\infty (0,1), and then max\{ | r\lambda (0)| , | r\lambda (1)| \} < \epsilon < 1
2 for

sufficiently small \lambda < \epsilon . Now denote a test function \zeta (x) =\scrL (x)w(x)\in H1
0 (0,1) by

\scrL (x) = e
\int x
0

g(v\lambda )(s)ds and w(x) =max\{ 0, r\lambda  - 2\epsilon \} ,
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with any fixed \lambda . Then multiplying (4.9) by \zeta (x), one gets

\lambda 

\int 1

0

\scrL (x)| wx| 2dx+
1

\lambda 

\int 1

0

\scrL (x)l1(x)w2dx=

\int 1

0

\scrL (x)(h - l2)(x)w(x)dx.

Since l1 \geq \kappa > 0 and 0<\scrL \leq \scrL \leq \scrL for constants \scrL and \scrL independent of \lambda , we have

(4.10) \lambda \scrL 
\int 1

0

| wx| 2dx+
\scrL \kappa 
\lambda 

\int 1

0

w2dx\leq \scrL 
\int 1

0

| (h - l2)(x)| w(x)dx.

Note that, for any \omega \in H1
0 (0,1), it holds that \| \omega \| 2L\infty (0,1) \leq C\| \omega x\| L2(0,1)\| \omega \| L2(0,1),

which, together with Young's inequality with parameter \lambda , implies that

(4.11) \nu \| w\| 2L\infty (0,1) \leq \lambda \scrL 
\int 1

0

| wx| 2dx+
\scrL \kappa 
\lambda 

\int 1

0

w2dx\leq \scrL \| w\| L\infty (0,1) \cdot \| (h - l2)\| L1(0,1),

where the constant \nu > 0 is selected by \nu = max\{ 1,4\scrL 2\kappa \} /C. Thus there exists a
constant

M0 :=
\scrL \| (h - l2)\| L1(0,1)

\nu 
+ 1,

so that for any \lambda , we get

sup
x\in [0,1]

r\lambda (x)\leq M0.

Similarly, multiplying (4.9) by \scrL (x) and the function \~w= - min\{ 0, r\lambda  - min\{ r\lambda (0),
r\lambda (1)\} \} , we also get

\lambda 

\int 1

0

\scrL (x)| \~wx| 2dx+
1

\lambda 

\int 1

0

\scrL (x)l1(x) \~w2dx= - 
\int 1

0

\scrL (x)(h - l2)(x) \~w(x)dx.

As in (4.10) and (4.11), it follows that

 - inf
x\in [0,1]

r\lambda (x)\leq M0.

Thus, the proof is complete.

Now we return to problem (1.7). From Lemma 4.1, a uniform estimate of the
error term in L\infty (0,1) is stated as follows.

Theorem 4.4. Under the assumptions of Lemma 4.1 and Proposition 4.3, there
exists a unique pair of smooth solutions (\rho \lambda ,\Phi \lambda ) to system (1.7), and then the bound-
ary layer profiles n0 and n1 satisfy

n0(0, \lambda ) = J  - b0, | n0(x,\lambda )| \leq Ce - \mu 3x/\lambda ,

n1(0, \lambda ) = J  - b1, | n1(x,\lambda )| \leq Ce - \mu 4(1 - x)/\lambda ,
(4.12)

such that when \lambda \rightarrow 0, we have

(4.13) \| \rho \lambda  - b - n0(\cdot , \lambda ) - n1(\cdot , \lambda )\| L\infty (0,1) =O(\lambda ),
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where C, \mu 3, and \mu 4 are positive constants independent of \lambda . Furthermore, note that

\phi (x) = F (b) - F (J) +

\int x

0

j

\tau b(y)
dy;

then it holds that

(4.14) \| \Phi \lambda  - \phi  - v0  - v1\| L\infty (0,1) =O(\lambda ) when \lambda \rightarrow 0.

Here v0(x/\lambda ) and v1((1 - x)/\lambda ) are given by (4.1) and (4.2).

Proof. Obviously, the existence of the unique solution (\rho \lambda ,\Phi \lambda ) is determined by
the unique solution v\lambda of (2.1). Referring to the proof of Theorem 2 in [36], we choose

n0(x,\lambda ) =

\biggl[ \int 1

0

F \prime (b+ y(\rho \lambda  - b))dy

\biggr]  - 1

v0

\Bigl( x
\lambda 

\Bigr) 
and

n1(x,\lambda ) =

\biggl[ \int 1

0

F \prime (b+ y(\rho \lambda  - b))dy

\biggr]  - 1

v1

\biggl( 
1 - x

\lambda 

\biggr) 
,

where there exist the positive upper and lower bounds to\int 1

0

F \prime (b+ y(\rho \lambda  - b))dy=
F (\rho \lambda ) - F (b)

\rho \lambda  - b
.

Thus, a direct calculation yields that (4.12) and (4.13) follow. Also, by the definitions
of \Phi \lambda and \phi , we get

\Phi \lambda (x) - \phi (x) - v0

\Bigl( x
\lambda 

\Bigr) 
 - v1

\biggl( 
1 - x

\lambda 

\biggr) 
= v\lambda (x) - F (b) - v0

\Bigl( x
\lambda 

\Bigr) 
 - v1

\biggl( 
1 - x

\lambda 

\biggr) 
 - j

\tau 

\int x

0

\rho \lambda (x) - b(x)

\rho \lambda (x)b(x)
dx,

which, in combination with (4.6), (4.12), and (4.13), implies the estimate (4.14). This
proof is verified.

Therefore, based on Theorem 4.4, we immediately prove Theorem 1.3.

5. Numerical simulations. In this section, we are going to carry out some
numerical simulations. We numerically show that b(x) is the background solution of
\rho \lambda (x) for x\in (0,1) as \lambda \rightarrow 0+, and the boundary layers at x= 0 and x= 1 are clearly
demonstrated.

Example 5.1. Consider the steady-state Euler--Poisson equations with the sonic
boundary,

(5.1)

\left\{       
(F (\rho \lambda ) - \Phi \lambda )x = - 1

\rho \lambda 
, x\in (0,1),

\lambda 2(\Phi \lambda )xx = \rho \lambda  - b(x), x\in (0,1),
\rho \lambda (0) = \rho \lambda (1) = 1,
\Phi \lambda (0) = 0,

where

b(x) = 3+ sin(\pi x)
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Fig. 4. Numerical approximations with \gamma = 1 and different \lambda .

and

F (\rho \lambda ) =

\Biggl\{ 
1

2\rho \lambda 
+

\rho \gamma  - 1
\lambda 

\gamma  - 1 if \gamma > 1,
1

2\rho \lambda 
+ ln\rho \lambda if \gamma = 1.

The first equation of (5.1) implies that

(5.2) (F (\rho \lambda ))xx  - (\Phi \lambda )xx = - 
\biggl( 

1

\rho \lambda 

\biggr) 
x

.

Substituting (5.2) into the second equation of (5.1) gives

(F (\rho \lambda ))xx  - 
1

\lambda 2
(\rho \lambda  - b(x)) = - 

\biggl( 
1

\rho \lambda 

\biggr) 
x

.

Now, we are ready to numerically solve the boundary problem. Let h = 1/1000 be
the spatial stepsize. Denote by \rho i and \Phi i the numerical approximations to \rho \lambda (ih) and
\Phi \lambda (ih), where i= 0,1,2, . . . ,1000. Applying the second-order finite difference method
to the above equation, we have

F (\rho i+1) - 2F (\rho i) + F (\rho i - 1)

h2
 - 1

\lambda 2
(\rho i  - b(ih)) = - 2h

\rho i+1  - \rho i - 1
.

Together with the boundary condition, we can obtain the numerical approximation \rho i.
Then, applying the finite difference method to the first equation of (5.1), we get the
numerical solutions of \Phi i. Numerical approximations with \gamma = 1 for the isothermal
case and \gamma = 2 for the isentropic case are shown in Figures 4 and 5, respectively. From
the figures, one can see the quasi-neutral limit,

\rho \lambda (x)\rightarrow b(x) for x\in (0,1), as \lambda \rightarrow 0+,

and, obviously, there are boundary layers at the boundaries x = 0 and x = 1,
respectively. These numerical computations further confirm our theoretical results.
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Fig. 5. Numerical approximations with \gamma = 2 and different \lambda .
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