
Champlain College – St.-Lambert

MATH 201-203: Calculus II

Review Questions for Final Exam

Instructor: Dr. Ming Mei

——————————————————————————————————————–

1. Find integrals.

(a)

∫
x ln(x2 + 1)

x2 + 1
dx, (b)

∫
ex cos xdx,

(c)

∫
x sin2 xdx, (d)

∫
1

x3 − 2x2 + x
dx.

2. Evaluate each integral and test if it is convergent or divergent.

(a)

∫ 0

−∞
xexdx, (b)

∫ 2

0

1

x2 − 2x
dx.

3. Let A be a region bounded by y = x2 and y = x, and V be a solid obtained by
rotating A about the x-axis.

(a) Find the area of A.

(b) Find the volume of V .

4. Find the solution to the differential equation:

y′ = xye−x2

, y(0) =
√

e.

5. Test convergence or divergence of the sequences:

(a) an =
2n + 1

4n− 5
, (b) an =

(−1)n5n+1

7n + 2
.

6. Test convergence or divergence of the series:

(a)
∞∑

n=1

n + 2

n3 + n + 1
, (b)

∞∑
n=0

5n + 1

7n + 9
.
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7. Find the interval of convergence of the power series:

∞∑
n=1

nxn

n3 + 1
.

8. Find Maclaurin series of the function:

f(x) =
x

1 + x3
.

——————————————————————————————————————–
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Solutions to Review Questions

1(a). Method 1.

∫
x ln(x2 + 1)

x2 + 1
dx [ substitute: u = x2 + 1, du = 2xdx ]

=

∫
ln u

u

du

2
=

1

2

∫
ln u

u
du [ substitute: v = ln u, dv =

1

u
du ]

=
1

2

∫
vdv =

1

4
v2 + C =

1

4
(ln u)2 + C

=
1

4
ln2(x2 + 1) + C.

Method 2. Substitute u = ln(x2 + 1), then du = 2x
x2+1

dx. So,

∫
x ln(x2 + 1)

x2 + 1
dx =

1

2

∫
udu =

u2

4
+ C =

1

4
ln2(x2 + 1) + C.

1(b).

∫
ex cos xdx

[integration by parts: f(x) = ex, g′(x) = cos x,

⇒ f ′(x) = ex, g(x) = sin x]

= ex sin x−
∫

ex sin xdx

[again, integration by parts: f2(x) = ex, g′2(x) = sin x,

⇒ f ′2(x) = ex, g2(x) = − cos x]

= ex sin x−
(
− ex cos x−

∫
[−ex cos x]dx

)

= ex sin x + ex cos x−
∫

ex cos xdx

which implies

2

∫
ex cos xdx = ex sin x + ex cos x + C.

So, ∫
ex cos xdx =

1

2
ex sin x +

1

2
ex cos x + C.
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1(c). Since sin2 x = 1−cos 2x
2

, then

∫
x sin2 xdx =

∫
x

1− cos 2x

2
dx

=
1

2

∫
xdx− 1

2

∫
x cos 2xdx

=
x2

4
− 1

2

∫
x cos 2xdx [ substitute: u = 2x, du = 2dx]

=
x2

4
− 1

8

∫
u cos u du

[ integration by parts: f(u) = u, g′(u) = cos u,

⇒ f ′(u) = 1, g(u) = sin u]

=
x2

4
− 1

8

[
u sin u−

∫
sin u du

]

=
x2

4
− 1

8

[
u sin u + cos u

]
+ C

=
x2

4
− 1

4
x sin 2x− 1

8
cos 2x + C.

1(d). Since x3 − 2x2 + x = x(x− 1)2, we then try the following partial fractions

1

x3 − 2x2 + x
=

A

x
+

B

x− 1
+

C

(x− 1)2
=

A(x− 1)2 + Bx(x− 1) + Cx

x(x− 1)2

for some constants A, B and C. Comparing the numerators, we have

A(x− 1)2 + Bx(x− 1) + Cx = 1.

Thus, let x = 0, we get A = 1, and x = 1 we have C = 1. Furthermore, let x = 2, and
use A = C = 1, we obtain B = −1. So, we can integrate

∫
1

x3 − 2x2 + x
dx =

∫ [1

x
− 1

x− 1
+

1

(x− 1)2

]
dx = ln |x| − ln |x− 1| − 1

x− 1
+ C.
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2(a).
∫ 0

−∞
xexdx = lim

t→−∞

∫ 0

t

xexdx

[integration by parts: f(x) = x, g′(x) = ex,⇒ f ′ = 1, g = ex]

= lim
t→−∞

(
xex −

∫ 0

t

exdx
)

= lim
t→−∞

(xex − ex)
∣∣∣
0

t

= lim
t→−∞

[−1− (tet − et)]

= [−1− (0− 0)] = −1,

where limt→−∞ et = 0, and by the l’Hospital law,

lim
t→−∞

tet = lim
t→−∞

t

e−t
= lim

t→−∞
(t)′

(e−t)′
= lim

t→−∞
1

−e−t)
= lim

t→−∞
et = 0.

So, this improper integral is convergent.

2(b). Since x2 − 2x = x(x − 2), so x = 0 and x = 2 both are singular points of the
integrand, and the integral is improper at both the upper-limit 2 and the lower-limit 0.
On the other hand, the integrand can be reduced to the partial fractions

1

x2 − 2x
=

1

2

( 1

x− 2
− 1

x

)
,

thus, it holds
∫ 2

0

1

x2 − 2x
dx =

∫ 1

0

1

x2 − 2x
dx +

∫ 2

1

1

x2 − 2x
dx

= lim
t→0+

∫ 1

t

1

x2 − 2x
dx + lim

s→2−

∫ s

1

1

x2 − 2x
dx

= lim
t→0+

∫ 1

t

1

2

( 1

x− 2
− 1

x

)
dx + lim

s→2−

∫ s

1

1

2

( 1

x− 2
− 1

x

)
dx

= lim
t→0+

1

2
(ln |x− 2| − ln |x|)

∣∣∣
1

t
+ lim

s→2−

1

2
(ln |x− 2| − ln |x|)

∣∣∣
s

1

= lim
t→0+

1

2
[(ln |1| − ln |1|)− (ln |t− 2| − ln |t|)]

+ lim
s→2−

1

2
[(ln |s− 2| − ln |s|)− (ln |1| − ln |1|)]

=
1

2
[0− (ln 2− ln 0+)] +

1

2
[(ln 0+ − ln 2)− 0]

= −∞, [ because ln 0+ = −∞].
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So, it is divergent.

3(a). The intersection points of y = x2 and y = x are (0, 0) and (1, 1). For 0 ≤ x ≤ 1,
the top curve is y = x and the bottom curve is y = x2. So, the area bounded by these
two curves for 0 ≤ x ≤ 1 is

A =

∫ b

a

[Ytop − Ybottom]dx =

∫ 1

0

[x− x2]dx =
(x2

2
− x3

3

)∣∣∣
1

0
=

1

6
.

3(b).

V = Vouter − Vinner = π

∫ 1

0

(x)2dx− π

∫ 1

0

(x2)2dx =
2

15
π.

4. Separate the variables to the equation to have

dy

y
= xe−x2

dx.

Then integrate it to yield ∫
dy

y
=

∫
xe−x2

dx.

By substituting u = −x2, we have
∫

xe−x2

dx =

∫
eu(−1

2
)du = −1

2
eu + C = −1

2
e−x2

+ C.

So, we then have

ln |y| = −1

2
eu + C = −1

2
e−x2

+ C,

namely,

y = ±e−
1
2
e−x2

+C = ±eCe−
1
2
e−x2

=: C1e
− 1

2
e−x2

,

where C1 is an arbitrary constant. Notice that y(0) =
√

e, we have

√
e = C1e

− 1
2 ,

i.e., C1 = e. So, the particular solution is

y = e1− 1
2
e−x2

.

5(a).

lim
n→∞

an = lim
n→∞

2n + 1

4n− 5
= lim

n→∞
(2n + 1)/n

(4n− 5)/n
= lim

n→∞
2 + 1

n

4− 5
n

=
1

2
.
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So, it is convergent.

5(b). Since

− 5n+1

7n + 2
≤ an =

(−1)n5n+1

7n + 2
≤ 5n+1

7n + 2
,

and

lim
n→∞

5n+1

7n + 2
= lim

n→∞
5n+1/7n

(7n + 2)/7n
= lim

n→∞
5(5

7
)n

1 + 2
7n

= 0.

By the squeeze theorem, we have

lim
n→∞

an = lim
n→∞

(−1)n5n+1

7n + 2
= 0.

So, it is convergent.

6(a). Let an = n+2
n3+n+1

and bn = n
n3 = 1

n2 . Since

lim
n→∞

an

bn

= lim
n→∞

n + 2

n3 + n + 1

/ 1

n2
= 1,

by the limit comparison test, the series
∑∞

n=1 an =
∑∞

n=1
n+2

n3+n+1
and the series

∑∞
n=1 bn =∑∞

n=1
1
n2 both have the same convergence or divergence. Notice that,

∑∞
n=1 bn =

∑∞
n=1

1
n2

is convergent, because it is a p-series with p = 2 > 1, so the series
∑∞

n=1 an =
∑∞

n=1
n+2

n3+n+1

is also convergent.

6(b). Let an = 5n+1
7n+9

and bn = 5n

7n = (5
7
)n. Since

lim
n→∞

an

bn

= lim
n→∞

5n + 1

7n + 9

/
(
5

7
)n = 1,

by the limit comparison test, the series
∑∞

n=0 an =
∑∞

n=0
5n+1
7n+9

and the series
∑∞

n=0 bn =∑∞
n=0(

5
7
)n both have the same convergence or divergence. Notice that,

∑∞
n=0 bn =

∑∞
n=0(

5
7
)n

is convergent, because it is a geometric-series with r = 5
7

< 1, so the series
∑∞

n=0 an =∑∞
n=0

5n+1
7n+9

is also convergent.

7. The radius of convergence is

R = lim
n→∞

∣∣∣ an

an+1

∣∣∣ = lim
n→∞

n

n3 + 1

/ n + 1

(n + 1)3 + 1
= lim

n→∞
n((n + 1)3 + 1)

(n3 + 1)(n + 1)
= 1.

So, the series
∑∞

n=1

n(x + 1)n

n3 + 1
is convergent for x in (a−R, a+R) = (0−1, 0+1) = (−1, 1).

Furthermore, at the endpoint x = 1, the series becomes
∑∞

n=1

n

n3 + 1
, which is convergent.
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In fact, let bn = n
n3 = 1

n2 , since

lim
n→∞

an

bn

= lim
n→∞

n

n3 + 1

/ 1

n2
= 1 6= 0,

by the limit comparison test, the series
∑∞

n=1 an =
∑∞

n=1
n

n3+1
and the series

∑∞
n=1 bn =∑∞

n=1
1
n2 both have the same convergence or divergence. Notice that,

∑∞
n=1 bn =

∑∞
n=1

1
n2

is convergent, because it is a p-series with p = 2 (> 1), then
∑∞

n=1 an =
∑∞

n=1
n

n3+1
is also

convergent. While, at the other endpoint x = −1, the series becomes
∑∞

n=1

(−1)nn

n3 + 1
, which

is absolutely convergent, because
∣∣∣(−1)nn

n3 + 1

∣∣∣ =
n

n3 + 1
, and

∑∞
n=1

n

n3 + 1
is convergent as

showed before. Therefore, the interval of convergence for
∑∞

n=1

xn

n2
is [−1, 1].

8.

f(x) =
x

1 + x3
= x

1

1− (−x3)
= x

∞∑
n=0

(−x3)n = x
∞∑

n=0

(−1)nx3n =
∞∑

n=0

(−1)nx3n+1,

for x ∈ (−1, 1).
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