CHAMPLAIN COLLEGE – ST.-LAMBERT

Final Exam

Mathematics 201-103-ER

Calculus I (Commerce Study)

Instructor: Dr. Ming Mei

Name: _____

ID #: _____

REMARKS:

- Only small scientific calculators without graphing program are permitted.
- Read every question carefully and show your work for all questions.
- When evaluating limits, note that if a limit does not exist and equals to ∞ or $-\infty$ write this as your answer, otherwise just write *does not exist* or DNE.
- No cell phones are allowed during the exam.

Question	Mark	
1		24
2		24
3		10
4		10
5		20
6		12
TOTAL		100
TOTHE		100

1. Evaluate each of the following limits.

(a)
$$\lim_{x \to 2} \frac{x-2}{x^2-4}$$

 \underline{MARKS} (24)

(b)
$$\lim_{x \to \infty} \frac{3x^2 + x}{1 - 4x^3}$$

(c)
$$\lim_{x \to 1^{-}} \frac{|x-1|}{x-1}$$

2. Find the derivative of each of the following functions.

 \underline{MARKS} (24)

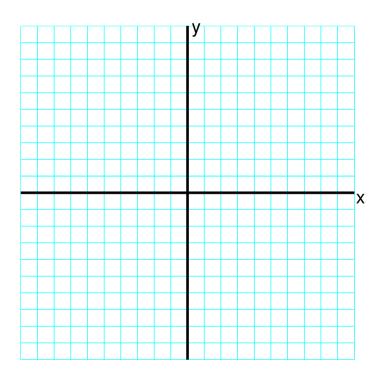
(a) $y = (x^2 + 1)^2(2x^2 + 5x)$

(b)
$$y = x e^{x^2}$$

(c)
$$y = \frac{\ln(2x^2 + 1)}{x + 1}$$

 $\underline{MARKS}(10)$

3. Find the constant c that makes g continuous on $(-\infty, \infty)$.


$$g(x) = \begin{cases} 2x^2 + c, & \text{if } x < 2\\ \frac{c^2}{2}x + 6, & \text{if } x \ge 2. \end{cases}$$

4. Find the equation of the tangent line to the curve of $x^2y^3 + xy^2 - 2x^2 = 0$ at the point (1, 1). <u>MARKS(10)</u>

- 5. A function f has the following properties
 - f(-6) = 2, f(-4) = 4, f(0) = 0, f(4) = -4, f(6) = -2, • f'(-4) = f'(4) = 0, f''(-6) = f''(0) = f''(6) = 0,

 - $\lim_{x \to -\infty} f(x) = 0, \quad \lim_{x \to +\infty} f(x) = 0,$
 - f'(x) > 0 in $(-\infty, -4) \cup (4, \infty)$, f'(x) < 0 in (-4, 4),
 - $f''(x) > 0 \text{ in } (-\infty, -6) \cup (0, 6), \quad f''(x) < 0 \text{ in } (-6, 0) \cup (6, \infty).$
 - (a) Find the intervals where f(x) is increasing and where it is decreasing;
 - (b) Find the relative extrema, if any;
 - (c) Find the intervals where f(x) is concave upward and where it is concave downward;
 - (d) Point out the inflection points, if any;
 - (e) Sketch the graph of f(x).

 $\underline{MARKS}(20)$

- 6. The total weekly cost in dollars incurred by SONY Corp. in producing x HD TVs is given by the total cost function $C(x) = 4000 + 104x^2 x^3$ and the price is determined as p(x) = 3600 x.
 - (a) Find the revenue function and the profit function, respectively.
 - (b) Find the marginal profit function.
 - (c) At what production level will the profit be maximum? and what is the maximum profit?

 $\underline{MARKS}(12)$