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ABSTRACT

It was recently demonstrated that feeding a silicon-in-silica coaxial fiber into a flame—imparting a steep silica viscosity gradient—results in
the formation of silicon spheres whose size is controlled by the feed speed [Gumennik et al., “Silicon-in-silica spheres via axial thermal
gradient in-fiber capillary instabilities,” Nat. Commun. 4, 2216 (2013)]. A reduced model to predict the droplet size from the feed speed was
then derived by Mowlavi et al. [“Particle size selection in capillary instability of locally heated coaxial fiber,” Phys. Rev. Fluids 4, 064003
(2019)], but large experimental uncertainties in the parameter values and temperature profile made quantitative validation of the model
impossible. Here, we validate the reduced model against fully resolved three-dimensional axisymmetric Stokes simulations using the exact
same physical parameters and temperature profile. We obtain excellent quantitative agreement for a wide range of experimentally relevant
feed speeds. Surprisingly, we also observe that the local capillary number at the breakup location remains almost constant across all feed
speeds. Owing to its low computational cost, the reduced model is therefore a useful tool for designing future experiments.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0073625

I. INTRODUCTION

The classic phenomenon of capillary breakup of a jet into drop-
lets1 has recently been revisited under a new experimental setting:2–9 a
fiber is fed through a steep thermal/viscosity gradient (Fig. 1), where
the feed speed provides control over the droplet size.2 In that initial
work,2 a silicon-in-silica coaxial fiber was fed into a localized flame,
causing the silicon core to break up into spherical droplets far smaller2

than those produced by a classic isothermal process.10 The softening
of the outer silica cladding, whose viscosity drops by more than three
orders of magnitude over a few millimeters, is believed to be at the ori-
gin of the small drop size and its dependence on the feed speed.
However, a key challenge has been to develop a simplified model that
quantitatively predicts the droplet size from the feed speed and other
parameters, in order to better understand this phenomenon and to
design future experiments.

In Ref. 11, such a one-dimensional (1D) reduced model was
developed through a long-wavelength approximation of the governing
Navier–Stokes equations. However, large experimental uncertainties
in the temperature/viscosity profile made it impossible to quantita-
tively validate the model’s accuracy. In the present work, we circum-
vent this difficulty by validating the 1D reduced model against fully
resolved three-dimensional (3D) axisymmetric Stokes simulations of
the same problem. We observe excellent quantitative agreement for a
wide range of experimentally relevant feed speeds (U0 ¼ 5
�30 lm=s). This is consistent with our observation that the local
capillary number at the breakup location remains constant irrespective
of the feed speed. Because the capillary number scales as the product
of feed speed and viscosity, sufficiently high feed speeds cause breakup
to occur deeper into the flame, in such a way that the long-wavelength
assumption of the reduced model holds. As a result, the reduced
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model is a useful tool for designing future experiments, since it takes
the form of a pair of 1D partial differential equations (PDEs)11 that are
vastly simpler and more efficient to simulate than a full 3D axisym-
metric Stokes model.

Capillary instability of liquid threads and jets is a widely studied
subject. It was Plateau12 who, based on geometric arguments, first
demonstrated that a liquid cylindrical thread would become unstable
due to capillary forces when the thread length exceeds its circumfer-
ence. Later, Lord Rayleigh13,14 used linear stability analysis to obtain
the wavelength of the most unstable breakup mode for an inviscid and
a purely viscous jet, leading to a quantitative prediction of the resulting
drop size. Rayleigh’s viscous analysis was later generalized by
Tomotika to account for the viscosity of the surrounding fluid15 and
was more recently extended further to an arbitrary number of concen-
tric fluids with different viscosities and densities.16 In parallel, several
studies have investigated the linear instability and breakup dynamics
of compound jets, where a core and a shell of different liquids are
immersed in a passive medium.17,18 In the problem considered in this
paper, however, the outer radius of the silica cladding is two orders of
magnitude larger than the radius of the silicon core. As a result, the
deformation of the silica–air interface is negligible and the silica clad-
ding acts as a viscous ambient fluid during breakup of the silicon core,
just as in the setup considered by Tomotika.

Linear stability analysis gives accurate predictions for the size of
particles produced by isothermal coaxial fiber-drawing processes,10

but it does not predict the droplets in the dynamic thermal-gradient
process considered here.2,11 Simple extensions of linear stability analy-
sis to the thermal-gradient case (Fig. 1) have thus far failed to produce
accurate results11 or require unknown dimensionless fit parameters.2

This motivated the numerical simulations of the long-wavelength
reduced model presented in Ref. 11, which were in reasonable agree-
ment with experimental results from Ref. 2. Nonetheless, large uncer-
tainties in the experimental temperature profile, which lead to
exponentially large uncertainties in the viscosity,19,20 made it impossi-
ble to precisely validate the reduced model. Reducing these uncertain-
ties in future experiments will be an arduous process. The alternative
is to validate against brute-force Stokes simulations (valid because the
relevant Reynolds number is on the order of 10�13), which offer a pre-
cise comparison with exactly known parameters.

We close this introduction by giving a brief description of the
two models that we compare in this paper, both applied to the prob-
lem pictured in Fig. 1. The reduced model from Ref. 11, which is
obtained from a long-wavelength approximation of the Euler equa-
tions for the silicon core and the Stokes equations for the silica clad-
ding, takes the form of two coupled 1D PDEs that we solve in Matlab.
Separately, a large-scale parallel solver for the 3D axisymmetric Stokes
equations was developed in C, giving an accurate reference solution
for the capillary breakup process and resulting particle size. For vari-
ous temperature profiles and feed speeds, we obtain different particle
sizes, which are then compared with predictions from the 1D reduced
model to demonstrate the accuracy and determine the range of appli-
cability of this model. Because solving the reduced model is much
faster than a full Stokes simulation—even with our unoptimized
Matlab code—the validated reduced model is therefore a useful tool
for designing experiments and extracting future analytical insights.

II. MODELING
A. Problem setup

The problem that we consider throughout this paper, inspired
from the experimental setup of Gumennik et al.,2 is pictured in Fig. 1.
A coaxial fiber made of a silicon core of radius h0 ¼ 2 lm encased in
a much larger silica cladding is fed into a localized flame at a uniform
speed U0. The local temperature gradient imparted by the flame causes
the silicon core to melt and the silica cladding to soften, triggering
capillary breakup of the silicon core into a continuous string of
spheres. These silicon spheres solidify upon leaving the flame and
remain trapped within the silica matrix.

This study concerns the region downstream of the liquefaction
point of the silicon core, which we set as the origin of the axial coordi-
nate z. The fiber witnesses temperatures ranging from Tl ’ 1400 �C at
the melting point of silicon to Th ’ 1850 �C in the heart of the flame,2

but experimental limitations prevented the measurement of a detailed
temperature profile. For validation purposes, therefore, a hyperbolic
tangent profile is assumed:

TðzÞ ¼ Tl þ ðTh � TlÞtanh z
w

� �
; (1)

where w is the length scale associated with the temperature gradient.
Over this temperature range, the molten silicon core and silica clad-
ding have relatively constant density qi ’ qo ’ 2500 kg=m3.
However, their viscosities depend exponentially on the temperature
according to the following functions:19,20

liðzÞ ¼ 10
819

TðzÞþ273�3:727 Pa s; (2)

loðzÞ ¼ 10
26909
Tþ273�7:2348 Pa s: (3)

As a result, the viscosity profile liðzÞ of the inner silicon varies from
6� 10�4 to 5� 10�4 Pa s, while the viscosity profile loðzÞ of the
outer silica varies from 7� 108 to 3� 105 Pa s. Although the viscos-
ity of the inner silicon is not significantly affected by the axial thermal
gradient imposed by the flame, the opposite is true for the outer silica,
whose viscosity changes by more than three orders of magnitude over
millimeter scales. Such a drastic viscosity gradient is believed to be the
reason for the dependence on feed speed of the resulting droplet
size.2,11 Finally, the surface tension between silicon and silica is taken
to be c ¼ 10 N=m. We assume that the surface tension variation

FIG. 1. Schematics of the problem. A silicon-in-silica coaxial fiber is fed through a
flame at a constant speed, imparting an axial thermal gradient along the fiber. The
ensuing melting of the silicon core (pictured by the transition from gray to yellow
color) together with the softening of the silica cladding (pictured by the shift from
darker to lighter brown color) triggers a capillary breakup of the silicon core into reg-
ular spheres. Note that the colors do not reflect the actual values of the viscosity.
Reprinted (Fig. 2) with permission from Mowlavi et al., Phys. Rev. Fluids 4, 064003
(2019).11 Copyright 2019 American Physical Society.
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around the pinch-off location is small enough to neglect the
Marangoni effect. In the breakup region, where the peak temperature
exists, Marangoni flows will be non-negligible if the Marangoni num-
ber Ma ¼ Dch0=loa is of order one or higher, where Dc is the varia-
tion in surface tension (at the silicon–silica interface), lo is the
viscosity (of silica), and a is the thermal diffusivity (of silicon). In such
a scenario, the surface tension will need to vary by 108–109 N/m since
the local viscosity is between 106 and 107 Pa s in the breakup region.
However, studies have shown that over a temperature range of
1400–1800 �C, the surface tension of silica in the air21 and silicon in
the air22–24 can only vary by an amount of 0.02 and 0.2N/m, respec-
tively. Thus, it is reasonable to neglect large surface tension variations
in the region of the breakup.

Before presenting the two models that are considered in this
study, we summarize the physical mechanisms dominating the
dynamics of this problem. In addition to surface tension c, which
clearly plays an important role, there are four material parameters: the
densities qi and qo of the silicon and silica, and their viscosities liðzÞ
and loðzÞ. In the dimensional analysis to follow, we will consider the
viscosity values corresponding to the highest temperature point in the
heart of the flame. The Reynolds number in the outer silica,
Reo ¼ qoU0h0=lo � 10�13, shows that inertial effects due to qo are
negligible. The dynamics of the inner silicon are governed by surface
tension rather than by the velocity scale associated with the feed speed
of the fiber. Thus, the relevant quantity to compare the relative impor-
tance of viscous and inertial effects in the silicon is the Ohnesorge
number, defined as the ratio of viscous to inertial timescales of the
capillary instability.25 We find that Ohi ¼ li=

ffiffiffiffiffiffiffiffiffiffiffi
qich0

p � 10�3, reveal-
ing that viscous effects in the silicon are negligible. We are then left
with qi and lo, which we compare using a mixed Ohnesorge number
Ohi=o ¼ lo=

ffiffiffiffiffiffiffiffiffiffiffi
qich0

p � 106. The latter indicates that, ultimately, vis-
cosity of the outer silica lo is the only meaningful material parameter
acting together with surface tension.

Consequently, both models considered in this study take into
account the spatially varying silica viscosity loðzÞ. Although the inertia
and viscosity of the inner silicon are both negligible, it turns out that it
is necessary to include at least one of them in order to have well-posed
governing equations. The two models make different choices in this
regard—the axisymmetric Stokes solver clearly neglects inertia of the
inner silicon, while the reduced model is derived from the Euler equa-
tions for the inner silicon, which do not account for its viscosity.
Nevertheless, both approaches are physically meaningful since the
equations are then simulated in a range of parameter values for which
the only mechanisms that matter are the surface tension and viscous
dissipation in the outer silica.

B. Full Stokes model

We begin with the description of the full 3D axisymmetric Stokes
solver. The dynamics are described by the Stokes equation

�rpþr � lð~rÞ rvþrvTð Þ� �
¼ c dð/ð~rÞÞjð/ð~rÞÞ r/ð~rÞ

jr/ð~rÞj ; (4)

and the continuity equation

r � v ¼ 0; (5)

where p and v are the pressure and velocity fields in both the inner
and outer layers; /ð~rÞ is the level-set function, which defines the

interface position~r i through /ð~r iÞ ¼ 0; and jð/ð~r iÞÞ is the curvature
of the interface. The motion of the interface is described by the advec-
tion equation

@/
@t

þ v � r/ ¼ 0: (6)

Numerically, (4) and (5) are discretized by a second-order finite-
difference scheme and solved by a parallel MUltifrontal Massively
Parallel Sparse (MUMPs) direct solver26 using the PETSc library.27

For (6), we use a third-order total variation diminishing (TVD)
Runge–Kutta method for time integration and the WENO discretiza-
tion in space.28 The simulation domain extends 30lm in the radial
direction with grid spacing of 0.2lm, and the length in the axial direc-
tion is 2 mm with grid spacing of 0.8lm. Each simulation is initialized
as a cylinder of length 10lm with a spherical tip and uniform velocity
everywhere equal to the prescribed feed speed. A breakup is registered
when / changes sign somewhere along the symmetry axis, and the
average drop radius is obtained once the jet enters a quasi-steady
regime with breakup occurring at regular time intervals. More details
on the numerical schemes are presented in the Appendix.

C. Reduced model

The reduced model, introduced in Ref. 11, is derived from a
long-wavelength approximation of the incompressible Euler equations
for the inner silicon and the incompressible Navier–Stokes equations
for the outer silica. It consists of a set of two coupled 1D nonlinear
PDEs for the leading-order inner velocity uiðzÞ and interface height h
(z). Expressed in dimensionless form using the silicon radius h0 as the
length scale and the feed speed U0 as the velocity scale, the coupled 1D
equations take the form

We
@v

@~t
þ v

@v
@~z

� �
¼ � @~j

@~z
� @

@~z
Ca~z
f

� @ðfvÞ
@~z

þ @f
@~z

� �" #
; (7a)

@f

@~t
¼ � @ðfvÞ

@~z
; (7b)

~j ¼ ð2� f 00Þf þ f 02

2ðf 02=4þ f Þ3=2
; (7c)

where ~z ¼ z=h0; ~t ¼ tU0=h0; v ¼ ui=U0 is the dimensionless
velocity, f ¼ ðh=h0Þ2 is a dimensionless function describing the
interface radius, ~j is the dimensionless interface curvature, and
We ¼ qih0U

2
0=c and Ca~z ¼ loð~zÞU0=c are, respectively, the Weber

and spatially varying capillary numbers.
The Weber number We based on the true values for the physical

parameters lies in a range that is computationally inaccessible.
Nonetheless, it was demonstrated in Ref. 11 that below a certain limit,
the Weber number has a negligible influence on droplet size. We
henceforth pick We ¼ 0:05 in our simulations, regardless of the feed
speed U0. On the other hand, the capillary number Ca~z is calculated
from equations (3) and (1) and therefore inherits a large spatial gradi-
ent from the silica viscosity loðzÞ.

A numerical domain of length 1500 with a grid spacing of
0.25–0.5 in dimensionless units is considered. In dimensional form,
this corresponds to a domain size of 3mm and a grid spacing of
0.5–1lm. For smaller feed speeds U0 ranging from 1 to 5lm/s, the
initial condition is defined as a cylinder enclosed with a spherical tip.
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In dimensionless units, the cylinder has a unit radius and a unit inter-
face velocity and extends for a length of 110 (0.22mm) into the
domain. Beyond the cylinder tip, the height and velocity are set as 0.
For feed speeds larger than U0 ¼ 5 lm/s, simulations are performed
sequentially at intervals of 5 lm/s, beginning from U0 ¼ 10 lm/s,
and terminating at U0 ¼ 30 lm/s. As individual simulations are run
for these increasing feed speeds, the convergence time is improved by
selecting as initial condition the breakup shape and velocity obtained
from the preceding feed speed. We verified that the initial shape of the
jet does not affect its quasi-steady breakup characteristics, which are
the focal point of our analysis.

A pinch-off is set to have occurred when the dimensionless value
of f passes below a threshold value of 10�5 anywhere in the domain.
The distance between the pinch-off location and the nozzle, denoted
by the breakup length, was found to attain a maximum value of
approximately 650 dimensionless units (1.3mm). The simulations are
run for a sufficiently long time to enter the regime where the jet breaks
up at regular intervals of time and at a fixed axial location. The jet
characteristics, such as the breakup length, location and drop radius,
are obtained in this quasi-steady regime. When satellite drops
appear, they are equal to about 3.3% (for U0 > 5lm/s) and 10% (for
U0 < 5lm/s) of the main drop volume and hence are considered as
numerical artifacts.

III. RESULTS AND DISCUSSION

The sphere radius as a function of the feed speed, obtained using
both the full Stokes model and the reduced order 1D model, is plotted
in Fig. 2. The results in bold lines are obtained from the 3D Stokes
solver with different values of temperature transition width, w, ranging
from 1.2 to 2.0mm, and in colored circular markers, obtained by
numerically solving the 1D Eq. (7) for w¼ 1.18 and 1.79mm only.

Good quantitative agreement for the drop radius is seen between the
two approaches in the speed rangeU0 ¼ 5–30 lm=s. Additionally, we
also plot as red diamond markers the radii obtained from the experi-
mental measurements.2 The 3D Stokes results agree quite well with
the experimental results for feed speeds as low as U0 ¼ 10 lm=s and
suggest an experimental value of w around 1:6 mm, which is within
the range of expected experimental values for a hydrogen torch.

Figure 2 shows that the sphere radius has a nonlinear dependence
on the feed speed. As the feed speed increases, the mass flow rate of sil-
icon into the high temperature region increases, thereby adding more
volume to the sphere before breakup. However, the increase in feed
speed also shifts the pinch-off location further down into the higher
temperature region, thereby decreasing the pinch-off time and reduc-
ing the amount of silicon that is used in the formation of the sphere.

Below U0 ¼ 5 lm/s (see the gray shaded region in Fig. 2), a devi-
ation is observed between the drop radii obtained from the 1D solver
and from the Stokes solver. In the shaded region, the large variation in
the drop radius predicted by the 1D model can be probably attributed
to the limitations of the numerical scheme and the failure of the long-
wavelength assumption used in deriving the simplified governing
equations (7). The latter reason is further investigated by plotting the
pinch-off location for different feed speeds. First, we plot the spatial
profiles of the capillary number Ca~z for the different feed speeds as a
function of the dimensionless axial coordinate z=h0 in Figs. 3(a) and 3
(b) for w¼ 1.18 and 1.79mm, respectively. In the same plot, we also
indicate, in black circular markers, the pinch-off location observed for
each feed speed. Surprisingly, for a given value of width w, the capillary
number at the pinch-off location, Ca~z ;po, was found to be almost con-
stant irrespective of the feed speed. We find the mean values
hCa~z ;poi ¼ 6:25 for w¼ 1.18mm and hCa~z ;poi ¼ 10 for w¼ 1.79mm,
which we indicate as the dashed lines in Figs. 3(a) and 3(b). Using
these mean values, we may infer the breakup location ~zpo through the
definition of the capillary number as

zpo ¼ h0l
�1
o

chCa~z ;poi
U0

� �
; (8)

where l�1
o is the inverse of Eq. (3) for the silica viscosity profile. The

resulting breakup locations ~zpo ¼ zpo=h0 are plotted in Fig. 3(c) with
respect to the feed speed. Interestingly, the combination of an expo-
nentially decreasing viscosity profile together with a constant capillary
number at breakup leads zpo=h0 to decrease monotonically as U0 is
reduced. This decrease, however, is steepest below a feed speed of
5 lm/s. For example, z=h0 decreases by an order of 150 lm when U0

reduces from 30 to 10 lm/s and by a similar order for U0 from 5 to
1 lm/s. Thus, the long-wavelength assumption used by the 1D model
could be violated for feed speeds U0 . 5 lm/s where the breakup
length is smallest, possibly explaining the failure of the 1D model in
that regime.

IV. CONCLUDING REMARKS

In this paper, we validated a 1D reduced model that predicts the
sphere size formed by capillary breakup in the presence of steep tem-
perature and viscosity gradients. The reduced model was introduced
in Ref. 11, but large uncertainty in the experimental temperature pro-
file made its precise validation impossible. This issue is addressed here
by validating the model against fully resolved 3D axisymmetric Stokes
simulations of the same problem. Without any adjustable parameters,

FIG. 2. Comparison of drop radii obtained by the full Stokes model (lines),
the semi-analytical 1D model (circles), and experimental measurements2 (dia-
monds) as a function of the feed speed. The solid line for the full Stokes
model is obtained using a spline fit of the actual data obtained for feed speeds
U0 ¼ 2; 4; 8; 16 ; and 32 lm/s. Different transition widths w ranging from 1.18 to
2.0 mm are considered for the temperature profile of the hydrogen torch, which
varies from 1400 to 1850 �C. The experimental measurements correspond to the
numerical results for w ’ 1:16 mm. In the shaded (low-speed) region, the long-
wavelength approximation breaks down and the 1D reduced model is no longer
accurate.
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the 1D model accurately estimates the sphere size in the experimen-
tally relevant range of feed speeds (U0 ¼ 5–30 lm/s). For a fixed
length scale w of the temperature gradient, we observe near-constancy
of the capillary number at the breakup location, irrespective of the feed
speed, which is an experimentally relevant piece of information in
gauging the breakup lengths for arbitrary feed speeds. Owing to its sig-
nificantly lower computational cost, the 1D reduced model provides a
useful tool for designing experiments and for gaining future physical
insights. Furthermore, the model could be utilized in any experimental
setting or technological application where its major assumptions are
met, namely, (1) the coaxial jet is axisymmetric, (2) the length scale of
the interface dynamics is much larger than the core radius, (3) the
ratio of outer to inner fluid viscosity ratio is very high, and (4) the axial
profiles of inner fluid density and outer fluid viscosity are known. In
particular, the 1D model can be applied to dripping and 3D printing
scenarios since the jet interface need not be uniformly varying in the
axial direction in which case the model can be considered a more rig-
orous alternative to the marginal stability criterion for front
propagation.29–31

For the thermal gradient breakup setup investigated in this paper,
the 1D reduced model is unreliable for feed speeds below U0 ¼ 5 lm/s,
where the long-wavelength assumption of the model is expected to
be violated. Thus, predictions of droplet radii in this range of feed

speeds should be obtained using the full 3D Stokes solver, unless
and until the reduced model can be refined so as to work in this
regime. Furthermore, the numerical implementation of the reduced
model can benefit from multiple improvements. Our current
numerical scheme handles the splitting of the jet and the motion of
the tip by checking for conditions that depend on different numeri-
cal parameters, which need to be adjusted manually. Using a differ-
ent scheme devoid of such parameters, for instance by borrowing
ideas from the regularized approach introduced in Ref. 32, would
make it easier to run the model over a wider range of physical set-
tings. Finally, interesting future work could include adapting the
numerical scheme to capture the evolution of the drop beyond its
breakup, as it enters a region of decreasing temperature. This would
be extremely relevant for experimental conditions where the tem-
perature profile solidifies the droplet soon after breakup, preventing
its complete transformation into a sphere.
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tion of the reduced model breaks down due to a rapid decrease in the breakup location at low speeds.
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APPENDIX: STOKES DISCRETIZATION

The governing equations for capillary breakup in a concen-
tric two-phase fluid system are (4)–(6) in the main text. While
advecting the level-set function /, contours in the vicinity of the
/ ¼ 0 may become increasingly distorted, thus leading to poten-
tially large error in evaluating derivatives. In order to mitigate
this issue, a reinitialization process aiming to restore the jr/j
¼ 1 property in the neighborhood of zero level set is necessary.
This is achieved by solving in pseudo-time s the reinitialization
equation

@/
@s

þ signð/0Þðjr/j � 1Þ ¼ 0; (A1)

where signð/0Þ is a smoothed sign function evaluated from the
level-set function at s¼ 0. For details on the approach and the dis-
cretization we use, we refer the reader to Ref. 28.

Since the capillary breakup problem possesses azimuthal sym-
metry, we express the governing equations in cylindrical coordinate
(r, z). In particular, the explicit form of the left-hand side of (4),
assuming v ¼ uêr þ wêz , is

�rpþr � l rvþrvTð Þ� �
¼ � @p

@r
þ 2

r
@

@r
lr

@u
@r

� �
� 2l

u
r2

þ @

@z
l

@w
@r

þ @u
@z

� �� �	 

êr

þ � @p
@z

þ 1
r
@

@r
lr

@u
@z

þ @w
@r

� �� �
þ @

@z
2l

@w
@z

� �	 

êz: (A2)

The continuity equation (5) becomes

r � v ¼ 1
r
@

@r
ðruÞ þ @w

@z
¼ 0: (A3)

From the level-set function, we compute the unit normal vector

n ¼ r/
jr/j ¼

/rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2
r þ /2

z

q êr þ /zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2
r þ /2

z

q êz; (A4)

where /r ¼ @/=@r and /z ¼ @/=@z. Additionally, the curvature is
defined as j ¼ r � n, hence

jð/Þ ¼ /rr/
2
z � 2/r/z/rz þ /zz/

2
r

/2
r þ /2

z

� �3=2 þ 1
r

/rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2
r þ /2

z

q : (A5)

Furthermore, we require a smoothed Dirac delta function de, which
we define as

deð/Þ ¼
0 for/ � �e;

1þ cos p/=eð Þ½ �=2e for � e < / < e;

0 for/ 	 e:

8>><
>>: (A6)

Note that the approximation (A6) possesses the following desired
property

dð/Þ ¼ lim
e!0þ

deð/Þ: (A7)

In our implementation, e ¼ 3Dr where Dr is the grid spacing
in the r direction.

The spatial discretization is performed on a staggered grid
where the pressure is on the cell corners, the r-direction velocity u
is located on the horizontal cell interfaces, and the z-direction w is
located on the vertical cell interfaces, as shown in Fig. 4. The Stokes
equation is discretized at grid locations ðiþ 1=2; jÞ for the êr com-
ponent and ði; jþ 1=2Þ for the êz component. The continuity equa-
tion is discretized at grid locations (i, j).

Special care must be taken when discretizing the êz component
and the continuity equation at i¼ 0 and r¼ 0. This can be resolved
by expansion around r¼ 0. Rewrite qðr; zÞ 
 l@u=@z: Since there
is no extra source at r¼ 0, we have uð0; zÞ ¼ 0 and qð0; zÞ ¼ 0, and
we can express q(r, z) by Taylor expansion

qðr; zÞ ¼ r
@qðr; zÞ

@r
þ r2

@2qðr; zÞ
@r2

þ Oðr3Þ; (A8)

so that

1
r
@

@r
lr

@u
@r

� �
r!0

¼ 1
r
@

@r
ðrqðr; zÞÞjr!0 ¼ 2

@

@r
l
@u
@z

� �
: (A9)

Similarly, we obtain

1
r
@

@r
lr

@w
@r

� �
r!0

¼ 2
@

@r
l
@w
@r

� �
; (A10)

since @w=@rjr!0 ! 0, and

1
r
@

@r
ðruÞjr!0 ¼ 2

@u
@r

: (A11)

For the time evolution in (6) and (A1), we use a third-order
TVD Runge–Kutta method and the Hamilton-Jacobi weighted essen-
tially non-oscillatory (HJ WENO) method for spatial discretization,
following the approach in Ref. 28.

Finally, as usual, a mirror boundary condition is imposed at
r¼ 0. For the remaining three boundaries, we also adopt mirror

FIG. 4. Discretization grid of pressure p, velocities in r direction u, and in z direc-
tion w.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 122003 (2021); doi: 10.1063/5.0073625 33, 122003-6

Published under an exclusive license by AIP Publishing

 21 M
arch 2024 18:38:40

https://scitation.org/journal/phf


boundary conditions. This latter choice does not affect the capillary
instability as long as the computational boundary in the r direction
is well separated from the interface between the two fluids. Note
also that there are large thermal and viscosity gradients in the z
direction. Therefore, a mirror boundary condition is justified at the
low-temperature end where the interface motion is very slow. At
the high-temperature boundary, the fluid column has already bro-
ken into several droplets far upstream, so the mirror boundary con-
dition does not affect the breakup process either.
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