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Conservative integrators have recently been derived for many-body systems using the 
Discrete Multiplier Method, specifically for the point vortex problems in [1]. In the present 
paper, we extend this work to derive conservative symmetric second-order one-step 
integrators for a family of vortex blob models. A rational function approximation was used 
to approximate the exponential integral which appears in the Hamiltonian. Conservative 
properties and second order convergence are proved. Numerical experiments are shown to 
verify the conservative property of these integrators, their second-order accuracy, and as 
well as the resulting spatial and temporal accuracy of the vortex blob method. Moreover, 
the derived implicit conservative integrators are shown to better preserve conserved 
quantities than standard higher-order explicit integrators on comparable computation 
times.

© 2022 Published by Elsevier Inc.

1. Introduction

In recent years, structure preservation has become an important property to consider when devising numerical methods 
for differential equations. The main idea is to design discretizations which preserve important underlying structures of the 
continuous problem at the discrete level. For ordinary differential equations (ODEs), geometric integrators, such as energy-
momentum method [2,3], symplectic integrators [4,5], variational integrators [6], Lie group methods [7,8], and the method 
of invariantization [9–11] are examples of discretizations which can preserve symplectic structure, first integrals, phase 
space volume, or symmetries at the discrete level. Conservative integrators are structure-preserving numerical schemes 
which preserve the first integrals, invariants, or equivalently, conserved quantities of the ODEs up to machine precision. One 
main motivation behind such integrators is their intrinsic long-term stability properties [12] making them favorable in the 
long-term study of dynamical systems, such as in population dynamics, celestial mechanics, molecular dynamics, and fluid 
mechanics [1].

The purpose of this paper is to present conservative integrators for the higher-order vortex methods introduced by 
[13] for the inviscid, incompressible Euler’s equations in the plane. Vortex methods are a class of numerical methods that 
approximates the vorticity field associated with the solution of the inviscid, incompressible Euler equations. In contrast to 
point vortex method [14] where the vorticity field is approximated by a finite number of Dirac distributions, vortex blob 
methods regularize the Dirac distributions with a finite superposition of smooth localized vorticity fields, referred to as 
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vortex blobs. The resulting vorticity field associated with each vortex resembles a smooth blob with a width δ that scales 
with the size of the discretization. As δ tends to zero, these blobs converge to the Dirac distribution and one recovers 
the exact solution to the invicid, incompressible Euler’s equations in the plane [15]. For invicid, incompressible flows, Hald 
[16] showed that as the number of vortices increases for a special class of blob functions, solution of the vortex methods 
converges to the solution of Euler’s equations with second order accuracy for an arbitrarily long time interval. Later, Beale 
and Majda [17,18] showed that vortex methods could be chosen so that they converge with higher-order accuracy. Moreover, 
in [13], Beale and Majda obtained higher-order vortex methods in two and three dimensions through superposition of 
vorticity fields involving Gaussians with different scalings and products of even polynomials with Gaussians. Vortex methods 
have found applications in many fields from computational aerodynamics [19–21] to combustion [22,23]. A brief survey of 
different vortex methods in the literature can be found in [24]. Also, a more recent vortex method based on a new singular 
vortex theory for regularized Euler fluid equations of ideal incompressible flow in the plane can be found in [25].

In essence, vortex methods lead to a system of ordinary differential equations (ODEs), known as the vortex blob equa-
tions, describing the evolution of interacting vortices approximating the vorticity field. Traditionally, standard integrators are 
used to obtain numerical solutions to the vortex blob equations, such as Runge-Kutta methods in [13]. In contrast, we con-
struct conservative integrators for this ODEs using the Discrete Multiplier Method (DMM) introduced by Wan et al. in [26]. 
The main idea of DMM is to discretize the so-called characteristics [27] and conservation law multipliers [28] for ODEs so 
that the discrete multiplier conditions hold. In [1], such framework was used to derive conservative integrators for various 
many-body systems, including n-species Lotka–Volterra system, the n-body problem with radially symmetric potential, and 
the n-point vortex models on the plane and the unit sphere. In this paper, we will extend the results on the planar point 
vortex method of [1] by deriving conservative integrators for planar vortex blob methods. We believe that this is a natural 
first extension of DMM, even though such vortex blob model had previously been shown to be deficient when compared to 
the Euler-alpha model in certain scenarios [29].

This paper is organized as follows. In Section 1, we briefly review the higher-order vortex methods given in [13] and 
introduce some common notations used throughout the paper. In Section 2, we introduce additional notations and conven-
tions used throughout the paper, along with a quick review of DMM. Specifically, we state differential relations between 
conserved quantities and conservation law multipliers, and the discretized versions in order to construct a conservative 
integrator. Moreover, we review a known result regarding symmetric schemes having even order of accuracy. In Section 3, 
we derive conservative discretizations for the vortex blob equations with 2nd, 4th, and 6th order velocity kernels. Sec-
tion 4 is then devoted to numerical results. First, we verify that the DMM-based conservative integrators preserve all the 
conserved quantities up to machine precision, in contrast to standard integrators such as the implicit midpoint method, 
Ralston’s second-order method, and Ralston’s fourth-order method. Second, we demonstrate that the conservative schemes 
yield conserved quantities of vortex blob equations that converge to the original conserved integrals of Euler’s equations, as 
the number of vortices increases. Third, we illustrate that the long-term vortex trajectories from the conservative schemes 
are qualitatively closer to the exact trajectories than standard integrators. We then show numerically that the conservative 
integrators are second-order accurate in time and verify that the vortex blob method using the conservative integrator con-
verges to the theoretical orders previously reported by Beale and Majda using Runge-Kutta integrators. Lastly, we compare 
computation times of the conservative integrators versus standard integrators and show that the derived schemes are better 
at preserving conserved quantities on comparable computation times. Finally, in the Section 5, we give several concluding 
remarks and discuss interesting avenues for further exploration.

1.1. Brief review of the vortex blob method

In this subsection, we review the derivation of the vortex blob model and its associated conserved quantities, along with 
introducing common notations which will be used throughout this paper. Readers familiar with this background may skip 
to the next section.

In the absence of body forces, the planar inviscid, incompressible Euler’s equations for a fluid with constant density ρ
are given by,

∂ v

∂t
+ v · ∇v = − 1

ρ
∇P , (1)

∇ · v = 0,

where v (z, t) denotes the velocity vector field and P (z, t) denotes the scalar pressure field of the fluid at a point z = [x, y]T

and time t . Recalling the vorticity is the scalar field ω(z, t) satisfying ωk̂ = ∇ × v , applying the curl on both sides of (1)
yields the vorticity equation [30],

Dω

Dt
= ∂ω

∂t
+ v · ∇ω = 0. (2)

Equation (2) implies that, in the Lagrangian description of the fluid, the vorticity of a fluid particle is conserved along its 
trajectory. The problem we wish to solve is the vorticity-velocity formulation given by,
2
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Dω

Dt
= 0, (3a)

ω(z,0) = ω0 on �0, (3b)

∇ · v = 0, (3c)

∇ × v = ω, (3d)

‖v (z, t)‖2 → 0 as ‖z‖2 → ∞, (3e)

where ω0 is assumed to be compactly supported on �0. Equations (3c)–(3e) can be combined to give the velocity in terms 
of vorticity through the Biot-Savart law yielding,

v (z, t) =
∫∫
�(t)

K
(
z − z′)ω (z′, t

)
dz′. (4)

Here K (z) = 1
2π‖z‖2

2
[−y, x]T is the velocity kernel [30] and �(t) is the domain with non-zero ω at time t . Thus, the problem 

posed by (3a)–(3e) reduces to (3a), (3b), and (4) and it follows from equations (3a)–(3e) that the following integrals are 
conserved for all time [31] (Chapter 7 of Section 7.3):

1. The total vorticity in �(t), or in other words the circulation around ∂�(t), given by,

� := � [ω] (t) =
∫∫
�(t)

ω (z, t) dz. (5)

2. The x and y components of the total fluid impulse (or momentum) that must be applied to the fluid in �(t) to 
generate the motion governed by the stream function 	 (z, t) from rest, where 	 (z, t) := 
 (z, t) + �

2π log‖z‖2 with 
∇ × (
k̂) = v . These components are,

Px := Px [ω] (t) = ρ

∫∫
�(t)

yω(z, t) dz, Py := Py [ω] (t) = −ρ

∫∫
�(t)

xω(z, t) dz. (6)

3. The total moment (or angular momentum) about the origin of the force impulse required to generate the motion 
determined by 	 (z, t) in �(t), which is given by,

L := L [ω] (t) = −ρ

2

∫∫
�(t)

‖z‖2
2 ω(z, t) dz. (7)

4. The kinetic energy of the fluid associated with the fixed amount of total vorticity being distributed given by,

H := H [ω] (t) = − ρ

8π

∫∫
�(t)′

∫∫
�(t)

ω (z, t)ω
(
z′, t

)
log‖z − z′‖2

2 dz dz′. (8)

Vortex methods arise from approximating the vorticity field ω via a system of ODEs as follows. First, the domain �0 is 
discretized using a uniform square grid of size h and point vortices are introduced at the center of each h by h square 
cell so that the i-th vortex initially has vorticity ω0(zh

i (0)), where zh
i (t) is the position of the i-th vortex at time t and its 

vorticity remains constant by equation (3a). Moreover, equation (5) implies that �(t) contains the same vortices as �0 for 
all time. Thus, we can directly discretize (4) to formulate ODEs describing the trajectories of M vortices contained in �(t),

żh
i =

M∑
j=1
j �=i

K
(

zh
i − zh

j

)
ω jh

2, zh
i (0) = [i1h, i2h] , i ∈ {1 . . . M}, i1, i2 ∈Z, (9)

where we denoted ωi = ω0(zh
i (0)) and velocity field v can be approximated by vh ,

vh (z, t) =
M∑

j=1

K
(

z − zh
j (t)

)
ω jh

2. (10)

It can be observed that K (zh
i − zh

j ) becomes singular as two vortices approach each other. At this stage the approximate 
vorticity field associated with (10) leads to the point vortex method. Since K is singular at zh = zh , it can be regularized by 
i j

3
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a mollification K δ . The choice of mollification determines the accuracy of the vortex method and in [13], Beale and Majda 
chose the family of kernels,

K δ,(m) (z) = [−y, x]T

2π ‖z‖2
2

[
1 − Q (m)

(
‖z‖2

2

δ2

)
exp

(
− ‖z‖2

2

δ2

)]
. (11)

Here δ is a smoothing parameter, m denotes the order of the vortex method, and Q (m)(r) is the m
2 − 1 order Laguerre 

polynomial normalized with unit constant term:

Q (2)(r) = 1, Q (4)(r) = 1 − r, Q (6)(r) = 1 − 2r + r2

2
. . .

With mollification, the approximate vorticity field associated with vh corresponds to a linear combination of localized vortex 
densities resembling smooth “blobs”, leading to the vortex blob method given by (9) with K δ,(m) . For the family of mollified 
kernels of equation (11), the approximate vorticity field associated with vh is given by,

ωh (z, t) =
M∑

i=1

ωih
2ζ δ,(m)

(
z − zh

i (t)
)

, (12)

where ζ δ,(m) (z) = P (m/2)
(‖z‖2

2

/
δ2
)

exp
(‖z‖2

2

/
δ2
)/

δ2, with the first few orders of P (m/2)(·) given by,

P (1) (r) = 1

π
, P (2) (r) = 1

π
(2 − r) , P (3) (r) = 1

2π

(
6 − 6r + r2

)
.

For the rest of the paper, we will refer the ODEs of (9) with K replaced by K δ,(m) the vortex blob equations of order m in 
the plane given by,

F (x, y, ẋ, ẏ) :=

⎛
⎜⎜⎜⎜⎝

[
ẋi + h2

2π

M∑
j=1, j �=i

ω j
yi j

r2
i j

(
1 − Q (m)

(
r2

i j

δ2

)
exp

(
− r2

i j

δ2

))]
1≤i≤M[

ẏi − h2

2π

M∑
j=1, j �=i

ω j
xi j

r2
i j

(
1 − Q (m)

(
r2

i j

δ2

)
exp

(
− r2

i j

δ2

))]
1≤i≤M

⎞
⎟⎟⎟⎟⎠= 0, (13)

where x = (x1, . . . , xM)T , y = (y1, . . . , yM)T , and (xi, yi) is the position of the ith vortex blob. Furthermore, we used the 
abbreviations, xij = xi − x j , yij = yi − y j , and ri j =

√
x2

i j + y2
i j . Beale and Majda showed in [17,18] that the solution to the 

mth order vortex blob equations converges to the solution of (3a)–(3e) provided that δ = hq , with 0 < q < 1. Moreover, it 
was shown that the error is of the order δm = hqm .

Evidently, the ODEs (13) exhibits a Hamiltonian structure,

ωih
2 ẏi = −∂Hh,(m)

∂xi
, ωih

2 ẋi = ∂Hh,(m)

∂ yi
,

where Hh,(m) (x, y) is the associated Hamiltonian. By Noether’s theorem, the translational and rotational symmetry of the 
Hamiltonian yield the three other conserved quantities, in addition to the Hamiltonian, which are the linear impulse P and 
angular impulse L. For the m = 2 case, the conserved quantities are given by,

Ph (x, y) :=

⎛
⎜⎜⎝

h2
M∑

i=1
ωi yi

−h2
M∑

i=1
ωi xi

⎞
⎟⎟⎠ , Lh (x, y) := −h2

2

M∑
i=1

ωi

(
x2

i + y2
i

)
,

Hh,(2) (x, y) := − h4

4π

∑
1≤i< j≤M

ωiω j

[
log

∣∣∣r2
i j

∣∣∣+ E1

(
r2

i j

δ2

)]
.

For higher-order vortex blob equations, the expressions for Ph and Lh remain the same, only the expression for Hh,(m)

changes. Specifically, the Hamiltonians for m = 4, 6 are,
4
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Hh,(4) (x, y) := − h4

4π

∑
1≤i< j≤M

ωiω j

[
log

∣∣∣r2
i j

∣∣∣+ E1

(
r2

i j

δ2

)
− exp

(
− r2

i j

δ2

)]
,

Hh,(6) (x, y) := − h4

4π

∑
1≤i< j≤M

ωiω j

[
log

∣∣∣r2
i j

∣∣∣+ E1

(
r2

i j

δ2

)
+
(

−3

2
+ 1

2

r2
i j

δ2

)
exp

(
− r2

i j

δ2

)]
.

Here, E1 (x) denotes the exponential integral and its efficient evaluation up to machine precision will be discussed at the 
end of Section 3.

2. Discrete Multiplier Method

Before discussing the theory of multiplier method presented in [26], we first fix some notations which will be used 
throughout the paper.

2.1. Notations and conventions

Let U ⊂ Rd and V ⊂ Rd′
be open subsets where here and in the following d, d′, p ∈ N . f ∈ C p(U → V ) means f is 

a p-times continuously differentiable function with domain in U and range in V . We often use boldface to indicate a 
vectorial quantity f . If f ∈ C1(U → V ), ∂x f :=

[
∂ f i
∂x j

]
denotes the Jacobian matrix. Let I ⊂ R be an open interval and let 

x ∈ C1(I → U ), ẋ denote the derivative with respect to time t ∈ I . Also if x ∈ C p(I → U ), x(q) denotes the q-th time derivative 
of x for 1 ≤ q ≤ p. For brevity, the explicit dependence of x on t is often omitted with the understanding that x is to be 
evaluated at t . If ψ ∈ C1(I × U → V ), Dtψ denotes the total derivative1 with respect to t , and ∂tψ denotes the partial 
derivative with respect to t . Md′×d(R) denotes the set of all d′ × d matrices with real entries.

2.2. Conserved quantities of quasilinear first order ODEs

Consider a quasilinear first-order system of ODEs,

F (t, x, ẋ) := ẋ(t) − f (t, x) = 0, (14)

x(t0) = x0,

where t ∈ I , x = (x1(t), . . . , xn(t)) ∈ U . For 1 ≤ p ∈ N , if f ∈ C p−1(I × U → Rn) and is Lipschitz continuous in U , then 
standard ODE theory implies there exists an unique solution x ∈ C p(I → U ) to the first-order system (14) in a neighborhood 
of (t0, x0) ∈ I × U .

Definition 1. Let d′ ∈N with 1 ≤ d′ ≤ d. A vector-valued function ψ ∈ C1(I × U →Rd′
) is a vector of conserved quantities2

(or equivalently first integrals) if

Dtψ(t, x) = 0, for any t ∈ I and C1(I → U ) solution x of (14). (15)

In other words, ψ(t, x) is constant on any C1(I → U ) solution x of (14).

A generalization of integrating factors is known as characteristics by [32] or equivalently, conservation law multipliers by 
[28]. We will adopt the terminology of conversation law multiplier or just multiplier when the context is clear.

Definition 2. Let d′ ∈N with 1 ≤ d′ ≤ d and U (1) be an open subset of Rd . A conservation law multiplier of F is a matrix-
valued function � ∈ C(I × U × U (1) → Md′×d(R)) such that there exists a function ψ ∈ C1(I × U →R) satisfying,

�(t, x, ẋ)(ẋ(t) − f (t, x)) = Dtψ(t, x), for t ∈ I , x ∈ C1(I → U ). (16)

Here, we emphasize that condition (16) is satisfied as an identity for arbitrary C1 functions x; in particular x need 
not be a solution of (14). It follows from the definition of conservation law multiplier that existence of multipliers implies 
existence of conservation laws. Conversely, given a known vector of conserved quantities ψ , there can be many conservation 
law multipliers which correspond to ψ . It was shown in [26] that it suffices to consider multipliers of the form �(t, x) where 
a one-to-one correspondence exists between conservation law multipliers and conserved quantities of (14).

1 In the context of fluid dynamics, this can also be called the material derivative.
2 By quasilinearity of (14), it suffices to consider conserved quantities depending only on t, x, see [26].
5
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))
∥∥

W ≤
Theorem 1 (Theorem 4 of [26]). Let ψ ∈ C1(I × U →Rd′
). Then there exists a unique conservation law multiplier of (14) of the form 

� ∈ C(I × U → Md′×d(R)) associated with the function ψ if and only if ψ is a conserved quantity of (14). And if so, � is unique and 
satisfies for any t ∈ I and x ∈ C1(I → U ),

�(t, x) = ∂xψ(t, x), (17a)

�(t, x) f (t, x) = −∂tψ(t, x). (17b)

To construct conservative methods for (14) with conserved quantities (15), we shall discretize the time interval I by a 
uniform time size τ ∈ R, i.e. tk+1 = tk + τ for k ∈ N , and focus on one-step conservative methods.3 First, we recall some 
definitions from [26].

Definition 3. Let W be a normed vector space, such as Rd′
with the Euclidean norm or Md′×d(R) with the operator norm. 

A function gτ : I × U × U → W is called a one-step function if gτ depends only on tk ∈ I and the discrete approximations 
xk+1, xk ∈ U .

Definition 4. A sufficiently smooth one-step function gτ : I × U × U → W is consistent to a sufficiently smooth g : I × U ×
U (1) → W if for any x ∈ C2(I → U ), there is a constant C > 0 independent of τ so that 

∥∥g(tk, x(tk), ẋ(tk)) − gτ (tk, x(tk+1), x(tk

C ‖x‖C2([tk,tk+1]) τ , where ‖x‖C2([tk,tk+1]) := max
0≤i≤2

∥∥∥x(i)
∥∥∥

L∞([tk,tk+1]) . If so, we write gτ = g +O(τ ).

We shall be considering the following consistent one–step functions for ẋ, Dtψ, ∂tψ :

Dτ
t x(tk, xk+1, xk) := xk+1 − xk

τ
= ẋ +O(τ ), (18)

Dτ
t ψ(tk, xk+1, xk) := ψ(tk+1, xk+1) − ψ(tk, xk)

τ
= Dtψ +O(τ ), (19)

∂τ
t ψ(tk, xk+1, xk) := ψ(tk+1, xk) − ψ(tk, xk)

τ
= ∂tψ +O(τ ). (20)

Definition 5. Let f τ be a consistent 1-step function to f . We say that the 1-step method,

Dτ
t x(tk, xk+1, xk) = f τ (tk, xk+1, xk) (21)

is conservative in ψ , if ψ(tk+1, xk+1) = ψ(tk, xk) on any solution xk+1 of (21) and k ∈N .

We now state two key conditions from [26] for constructing conservative 1-step methods, which can be seen as a discrete 
analog of (17a) and (17b).

Theorem 2 (Theorem 17 of [26]). Let Dτ
t x, Dτ

t ψ, ∂τ
t ψ be as defined in (18)–(20). And let � be the conservation law multiplier of (14)

associated with a conserved quantity ψ . If f τ and �τ are consistent 1-step functions to f , � satisfying

�τ Dτ
t x = Dτ

t ψ − ∂τ
t ψ, (22a)

�τ f τ = −∂τ
t ψ, (22b)

then the 1-step method defined by (21) is conservative in ψ .

In [26], condition (22a) was solved by the use of divided difference calculus and (22b) was solved using a local matrix 
inversion formula. For the vortex blob equations (13), we follow the approach employed by [1] and directly verify (22a)
and (22b) for specific choices of f τ and �τ . Before we end this section, we mention a well-known result for even order of 
accuracy for symmetric schemes. For more details, one can see Chapter II.3 of [5].

Definition 6 (Symmetric schemes [5]). Let 	τ be the discrete flow of a one-step numerical method for system (14) with time 
step τ . The associated adjoint method 

(
	τ
)∗ of the one-step method 	τ is the inverse of the original method with reversed 

time step −τ , i.e. 
(
	τ
)∗ = (

	−τ
)−1. A method is symmetric if 

(
	τ
)∗ = 	τ .

Theorem 3 (Theorem II-3.2 of [5]). A symmetric method is of even order.

3 Analogous results hold for variable time step sizes and multi-step methods, see [26,12] for more details.
6
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3. Construction of exactly conservative integrators via DMM

In [1], conservative schemes for the point vortex equations in the plane were derived using DMM preserving the four 
analogous conserved quantities. Here, we will extend their results and derive conservative schemes for the vortex blob 
equations of order 2, 4, and 6 from Equation (13).

Before deriving the schemes, we first verify that Ph, Lh, Hh,(m) are indeed the conserved quantities of (13) using 
Theorem 1. Let us define the vector of conserved quantities ψh as,

ψh (x, y) :=
⎛
⎝ Ph (x, y)

Lh (x, y)

Hh,(m) (x, y)

⎞
⎠ .

Using condition (17a), this yields the 4 × (2M) multiplier matrix � given by,

�(x, y) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

[0]T
1≤i≤M

[
h2ωi

]T
1≤i≤M[−h2ωi

]T
1≤i≤M [0]T

1≤i≤M[−h2ωi xi
]T

1≤i≤M

[−h2ωi yi
]T

1≤i≤M⎡
⎣− h4

2π
ωi

M∑
j=1, j �=i

ω j xi j

C (m)
i j

r2
i j

⎤
⎦T

1≤i≤M

⎡
⎣− h4

2π
ωi

M∑
j=1, j �=i

ω j yi j

C (m)
i j

r2
i j

⎤
⎦T

1≤i≤M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where C (m)
i j := C (m)

(
r2

i j

)
= 1 − Q (m)

(
r2

i j

δ2

)
exp

(
− r2

i j

δ2

)
.

We showed the details on how condition (17b) is satisfied in Appendix A.1, which verifies that ψh is indeed conserved 
quantities by Theorem 1. Next, we propose consistent choices of Dτ

t x, Dτ
t ψh, ∂τ

t ψh, �τ , and f τ , then verify that conditions 
(22a) and (22b) are satisfied. Specifically, we define,

Dτ
t x := 1

τ

(
�x
�y

)
, Dτ

t ψh := 1

τ

⎛
⎝ �Ph (x, y)

�Lh (x, y)

�Hh,(m) (x, y)

⎞
⎠ , ∂τ

t ψh := 0.

As well, we define the discrete multiplier matrix �τ and the discrete right hand side f τ as,

�τ
(

xk+1, yk+1, xk, yk
)

:=⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[0]T
1≤i≤M

[
h2ωi

]T
1≤i≤M[−h2ωi

]T
1≤i≤M [0]T

1≤i≤M[−h2ωi xi
]T

1≤i≤M

[−h2ωi yi
]T

1≤i≤M⎡
⎢⎣− h4

2π
ωi

M∑
j=1, j �=i

ω j
xi j(
rk

i j

)2
Cτ ,(m)

i j

⎤
⎥⎦

T

1≤i≤M

⎡
⎢⎣− h4

2π
ωi

M∑
j=1, j �=i

ω j
yi j(
rk

i j

)2
Cτ ,(m)

i j

⎤
⎥⎦

T

1≤i≤M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

f τ
(

xk+1, yk+1, xk, yk
)

:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎣− h2

2π

M∑
j=1, j �=i

ω j
yi j(
rk

i j

)2
Cτ ,(m)

i j

⎤
⎥⎦

1≤i≤M⎡
⎢⎣ h2

2π

M∑
j=1, j �=i

ω j
xi j(
rk

i j

)2
Cτ ,(m)

i j

⎤
⎥⎦

1≤i≤M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where xi := (xk+1
i + xk

i )/2, yi := (yk+1
i + yk

i )/2, xij := (xk+1
i j + xk

i j)/2, yij := (yk+1
i j + yk

i j)/2,

Cτ ,(2)
i j = 1

ξk+1
i j

ξk
− 1

[
log

∣∣∣∣∣ξ
k+1
i j

ξk
i j

∣∣∣∣∣+ E1

(
ξk+1

i j

)
− E1

(
ξk

i j

)]
,

i j

7
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Cτ ,(4)
i j = 1

ξk+1
i j

ξk
i j

− 1

[
log

∣∣∣∣∣ξ
k+1
i j

ξk
i j

∣∣∣∣∣+ E1

(
ξk+1

i j

)
− E1

(
ξk

i j

)
− e−ξk

i j
(
e−�ξi j − 1

)]
,

Cτ ,(6)
i j = 1

ξk+1
i j

ξk
i j

− 1

[
log

∣∣∣∣∣ξ
k+1
i j

ξk
i j

∣∣∣∣∣+ E1

(
ξk+1

i j

)
− E1

(
ξk

i j

)
+ e−ξk

i j
(
e−�ξi j − 1

)(−3

2
+ 1

2
ξk

i j

)]
+ 1

2
ξk

i je
−ξk+1

i j ,

and ξk
i j := (rk

i j

/
δ)2. As before, we verify that conditions (22a) and (22b) hold in Appendix A.2 and A.3. Thus, we have derived 

the conservative discretization for (13) which exactly preserves ψ given by,

F τ
(

xk+1, yk+1, xk, yk
)

:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎣ xk+1

i − xk
i

τ
+ h2

2π

M∑
j=1, j �=i

ω j
yi j(
rk

i j

)2
Cτ ,(m)

i j

⎤
⎥⎦

1≤i≤M⎡
⎢⎣ yk+1

i − yk
i

τ
− h2

2π

M∑
j=1, j �=i

ω j
xi j(
rk

i j

)2
Cτ ,(m)

i j

⎤
⎥⎦

1≤i≤M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (23)

Moreover, we show that the above scheme is symmetric in Appendix A.4, which is consistent with 2nd order accuracy 
shown later in Section 4. It is important to mention that, when any two vortices i and j move in such a way that rk

i j = rk+1
i j , 

the numerator and denominator of Cτ ,(m)
i j may tend to zero, potentially leading to large round-off errors. Thus, in our 

implementation, we replace the expressions for Cτ ,(m)
i j by their truncated Taylor expansions when |(rk+1

i j /rk
i j)

2 − 1| ≤ ε, 
where ε = 10−4. Specifically, the Taylor expansions of Cτ ,(m)

i j with m = 2, 4, 6 are respectively given by,

Cτ ,(2)
i j =

(
1 − e−ξk

i j

)
+
(
zi j − 1

)
2

(
−1 +

(
1 + ξk

i j

)
e−ξk

i j

)
+(

zi j − 1
)2

6

(
2 +

(
−2 − 2ξk

i j −
(
ξk

i j

)2
)

e−ξk
i j

)
+ . . . ,

Cτ ,(4)
i j =

(
1 +

(
−1 + ξk

i j

)
e−ξk

i j

)
+
(
zi j − 1

)
2

(
−1 +

(
1 + ξk

i j −
(
ξk

i j

)2
)

e−ξk
i j

)
+

(
zi j − 1

)2

6

(
2 +

(
−2 − 2ξk

i j −
(
ξk

i j

)2 +
(
ξk

i j

)3
)

e−ξk
i j

)
+ . . . ,

Cτ ,(6)
i j =

(
1 +

(
−1 + 2ξk

i j + 1

2

(
ξk

i j

)2
)

e−ξk
i j

)
+(

zi j − 1
)

2

(
−2 +

(
2 + 2ξk

i j − 5
(
ξk

i j

)2 +
(
ξk

i j

)3
)

e−ξk
i j

)
+

(
zi j − 1

)2

6

(
4 +

(
−4 − 4ξk

i j − 2
(
ξk

i j

)2 + 6
(
ξk

i j

)3 −
(
ξk

i j

)4
)

e−ξk
i j

)
+ . . . ,

where zi j = (rk+1
i j /rk

i j)
2 = ξk+1

i j /ξk
i j . From these expansions, it can be seen that both �τ and f τ are consistent because, as 

τ → 0 we have xij → xij and yij → yij , along with zi j → 1 which results in Cτ ,(2)
i j → C (2)

i j , Cτ ,(4)
i j → C (4)

i j , and Cτ ,(6)
i j → C (6)

i j . 
As discussed above on our implementations, we truncate the Taylor series expansions of Cτ ,(2)

i j , Cτ ,(4)
i j , and Cτ ,(6)

i j at 3rd

term (2nd order). In Appendix A.5, we further verify the accuracy of our Taylor expansions, and demonstrate how round-off 
errors appear as (rk+1

i j

/
rk

i j)
2 → 1 justifying our choice of ε.

Finally, in order to implement the conservative schemes given by (23), one must be able to evaluate the exponential 
integral

E1(x) =
∞∫

e−t

t
dt, x > 0,
x

8
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Fig. 4.1. The discretization of � and ω0 with M = 36 vortices. Black stars show the location of vortices, dashed lines form the grid, the black circle is the 
boundary ∂�, and the color of a point together with the colorbar represents the intensity of the vorticity field at that point. On the left, we have the exact 
vorticity field before introducing the vortices. While on the right, we have the approximate vorticity field given by (12) for m = 4 after introducing the 
vortices. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

up to machine precision in an efficient manner. Various methods of evaluating the exponential integral exist, such as Taylor 
series expansion, asymptotic expansion, continued fraction expansion, and piece-wise rational function approximation [33,
34]. We want to be able to evaluate E1(x) for a wide range of input arguments. This is due to the possibility that the 
argument x can be very small when vortices converge to a particular point in space, and can be very large when vortices 
diverge to infinity from a particular point in space, or when we let δ → 0. It is known that for x > 34, we have |E1(x)| <
10−16 which suggests that we want to look for a fast and accurate algorithm for evaluating E1(x) in the range 10−16 < x <
34. As the rate of convergence and the accuracy of evaluating the exponential integral vary with the input argument, after 
numerical testing, we have chosen to use the rational function approximation [34] to evaluate E1(x) when implementing 
the conservative discretizations. The rational function approach provides a inexpensive and accurate means of evaluating 
E1(x) over the desired range of input arguments.

4. Numerical results

Before presenting numerical results in detail, we first mention that we conducted all our experiments in C using a 
1.6 GHz Intel Core i5 dual-core processor. We did not optimize our codes for parallel computing, as we wished to focus on 
verifying specific properties about the conservative schemes.

Since the scheme in (23) is nonlinear and implicit, we used fixed-point iterations to solve for xk+1 and yk+1 given xk

and yk in our implementations. We let the initial guess for our fixed point iterations to be the result of taking an RK4 step 
from (xk, yk).

All our numerical experiments will be based on solving (3a)–(3e) with initial vorticity field given by,

ω0(r) =
{(

1 − r2
)3

r ≤ 1

0 r > 1.
(24)

We define our domain � to be the square described by (x, y) ∈ [−1,1] × [−1,1]. We discretize � with a uniform grid with 
size h = 2

/√
M , where M is the number of vortices. Then, we introduce a vortex at the center of each square such that ith

vortex has vorticity ωi = ω0 (ri). Fig. 4.1 depicts the discretization of � with 36 vortices. On the left, we have 36 vortices 
placed on � as described, where the vorticity field on � is given by ω0(r) at any point. On the right, we have the same 
vortices placed on �, yet the vorticity field on � is given by ωh

0(r).
We discretize the vortex blob equations resulting from applying the vortex blob method to (3a)–(3e) using (23). In doing 

so, we set m = 4 and δ = hq with q = 0.75. We let {tk}M
k=0 be the temporal grid points and T = tN be the final time, 

where N is the total number of time steps our integrator will take. Later in this section, we will verify the temporal order 
of convergence of the conservative integrators and the spatial order of convergence of the vortex blob method. To perform 
such verification efficiently, we will need the analytical solution to (3a)–(3e) with the ωh

0(r) given in (24). We can obtain the 
analytical solution by exploiting the rotational symmetry of the initial vorticity field. Since the Laplacian ∇2 is rotationally 
invariant, the velocity field satisfying (3a)–(3e) is also be rotationally symmetric and is given by,

v (z) = 1

r2 [−y, x]T

r∫
0

sω(s) ds = [−y, x]T 1 − (
1 − r2

)4

8r2
. (25)

Thus, we expect vortex trajectories to form concentric circles.
9
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Fig. 4.2. Error over time in conserved quantities Ph
x (top-left), Ph

y (top-right), Lh (bottom-left), and Hh,(m) (bottom-right) for mth order vortex method. 
Here, (13) was solved with m = 4, M = 100, T = 105, and τ = 1.0 using RM2, RM4, IMM, and DMM.

4.1. Verification and comparison of conservative properties

We start by comparing the error over time in conserved quantities of Ph, Lh , and Hh,(m) for the DMM-based discretiza-
tion in (23) with discretizations of (13) obtained via Ralston’s 2nd and 4th order method (RM2, RM4), and the implicit 
midpoint method (IMM). In our comparisons, we use Ralston’s methods due to their minimal truncation error bounds of 
Lotkin type [35,36]. Fig. 4.2 shows how the drift (i.e., |ψh,k −ψh,0|) in all four conserved quantities evolves with time. It can 
be observed that all integrators preserve linear impulses at the discrete level. On the other hand, we see that only DMM 
and implicit midpoint method conserve angular momentum. This is not surprising as DMM is conservative by construction 
and the implicit midpoint method preserved all quadratic invariants [5]. As expected, the only integrator that conserves 
Hamiltonian up to machine precision, and as a result all four conserved quantities, is DMM. Although IMM does not exactly 
preserve the Hamiltonian, we see that its Hamiltonian error remains bounded below 10−4. This is expected, as it is well 
known that for an rth order symplectic method, the error in Hamiltonian is O (τ r) over an exponentially long time [5].

4.1.1. Convergence analysis of conserved quantities to conserved integrals
In this subsection, we will show that conservative property of the derived schemes has two important theoretical im-

plications. First is that the error between the conserved quantities of the vortex blob equations (13) and the conserved 
integrals of Euler’s equations (3a)–(3e) remains bounded for an arbitrarily long time. Secondly, the conserved quantities of 
(13) converge to the conserved integrals of (3a)–(3e) as M → ∞.

Let ψ be the exact value of the conserved integral ψ [ω] (t) of (3a)–(3e) (e.g., Px, Py , L, or H(m)) with the corresponding 
discretized conserved quantity ψh of (13). For fixed τ and T , we expect the conserved quantity ψh,N to converge to ψ as 
h → 0. We will demonstrate that this is indeed the case when we employ the DMM-based discretizations (23). Specifically, 
recall that ψh (x(t), y(t)) is the conserved quantity evaluated on the exact solution of (13) that satisfies the initial conditions 
x(0) = x0 and y(0) = y0. Then, ψh(x(tN ), y(tN )) = ψh

(
x0, y0

)= ψh,0, and from triangle inequality we have,∣∣∣ψh,N − ψ

∣∣∣≤ ∣∣∣ψh,0 − ψ

∣∣∣+ ∣∣∣ψh,N − ψh,0
∣∣∣
10
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Fig. 4.3. Convergence of Lh,N to L (left), and the convergence of Hh,(m),N to H (right) as h → 0 when (13) is solved with m = 4, T = 10, and τ = 1.0
using RM2, RM4, IMM, and DMM.

≤
∣∣∣ψh,0 − ψ

∣∣∣+ ∣∣∣ψh,N − ψh
(

x(tN), y(tN)
)∣∣∣

≤
∣∣∣ψh,0 − ψ

∣∣∣︸ ︷︷ ︸
1

+Lψh

∥∥∥∥
[

xN

yN

]
−
[

x(tN)

y(tN)

]∥∥∥∥︸ ︷︷ ︸
2

,

where the third line follows from assuming that ψh(x, y) is Lipschitz continuous with Lipschitz constant Lψ . Observe that,

1 is simply the error between ψ and the midpoint rule approximation of ψ [ω] (t) if ψh =Ph
x , Ph

y , or Lh . Therefore, when 
ψ represents Px, Py , or L, |ψh,0 −ψ | is O  

(
h2
)
. Hh,(m),0 is also the midpoint sum approximating H when m = 0 (point 

vortex case), but this is not true for all m. This is because, unlike H[ω](t), Hh,(m) contains an exponential integral term 
and exponential terms. Nonetheless, it is easy to show4 that these extra terms decay exponentially as h → 0, implying 
that |ψh,0 − ψ | is still O  

(
h2
)

when ψh is Hh,(m) with m = 2, 4, 6.

2 is the error between the numerical solution and the exact solution of (13) at t = tN = T . For an rth order integrator it 
is O  

(
τ r
)
.

Therefore, we have,∣∣∣ψh,N − ψ

∣∣∣≤ C1h2 + C2Lψτ r (26)

for ψ is Px, Py , L, or H with C1 and C2 as some positive constants. When the conservative integrators are employed, 
|ψh,N − ψh,0| is analytically nil, and practically of the same order as machine epsilon (εM ). Therefore, for conservative 
integrators of (23), we have a tighter bound than (26) which is independent of τ and given by,∣∣∣ψh,N − ψ

∣∣∣≤ C1h2 + g (εM , N) .

Here, g (εM , N) can be viewed as a unknown random variable that models the accumulation of round-off/truncation errors 
due to finite-precision arithmetic when using (23). Thus, ψh,N should converge to ψ with second order accuracy as h → 0
for all N > 0 when we integrate (13) using (23). On the other hand, if we use a non-conservative integrator like RM2, 
RM4, or IMM, ψh,N should stop converging to ψ as h → 0 for all N > 0 because τ r term will dominate over h2 term for 
sufficiently small h. We demonstrate this behavior numerically in Fig. 4.3.

From Fig. 4.3, it can be seen that the errors |Lh,N −L| of RM2 and RM4 plateau, as h tends to zero. As expected, since 
IMM and DMM preserve angular momentum, their errors |Lh,N −L| decrease monotonically. Although (26) implies that we 
should also see plateaus in the errors of |Hh,(m),N −H| for RM2, RM4, and IMM, we observe plateaus only in the curves of 
RM2 and RM4 of Fig. 4.3. If h were to be decreased further, we expect to see the plateau for IMM also. However, we did 
not pursue this further due to costly simulation, due the spatial dominance in the error.

4 Conserved quantities Ph and Lh are the discrete and per unit mass versions of the conserved integrals (6) and (7). Likewise, Hh,(m) are the discrete 
and per unit mass versions of (8) up to a difference term that decays like O  

(
δ2 exp

(
−r2

i j

/
δ2
))

, O  
(

exp
(
−r2

i j

/
δ2
))

, and O  
((

1
/
δ2
)

exp
(
−r2

i j

/
δ2
))

as 
δ → 0 when m = 2, 4, 6 respectively.
11
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Fig. 4.4. Long-term behavior of |Lh,N − L| (left) and |Hh,(m),N − H| (right) when (13) is solved with m = 4, T = 105, and τ = 1.0 using RM2, RM4, IMM, 
and DMM. The stars/circles/squares/triangles represent the error between the conserved integral and conserved quantity at tk ∈ {1, 3, 10, 3 × 101, 1 ×
102, 3 × 102, 1 × 103, 3 × 103, 1 × 104, 3 × 104, 1 × 105}.

Fig. 4.5. Long-term behavior of |Hh,(m),N − H| (right) when (13) is solved with m = 4, T = 105, and τ = 1.0 using IMM and DMM. The stars/cir-
cles/squares/triangles represent the error between the conserved integral and conserved quantity at tk ∈ {1, 3, 10, 3 × 101, 1 × 102, 3 × 102, 1 ×
103, 3 × 103, 1 × 104, 3 × 104, 1 × 105}.

According to (26), the angular momentum error |Lh,N −L| and the Hamiltonian error |Hh,(m),N −H| should be of second 
order as h → 0. While we see from Fig. 4.3 that the slope of the DMM curve in the |Hh,(m),N −H| versus h plot is around 
two as expected, we see that its slope in the |Lh,N − L| versus h plot exceeds two. Such superconvergence in the angular 
momentum error when using midpoint quadrature is attributed to the Laplacian of the integrand vanishing at r = 1. In 
general, we expect the angular momentum error to be of second order, similarly to the Hamiltonian error.

4.1.2. Long-term behavior of the error between conserved integrals and discretized conserved quantities
In a realistic fluid simulation, we also want the error between the conserved integrals of (3a)–(3e) and conserved quan-

tities of (13) to remain bounded for all time. Otherwise, our numerical approximation will become less relevant physically 
as time proceeds. We show numerically below that this is true when (13) is solved via DMM-based integrators in (23).

Fig. 4.4 shows that the error between L and Lh,k grows with time when (13) is solved via RM2 or RM4. We see that the 
error between H and Hh,(m),k also grows with time when (13) is solved via RM2 and RM4. In Fig. 4.5 we see that, though 
the error |Hh,(m),N − H| does not grow in time when (13) is solved via IMM, we can see that it fluctuates with time. In 
contrast, only the DMM methods yield in a numerical solution with almost constant |L −Lh,k| and |H−Hh,(m),k|.
4.2. Comparison of vortex trajectories

We will now show that the long-term numerical solution of (3a)–(3e) obtained through DMM is qualitatively closer to 
the exact solution of (3a)–(3e) than the numerical solutions obtained through IMM, RM2, and RM4.
12
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Fig. 4.6. Numerical path of a single vortex which is initially located at (−1 + h/2,−1 + h/2) when (13) is solved via RM2 (left), IMM (right) with T = 1650 s, 
τ = 1.0 and M = 25. Stars show the position of the vortex every 10 s.

Fig. 4.7. Numerical path of a single vortex which is initially located at (−1 + h/2,−1 + h/2) when (13) is solved via RM4 (left) and DMM (right) with 
T = 1650 s, τ = 1.0 and M = 25. Stars show the position of the vortex every 10 s.

Figs. 4.6 and 4.7 illustrate the long-term (T = 1650) trajectory of the vortices initially placed at the center of leftmost, 
bottommost square (i.e., at (−1 + h/2,−1 + h/2)). It can be observed that trajectories produced by the 2nd order integrators 
RM2 and IMM, and even a 4th order integrator RM4, spiral toward the origin while the numerical trajectory produced by 
DMM stays close to the exact trajectory, which is a circle centered at the origin with radius (1 − h/2)

√
2 as discussed earlier 

in (25). Note that the points on the interior of the disk occur only at later times.

4.3. Comparison of theoretical and numerical temporal convergence

Next, we verify numerically that the conservative schemes in (7) are 2nd order accurate in time. In our convergence 
study we define the error between the exact solution and the numerical solution of (13) at time T to be,

ετ =
∥∥∥∥
[

xM − x (T )

yM − y (T )

]∥∥∥∥
2
. (27)

To be able to evaluate ετ we need to have the exact solution of (13) at time T , that is (x(T ), y(T )). For N = 4 and ω0 is 
given by (24), the exact solution at time T is given by,

xi(T ) = R cos (αT + iπ/2 − π/4) , yi(T ) = R sin (αT + +iπ/2 − π/4) , for i = 1, . . . , N,

where R = 1/
√

2 and α = [C (m) (1) + C (m) (2) /2]/ (8π). Fig. 4.8 shows that the error between DMM solution and the exact 
solution of (13) at time T is O (τ 2), which agrees with the conclusion of Theorem (3).
13



Fig. 4.8. Convergence of error (ετ ) to zero as the time step size (τ ) decreases when (13) is solved via (23) with m = 2, 4, 6, T = 10.0, and M = 4. Each 
circle of a given color (i.e., m) represents a point (τ ∗, ε∗

τ

)
in the convergence curve that was generated by implementing (23) with τ = τ ∗ . Each colored 

solid line is the best-fit line passing through the points illustrated by the circles of the same color. The dashed black line has a slope of 2 for reference.

Table 4.1
Theoretical [13] and computed spatial convergence orders for vor-
tex blob methods with m = 1, 2, 3.

T = 0.001, τ = 0.001, q = 0.75 m = 2 m = 4 m = 6

Theoretical order 1.50 3.00 4.50
Computed order 1.50 2.96 4.445

4.4. Comparison of theoretical and numerical spatial convergence

In this subsection, we will show that the numerical solution of the PDE (3a)–(3e) obtained via the conservative dis-
cretizations (23) with m = 2, 4, 6 converges to the exact solution of (3a)–(3e) with the expected rate of convergence as 
h → 0. We define the spatial discretization error between the numerical solution vh (z, t) and the exact solution v (z, t) of 
(3a)–(3e) at time T to be

εh =
√√√√∫∫

�(T )

∥∥vh (z, T ) − v (z, T )
∥∥2

2 dz. (28)

Here, we evaluate vh (z, t) using (10) after obtaining the final position of each vortex by solving (13) via the conservative 
schemes. Also, recall that the exact solution v (z, t) to (3a)–(3e) is available from (25). We numerically approximate the 
double integral over �(T ) in (28) via an 8th order Gaussian quadrature in polar coordinates. We used 8th order quadrature 
to ensure that the quadrature error does not dominate the spatial discretization error.

Both Fig. 4.9 and Table 4.1 show that the order of convergence values for vortex blob methods of all orders implemented 
using (23) are in good agreement with the theoretical order of convergence values reported by Beale and Majda in [13].

4.5. Comparison of error in conserved quantity versus computation times

In this final subsection of numerical results, we will compare the computational time taken by the conservative inte-
grators obtained via DMM to the computational time taken by the aforementioned standard integrators. To this end, we 
integrate (13) with m = 2 and N = 3 using DMM, IMM, RM2, and RM4. We set up five different vortex blob problems by 
randomly sampling ωi of the vortices from a uniform distribution on [−1, 1] and their initial positions from a uniform 
distribution on [−1, 1] ×[−1, 1]. We measure the computation time (wall-clock time) of all methods through the clock_get-
time(CLOCK_REALTIME, &) function in time.h C library. The tables below summarize the computation time, as well as their 
maximum absolute errors in each conserved quantity, for each method on five different sample runs. In Table 4.2, we fix 
the number of time steps N when solving each problem, while on Table 4.3, we approximately fix the computational time 
by varying N for each method when solving the same problems in Table 4.2.

The purpose of the first table is to show that the conservative scheme preserves angular momentum, and in particular 
Hamiltonian, much better than the standard integrators when all methods are evaluated on the same number of time 

5 The spatial order of convergence when m = 6 was computed using a different ω0 than the one we set in (24). We changed the exponent in ω0 given 
in (24) from 3 to 15 because for convergence theory in [18] to hold when m = 6, 8 with the predicted order, ω0 needs to have 14 bounded derivatives.
C. Gormezano, J.-C. Nave and A.T.S. Wan Journal of Computational Physics 469 (2022) 111357
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Fig. 4.9. Convergence of spatial error (εs) to zero as the grid size (h) decreases when (13) is solved via (23) with m = 2, 4, 6 and T = 0.001. Each circle is 
a point on the convergence curve.

Table 4.2
Computation times for solving (13) using RM2, RM4, IMM, and DMM discretizations with T = 5 × 106, M = 3, m = 2, τ = 5.0, q = 0.75. Each group of 
rows separated by double lines correspond to a specific sample run where ωi, [x0]i , [y0]i ∼ U [−1,1] for i = 1, . . . , M .

Method # of time steps Computation time [s] Impulse-X Impulse-Y Angular impulse Hamiltonian

DMM 106 149.09 3.8272 × 10−17 5.5565 × 10−17 2.0957 × 10−10 3.8861 × 10−11

IMM 106 28.05 4.7434 × 10−17 8.1749 × 10−17 3.8307 × 10−10 1.1394 × 10−04

RM2 106 1.73 1.5959 × 10−16 1.6062 × 10−16 2.2847 × 1000 6.3812 × 10−02

RM4 106 3.19 3.0358 × 10−18 1.1926 × 10−18 4.2929 × 10−01 5.6505 × 10−02

DMM 106 41.39 3.8856 × 10−15 1.9076 × 10−15 6.0627 × 10−12 4.2839 × 10−14

IMM 106 10.68 1.2423 × 10−15 2.6096 × 10−15 5.7927 × 10−12 1.7762 × 10−05

RM2 106 1.74 2.2207 × 10−15 1.5642 × 10−15 2.0692 × 1000 4.5471 × 10−02

RM4 106 3.30 1.6378 × 10−15 1.1941 × 10−15 3.8516 × 10−02 2.1360 × 10−03

DMM 106 39.27 7.0039 × 10−17 1.2804 × 10−16 4.2695 × 10−11 6.5601 × 10−13

IMM 106 9.70 7.4593 × 10−17 1.7228 × 10−16 1.1041 × 10−11 1.0544 × 10−04

RM2 106 1.74 4.7271 × 10−17 1.0072 × 10−16 2.2258 × 10−01 1.6727 × 10−02

RM4 106 3.24 8.7983 × 10−17 2.1034 × 10−17 4.8051 × 10−01 2.6559 × 10−02

DMM 106 38.02 1.8819 × 10−16 4.2071 × 10−16 3.9093 × 10−12 1.3834 × 10−14

IMM 106 6.92 1.9037 × 10−16 7.3150 × 10−17 4.0975 × 10−13 4.1658 × 10−08

RM2 106 1.55 3.7050 × 10−16 1.8448 × 10−16 4.1857 × 10−03 1.5755 × 10−05

RM4 106 2.95 2.5026 × 10−16 2.9584 × 10−16 4.2959 × 10−07 1.4752 × 10−09

DMM 106 49.87 5.4183 × 10−17 2.1955 × 10−17 2.7487 × 10−12 3.6479 × 10−13

IMM 106 11.58 2.5018 × 10−17 3.5399 × 10−17 2.6657 × 10−12 2.6121 × 10−05

RM2 106 1.73 5.1364 × 10−17 9.6169 × 10−17 2.1793 × 1000 4.0292 × 10−02

RM4 106 3.11 2.4259 × 10−17 2.6536 × 10−17 2.7556 × 10−01 1.8089 × 10−02
15
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Table 4.3
Computation times for solving (13) using RM2, RM4, IMM, and DMM discretization with T = 5 × 106, M = 3, m = 2, q = 0.75. Each group of rows 
separated by double lines correspond to a specific problem where ωi, [x0]i , [y0]i ∼ U [−1,1] for i = 1, . . . , M .

Method # of time steps Computation time [s] Impulse-X Impulse-Y Angular impulse Hamiltonian

DMM 106 149.09 3.8272 × 10−17 5.5565 × 10−17 2.0957 × 10−10 3.8861 × 10−11

IMM 17 × 106 148.73 1.4680 × 10−16 1.0045 × 10−16 3.0382 × 10−10 4.7884 × 10−07

RM2 80 × 106 145.53 4.4062 × 10−16 1.6279 × 10−16 9.8936 × 10−03 2.9922 × 10−03

RM4 43 × 106 145.06 2.4698 × 10−16 8.8559 × 10−17 2.9535 × 10−06 7.3229 × 10−07

DMM 106 41.39 3.8856 × 10−15 1.9076 × 10−15 6.0627 × 10−12 4.2839 × 10−14

IMM 5 × 106 40.23 2.4839 × 10−15 5.4754 × 10−15 6.0298 × 10−12 7.1217 × 10−07

RM2 25 × 106 43.91 5.2460 × 10−15 2.1628 × 10−14 8.1034 × 10−04 3.2301 × 10−05

RM4 13 × 106 41.71 8.8885 × 10−15 1.0839 × 10−14 8.9068 × 10−08 5.1731 × 10−09

DMM 106 39.27 7.0039 × 10−17 1.2804 × 10−16 4.2695 × 10−11 6.5601 × 10−13

IMM 6 × 106 43.98 2.8796 × 10−16 2.1760 × 10−16 3.0895 × 10−12 2.9561 × 10−06

RM2 25 × 106 42.06 4.3043 × 10−16 8.3397 × 10−16 2.2287 × 10−03 2.1921 × 10−04

RM4 12 × 106 39.75 6.6722 × 10−16 5.3484 × 10−16 2.4074 × 10−06 2.7789 × 10−07

DMM 106 38.02 1.8819 × 10−16 4.2071 × 10−16 3.9093 × 10−12 1.3834 × 10−14

IMM 7 × 106 38.60 5.9208 × 10−16 4.1873 × 10−16 8.3213 × 10−13 8.5027 × 10−10

RM2 24 × 106 39.57 9.1812 × 10−16 1.9575 × 10−15 3.0487 × 10−07 1.1382 × 10−09

RM4 12 × 106 37.45 4.5671 × 10−16 1.1610 × 10−15 1.7587 × 10−12 6.0769 × 10−15

DMM 106 49.87 5.4183 × 10−17 2.1955 × 10−17 2.7487 × 10−12 3.6479 × 10−13

IMM 7 × 106 51.52 6.1122 × 10−17 9.8012 × 10−17 2.0447 × 10−11 5.2790 × 10−07

RM2 30 × 106 51.59 8.5896 × 10−17 6.1583 × 10−17 5.0931 × 10−03 1.7794 × 10−04

RM4 16 × 106 51.50 1.0010 × 10−16 3.1106 × 10−16 5.4385 × 10−07 1.0184 × 10−10

steps. The purpose of the second table is to show that, although the implicit conservative integrator is slower than the 
standard explicit integrators, it still preserves angular momentum and Hamiltonian better than standard integrators when 
all integrators are allowed to take similar computation times.

Specifically, we see from Table 4.2 that the DMM and IMM integrators preserve angular momentum on average about 
ten orders of magnitude better than RM2 and RM4. Moreover, we see that the DMM integrator preserves Hamiltonian on 
average about eight orders of magnitude better than IMM, ten order of magnitude better than RM2, and nine orders of 
magnitude better than RM4. The computational cost of such excellent conservative properties is about an increase of one to 
two orders of magnitude on average over the explicit schemes. Indeed, we can observe that DMM takes the longest while 
IMM takes the second longest amount in computation time, as both integrators are implicit schemes. However, compared 
to the overall improvement of eight to ten orders of magnitude in conserved quantities, this suggests that the derived DMM 
scheme can be suitable for applications where high-accuracy in conserved quantities is sought after.

We see that the conservation errors in angular-impulse for IMM and DMM are sometimes far from machine precision. 
This is due to the lack of convergence of the fixed-point iterations resulting from the poor conditioning of the nonlinear 
equations arising in IMM and DMM. When the vortex trajectories quickly depart from the unit-square in space, the nonlinear 
equation within the IMM and DMM schemes become ill-conditioned. Furthermore, the error in the conserved quantities is 
made worse for the angular-impulse due to its quadratic growth with respect to the position variables. We conducted 
numerical experiments in which we normalize the initial conditions by a fixed factor so that the vortices stay within 
the unit-square for all t ∈ [0, T ]. With this modification, IMM and DMM were both able to preserve angular-impulse and 
Hamiltonian up to 10−15.

Finally in Table 4.3, we see that the DMM and IMM integrators preserve angular momentum on average about eight 
orders of magnitude better than RM2 and RM4, when all methods are adjusted to take the same amount of computation 
time but different number of total time steps. In this comparison, we observed that DMM preserves the Hamiltonian on 
average about five orders of magnitude better than IMM, eight orders of magnitude better than RM2, and three orders of 
magnitude better than RM4. We note that, on the fourth sample run, we did observe that RM4 preserves the Hamiltonian 
slightly better than DMM while preserving the angular momentum equally well. We believe this is rare in practice, as 
this was the only instance of RM4 preserving Hamiltonian slightly better than DMM. Moreover, we attribute this to the 
frequent nonconvergence of fixed-point iterations resulting from the poor conditioning of the nonlinear equations. When 
we modified the initial positions as mentioned above, we observed that DMM preserved angular-impulse and Hamiltonian 
better than other methods in all test cases.

5. Conclusion

In this paper, we extended the work done on the point vortex method in [1] to obtain conservative integrators for 
higher-order vortex blob methods on the plane. While it is well known that point vortex methods have poorer accuracy 
when compared to vortex blob methods, we face two main difficulties when applying DMM to vortex blob method. First was 
evaluating the exponential integral term in the derived integrators and the second was the resulting DMM scheme being 
16
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more complicated. We verified the conservation property of the derived integrators along with their order of convergence. 
Specifically, we verified the spatial order of convergence of higher-order vortex methods in [13] when the vortex blob 
equations were integrated through DMM. We also compared the derived integrators for the vortex blob equations to other 
classical integrators such as implicit midpoint and Ralston’s 4th order method in terms of computational time versus error 
in conserved quantities. We observed that, for the vortex blob system with m = 2 and an initial configuration of randomly 
positioned vortices in [−1, 1] × [−1, 1] each having a uniform random vortex strength in [−1, 1], the DMM integrator 
preserves the Hamiltonian many orders of magnitude better than a 4th order standard integrator and a 2nd order symplectic 
integrator when they take the same number of time steps. However, this conservation property came with two main costs. 
First, the process of computing the multiplier matrix and the scheme was nontrivial, and could be labor intensive for 
more complex systems. Second, the computational time taken per time step by our integrator was large compared to other 
integrators. When we compared our integrator to other integrators on comparable total computational time, we saw that 
our integrator still preserved Hamiltonian, on average, four orders of magnitude better than a 4th order standard integrator 
and six orders of magnitude better than a 2nd order symplectic integrator.

In principle, the work presented here can be adapted to other general vortex methods with more accurate and sophisti-
cated interaction kernels, such as those given in [25] and [29]. Similarly, our work could be extended to have conservative 
vortex methods for 3D flows, or flows on the surface of a sphere, which might be of particular interest to climate
modelers.

We conclude with a brief discussion on current limitations and future research directions. Specifically, the derived con-
servative discretizations currently have two main drawbacks. The first drawback is the fixed point iterations can have slow 
convergence and we observed that the convergence rate worsens as the number of vortices increases. Overcoming this 
drawback via the use of another nonlinear solver such as Newton or quasi-Newton methods is an interesting future re-
search direction. A second drawback is associated with the fact that it takes O  

(
M2
)

evaluations of the summands in (23). 
Overcoming this inefficiency is much more involved, yet may be possible through the use of fast multipole method (FMM) 
[37,38] introduced by Rokhlin and Greengard. We believe that combining DMM with fast multipole methods for many body 
problems is an important and fruitful future avenue for exploration, especially the number of bodies tend to be large for 
practical applications.
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Appendix A

A.1. Verification that condition (17b) holds

�(x, y) f (x, y)
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where,

ri j = r ji,

C (m)
i j = C (m)

ji ,

xij = − x ji,

yij = − y ji,

yijxi − xij yi = yi x j − y jxi = yi x j − y jxi + y jx j − y jx j = − (y ji x j − x ji y j
)
.

A.2. Verification that condition (22a) holds

Before we verify that condition (22a) is satisfied we give the following divided difference calculus identities.

1 � 
(
x2

i + y2
i

)= 2xi�xi + 2yi�yi .

2 � 
(

r2
i j

)
= 2xij�xij + 2yij�yij .

3 � 
(

log
∣∣∣r2

i j

∣∣∣)= log
∣∣∣rk+1

i j

∣∣∣2 − log
∣∣∣rk

i j

∣∣∣2 = log

∣∣∣∣∣ r
k+1
i j

rk
i j

∣∣∣∣∣
2

= log

∣∣∣∣∣ ξ
k+1
i j

ξk
i j

∣∣∣∣∣.
4 � 

⎛
⎝E1

⎡
⎣( ri j

δ

)2
⎤
⎦
⎞
⎠= E1

(
ξk+1

i j

)
− E1

(
ξk

i j

)
.

5 � 

⎛
⎝exp

⎡
⎣−

(
ri j

δ

)2
⎤
⎦
⎞
⎠= e−ξk

i j

(
e−�ξk

i j − 1
)

.

6 Employing the discrete product rule and identity 5 we have,

�

⎛
⎝( ri j

δ

)2

exp

⎡
⎣−

(
ri j

δ

)2
⎤
⎦
⎞
⎠= e−ξk+1

i j �ξi j + ξk
i j�

(
e−ξi j

)

18



C. Gormezano, J.-C. Nave and A.T.S. Wan Journal of Computational Physics 469 (2022) 111357
= e−ξk+1
i j �ξi j + ξk

i je
−ξk

i j
(
e−�ξi j − 1

)
.

7 Employing the identities 3 , 4 and 2 we have,

�

⎛
⎝log

∣∣∣r2
i j

∣∣∣+ E1

⎡
⎣( ri j

δ

)2
⎤
⎦
⎞
⎠

=
(

log

∣∣∣∣∣ ξ
k+1
i j

ξk
i j

∣∣∣∣∣+ E1

(
ξk+1

i j

)
− E1

(
ξk

i j

))⎛⎝2xij�xij + 2yij�yij

�
(

r2
i j

)
⎞
⎠

︸ ︷︷ ︸
= 1

=
(

log

∣∣∣∣∣ξ
k+1
i j

ξk
i j

∣∣∣∣∣+ E1

(
ξk+1

i j

)
− E1

(
ξk

i j

))
⎛
⎜⎜⎜⎜⎜⎝

2
(
xij�xij + yij�yij

)
(

rk
i j

)2
(

ξk+1
i j

ξk
i j

− 1

)
⎞
⎟⎟⎟⎟⎟⎠

= 2
(
xij�xij + yij�yij

) Cτ ,(2)
i j(
rk

i j

)2
.

8 Employing the identities 3 , 4 , 5 , and 2 we have,

�

⎛
⎝log

∣∣∣r2
i j

∣∣∣+ E1

⎡
⎣( ri j

δ

)2
⎤
⎦− exp

⎡
⎣−

(
ri j

δ

)2
⎤
⎦
⎞
⎠

=
(

log

∣∣∣∣∣ ξ
k+1
i j

ξk
i j

∣∣∣∣∣+ E1

(
ξk+1

i j

)
− E1

(
ξk

i j

)
− e−ξk

i j

(
e−�ξk

i j − 1
))

⎛
⎜⎜⎜⎜⎜⎝

2
(
xij�xij + yij�yij

)
(

rk
i j

)2
(

ξk+1
i j

ξk
i j

− 1

)
⎞
⎟⎟⎟⎟⎟⎠

= 2
(
xij�xij + yij�yij

) Cτ ,(4)
i j(
rk

i j

)2
.

9 Employing the identities 3 , 4 , 5 , 6 and 2 we have,

�

⎛
⎝log

∣∣∣r2
i j

∣∣∣+ E1

⎡
⎣( ri j

δ

)2
⎤
⎦+

⎛
⎝−3

2
+ 1

2

(
ri j

δ

)2
⎞
⎠exp

⎡
⎣−

(
ri j

δ

)2
⎤
⎦
⎞
⎠

=
(

log

∣∣∣∣∣ ξ
k+1
i j

ξk
i j

∣∣∣∣∣+ E1

(
ξk+1

i j

)
− E1

(
ξk

i j

)
+

�
(
e−ξi j

)(−3

2
+ 1

2
ξk

i j

)
+ 1

2
e−ξk+1

i j �ξi j

)
⎛
⎜⎜⎜⎜⎜⎝

2
(
xij�xij + yij�yij

)
(

rk
i j

)2
(

ξk+1
i j

ξk
i j

− 1

)
⎞
⎟⎟⎟⎟⎟⎠

= 2
(
xij�xij + yij�yij

)
(

rk
i j

)2

⎡
⎢⎢⎣ 1

ξk+1
i j

ξk
− 1

(
log

∣∣∣∣∣ξ
k+1
i j

ξk
i j

∣∣∣∣∣+ E1

(
ξk+1

i j

)
− E1

(
ξk

i j

)
+

i j

19



C. Gormezano, J.-C. Nave and A.T.S. Wan Journal of Computational Physics 469 (2022) 111357
�
(
e−ξi j

)(−3

2
+ 1

2
ξk

i j

))
+ 1

2

e−ξk+1
i j �ξi j

ξk+1
i j

ξk
i j

− 1

⎤
⎥⎥⎦

= 2
(
xij�xij + yij�yij

)
(

rk
i j

)2

⎡
⎢⎢⎣ 1

ξk+1
i j

ξk
i j

− 1

(
log

∣∣∣∣∣ξ
k+1
i j

ξk
i j

∣∣∣∣∣+ E1

(
ξk+1

i j

)
− E1

(
ξk

i j

)
+

e−ξk
i j

(
e−�ξk

i j − 1
)(

−3

2
+ 1

2
ξk

i j

))
+ 1

2
ξk

i je
−ξk+1

i j

⎤
⎥⎥⎦

= 2
(
xij�xij + yij�yij

) Cτ ,(6)
i j(
rk

i j

)2
.

Then, condition (22a) is satisfied for m = 2, 4, 6 by the linearity of � operator and by the identities 1 – 9 because,

�τ Dτ
t x = 1

τ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h2
M∑

i=1
ωi�yi

−h2
M∑

i=1
ωi�xi

−h2
M∑

i=1
ωi
(
xi�xi + yi�yi

)
− h4

2π

M∑
i=1

M∑
j=1
j �=i

ωiω j
(
xij�xi + yij�yi

) Cτ ,(m)
i j(
rk

i j

)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

τ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�

(
h2

M∑
i=1

ωi yi

)
�

(
−h2

M∑
i=1

ωi xi

)

�

(
−h2

2

M∑
i=1

ωi
(
x2

i + y2
i

))

− h4

4π

∑
1≤i< j≤M

2 ωiω j
(
xij�xi + yij�yi + x ji�x j + y ji�y j

) Cτ ,(m)
i j(
rk

i j

)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

τ

⎛
⎝ �P

�L
�H(m),h

⎞
⎠= Dτ

t ψ − ∂τ
t ψ,

where the 3rd equality for the 4th row follows from,

xij�xi + yij�yi + x ji�x j + y ji�y j = xij�xij + yij�yij .

A.3. Verification that condition (22b) holds

�τ f τ
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h4

2π

M∑
i=1

M∑
j=1
j �=i

ωiω j
xi j(
rk

i j

)2
Cτ ,(m)

i j

h4

2π

M∑
i=1

M∑
j=1
j �=i

ωiω j
yi j(
rk

i j

)2
Cτ ,(m)

i j

h4

2π

M∑
i=1

M∑
j=1
j �=i

ωiω j

(
yij xi − xij yi

)
(

rk
i j

)2
Cτ ,(m)

i j

h6

4π2

M∑
i=1

ωi

M∑
l=1
l �=i

M∑
j=1
j �=i

ω jωl

⎛
⎜⎝ xij(

rk
i j

)2

yil(
rk

il

)2
Cτ ,(m)

i j Cτ ,(m)

il − yij(
rk

i j

)2

xil(
rk

il

)2
Cτ ,(m)

i j Cτ ,(m)

il

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h4

2π

∑
1≤i< j≤M

ωiω j

⎛
⎜⎝ xij(

rk
i j

)2
Cτ ,(m)

i j + x ji(
rk

ji

)2
Cτ ,(m)

ji

⎞
⎟⎠

h4

2π

∑
1≤i< j≤M

ωiω j

⎛
⎜⎝ yij(

rk
i j

)2
Cτ ,(m)

i j + y ji(
rk

ji

)2
Cτ ,(m)

ji

⎞
⎟⎠

h4

2π

∑
1≤i< j≤M

ωiω j

⎛
⎜⎝
(

yij xi − xij yi
)

(
rk

i j

)2
Cτ ,(m)

i j +
(

y ji x j − x ji y j
)

(
rk

ji

)2
Cτ ,(m)

ji

⎞
⎟⎠

h6

4π2

M∑
i=1

ωi

⎡
⎢⎣ M∑

l=1
l �=i

M∑
j=1
j �=i

ω jωl

⎛
⎜⎝ yij(

rk
i j

)2

xil(
rk

il

)2
Cτ ,(m)

i j Cτ ,(m)

il

⎞
⎟⎠−

M∑
l=1
l �=i

M∑
j=1
j �=i

ω jωl

⎛
⎜⎝ xil(

rk
il

)2

yij(
rk

i j

)2
Cτ ,(m)

i j Cτ ,(m)

il

⎞
⎟⎠
⎤
⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0,

where the last equality follows from,

rk
i j = rk

ji,

ξk
i j = ξk

ji,

xij = − x ji,

yij = − y ji,

yij xi − xij yi = yi x j − y j xi = yi x j − y j xi + y j x j − y j x j = − (y ji x j − x ji y j
)
.

A.4. Proof that the conservative scheme (23) is symmetric

We define,

V (2)
i j := V (2)

i j

(
r2

i j

)
= log

∣∣∣r2
i j

∣∣∣+ E1

(
r2

i j

δ2

)
,

V (4)
i j := V (4)

i j

(
r2

i j

)
= log

∣∣∣r2
i j

∣∣∣+ E1

(
r2

i j

δ2

)
− exp

(
− r2

i j

δ2

)
,

V (6)
i j := V (6)

i j

(
r2

i j

)
= log

∣∣∣r2
i j

∣∣∣+ E1

(
r2

i j

δ2

)
+
(

−3

2
+ 1

2

(
r2

i j

δ2

))
exp

(
− r2

i j

δ2

)
.

Then, we can express (23) as,
21
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F τ
(

xk+1, yk+1, xk, yk
)

:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎣ xk+1

i − xk
i

τ
+ h2

2π

N∑
j=1, j �=i

ω j yi j

�V (m)
i j

�
(

r2
i j

)
⎤
⎦

1≤i≤N⎡
⎣ yk+1

i − yk
i

τ
− h2

2π

N∑
j=1, j �=i

ω j xi j

�V (m)
i j

�
(

r2
i j

)
⎤
⎦

1≤i≤N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

Due to their definitions, xij , yij , and �V (m)
i j

/
� 
(

r2
i j

)
are all symmetric under the permutation k ↔ k + 1. Thus, (23) is 

symmetric under the permutation k ↔ k + 1.

A.5. Derivation of Taylor series expansions of Cτ ,(2)
i j , Cτ ,(4)

i j , and Cτ ,(6)
i j

A.5.1. Cτ ,(2)
i j

Using the Taylor series expansion of the exponential integral E1 (x) = −γ − log |x| −
∞∑

l=1

(−x)l

l.l! in [33] where γ is the 

Euler–Mascheroni constant, and letting zi j = ξk+1
i j

/
ξk

i j we have,

Cτ ,(2)
i j = 1

ξk+1
i j

ξk
i j

− 1

[
log

∣∣∣∣∣ ξ
k+1
i j

ξk
i j

∣∣∣∣∣+ E1

(
ξk+1

i j

)
− E1

(
ξk

i j

)]

= 1

zi j − 1

[
log

∣∣zi j
∣∣+ E1

(
zi jξ

k
i j

)
− E1

(
ξk

i j

)]

= 1

zi j − 1

⎡
⎢⎣log

∣∣zi j
∣∣− log

∣∣∣zi jξ
k
i j

∣∣∣− ∞∑
l=1

(
−zi jξ

k
i j

)l

l.l! + log
∣∣∣ξk

i j

∣∣∣+ ∞∑
l=1

(
−ξk

i j

)l

l.l!

⎤
⎥⎦

= − 1

zi j − 1

⎡
⎢⎣ ∞∑

l=1

(
−ξk

i j

)l

l.l!
((

zi j
)l − 1

)⎤⎥⎦

= −
∞∑

l=1

(
−ξk

i j

)l

l.l!

(
l−1∑

m=0

(
zi j
)m

)

= −
∞∑

l=1

(
−ξk

i j

)l

l.l!

(
l−1∑

m=0

(
zi j − 1 + 1

)m)

= −
∞∑

l=1

(
−ξk

i j

)l

l.l!

(
l−1∑

m=0

m∑
n=0

m!
n! (m − n)!

(
zi j − 1

)n

)

= −
∞∑

l=1

(
−ξk

i j

)l

l.l!

[
l−1∑

m=0

(
1 + m

(
zi j − 1

)+ m (m − 1)

2

(
zi j − 1

)2 + · · · + (
zi j − 1

)m)]
.

By keeping the 2nd order terms we obtain,

Cτ ,(2)
i j = −

∞∑
l=1

(
−ξk

i j

)l

l.l!

[
l−1∑

m=0

1 + (
zi j − 1

) l−1∑
m=0

m + (
zi j − 1

)2
l−1∑

m=0

m (m − 1)

2
+ . . .

]
.

Using the summation identities 
l∑

m = l (l + 1)

2
and 

l∑
m2 = l (l + 1) (2l + 1)

6
, we get,
m=1 m=1
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Cτ ,(2)
i j = −

∞∑
l=1

(
−ξk

i j

)l

l! −
(
zi j − 1

)
2

∞∑
l=1

(
−ξk

i j

)l

l! (l − 1) −
(
zi j − 1

)2

6

∞∑
l=1

(
−ξk

i j

)l

l!
(

l2 − 3l + 2
)

− . . . .

Finally using the Taylor series expansions, 
∞∑

l=0

(
−ξk

i j

)l

l! = e−ξk
i j , 

∞∑
l=0

l
(
−ξk

i j

)l

l! = −ξk
i je

−ξk
i j , and 

∞∑
l=0

l2
(
−ξk

i j

)l

l! =

e−ξk
i j

[
−ξk

i j +
(
ξk

i j

)2
]

yields,

Cτ ,(2)
i j =

(
1 − e−ξk

i j

)
+

(
zi j − 1

)
2

(
−1 +

(
1 + ξk

i j

)
e−ξk

i j

)
+(

zi j − 1
)2

6

(
2 +

(
−2 − 2ξk

i j −
(
ξk

i j

)2
)

e−ξk
i j

)
+ . . . .

A.5.2. Cτ ,(4)
i j

We can represent Cτ ,(4)
i j in terms of Cτ ,(2)

i j such that,

Cτ ,(4)
i j = 1

ξk+1
i j

ξk
i j

− 1

[
log

∣∣∣∣∣ ξ
k+1
i j

ξk
i j

∣∣∣∣∣+ E1

(
ξk+1

i j

)
− E1

(
ξk

i j

)
− e−ξk

i j
(
e−�ξi j − 1

)]

= Cτ ,(2)
i j − 1

ξk+1
i j

ξk
i j

− 1

[
e−ξk

i j
(
e−�ξi j − 1

)]

= Cτ ,(2)
i j − 1

zi j − 1

[
e−ξk

i j

(
e−ξk

i j

(
zi j−1

)
− 1

)]
.

Using the Taylor series expansion e−ξk
i j

(
zk

i j−1
)

=
∞∑

l=0

(
−ξk

i j

(
zi j − 1

))l

l! up to 3rd order we get,

Cτ ,(4)
i j = Cτ ,(2)

i j − 1

zi j − 1

[
e−ξk

i j

(
1 − (

zi j − 1
)
ξk

i j + (
zi j − 1

)2

(
ξk

i j

)2

2
−

(
zi j − 1

)3

(
ξk

i j

)3

6
+ · · · − 1

)]

= Cτ ,(2)
i j +

(
ξk

i je
−ξk

i j

)
+
(
zi j − 1

)
2

(
−
(
ξk

i j

)2
e−ξk

i j

)
+
(
zi j − 1

)2

6

((
ξk

i j

)3
e−ξk

i j

)
.

Finally we have,

Cτ ,(4)
i j =

(
1 +

(
−1 + ξk

i j

)
e−ξk

i j

)
+
(
zi j − 1

)
2

(
−1 +

(
1 + ξk

i j −
(
ξk

i j

)2
)

e−ξk
i j

)
+(

zi j − 1
)2

6

(
2 +

(
−2 − 2ξk

i j −
(
ξk

i j

)2 +
(
ξk

i j

)3
)

e−ξk
i j

)
+ . . . .
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A.5.3. Cτ ,(6)
i j

Similar to Cτ ,(4)
i j , the form of Cτ ,(6)

i j allows us to represent it in terms of Cτ ,(2)
i j such that,

Cτ ,(6)
i j = 1

ξk+1
i j

ξk
i j

− 1

[
log

∣∣∣∣∣ ξ
k+1
i j

ξk
i j

∣∣∣∣∣+ E1

(
ξk+1

i j

)
− E1

(
ξk

i j

)
+

e−ξk
i j
(
e−�ξi j − 1

)(−3

2
+ 1

2
ξk

i j

)]
+ 1

2
ξk

i je
−ξk+1

i j

= Cτ ,(2)
i j + 1

ξk+1
i j

ξk
i j

− 1

[
e−ξk

i j
(
e−�ξi j − 1

)(−3

2
+ 1

2
ξk

i j

)]
+ 1

2
ξk

i je
−ξk+1

i j

= Cτ ,(2)
i j + 1

zi j − 1

[
e−ξk

i j

(
e−ξk

i j

(
zi j−1

)
− 1

)(
−3

2
+ 1

2
ξk

i j

)]
+ 1

2

(
ξk

i je
−ξk

i j

)
e−ξk

i j

(
zi j−1

)
.

As before, using the Taylor series expansion of e−ξk
i j

(
zk

i j−1
)

we get,

Cτ ,(6)
i j = Cτ ,(2)

i j + 1

zi j − 1

[
e−ξk

i j

(
1 − (

zi j − 1
)
ξk

i j + (
zi j − 1

)2

(
ξk

i j

)2

2
−

(
zi j − 1

)3

(
ξk

i j

)3

6
+ · · · − 1

)(
−3

2
+ 1

2
ξk

i j

)]
+

1

2
ξk

i je
−ξk

i j

⎛
⎜⎝1 − (

zi j − 1
)
ξk

i j + (
zi j − 1

)2

(
ξk

i j

)2

2
− · · ·

⎞
⎟⎠

= Cτ ,(2)
i j + e−ξk

i j

⎛
⎜⎝−ξk

i j + (
zi j − 1

) (ξk
i j

)2

2
− (

zi j − 1
)2

(
ξk

i j

)3

6
+ · · ·

⎞
⎟⎠(−3

2
+ 1

2
ξk

i j

)
+

1

2
ξk

i je
−ξk

i j

⎛
⎜⎝1 − (

zi j − 1
)
ξk

i j + (
zi j − 1

)2

(
ξk

i j

)2

2
− · · ·

⎞
⎟⎠

= Cτ ,(2)
i j +

(
2ξk

i j − 1

2

(
ξk

i j

)2
)

e−ξk
i j +

(
zi j − 1

)
2

(
−5

2

(
ξk

i j

)2 + 1

2

(
ξk

i j

)3
)

e−ξk
i j +

(
zi j − 1

)2

6

(
3
(
ξk

i j

)3 − 1

2

(
ξk

i j

)4
)

e−ξk
i j + · · · .

Finally we have,

Cτ ,(6)
i j =

(
1 +

(
−1 + 2ξk

i j − 1

2

(
ξk

i j

)2
)

e−ξk
i j

)
+(

zi j − 1
)

2

(
−1 +

(
1 + ξk

i j − 5

2

(
ξk

i j

)2 + 1

2

(
ξk

i j

)3
)

e−ξk
i j

)
+(

zi j − 1
)2

6

(
2 +

(
−2 − 2ξk

i j −
(
ξk

i j

)2 + 3
(
ξk

i j

)3 − 1

2

(
ξk

i j

)4
)

e−ξk
i j

)
+ . . . .

A.5.4. Demonstrating the necessity of the Taylor series expansions of Cτ ,(2), Cτ ,(4) , and Cτ ,(6) due to round-off errors
Fig. A.1 shows that when C̃τ ,(m)

i j is set to be the 2nd order Taylor expansion of Cτ ,(m)
i j , the error between C̃τ ,(m)

i j and 
Cτ ,(m)

i j converges to zero with 3rd-order accuracy until zi j − 1 ≈ 10−4. After zi j − 1 ≈ 10−4, we see that the error between 
C̃τ ,(m)

i j and Cτ ,(m)
i j increase markedly due to round-off error emanating from the evaluation of Cτ ,(m)

i j . Thus, it is clear that 
we need to employ C̃τ ,(2) , C̃τ ,(4) , and C̃τ ,(6) instead of Cτ (2) , Cτ ,(4) , and Cτ ,(6) respectively for (23) to be conservative up 
i j i j i j i j i j i j
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Fig. A.1. Plot of the error between Cτ ,(m)
i j and its 2nd order Taylor expansion C̃τ ,(m)

i j versus zi j − 1 for m = 2,4,6 when ξk
i j = 1.

to machine precision when zi j = ξk+1
i j

/
ξk

i j = (rk+1
i j )2

/
(rk

i j)
2 is close to 1. Furthermore, notice that, after zi j − 1 ≈ 10−4, the 

error between Cτ ,(m)
i j and C̃τ ,(m)

i j is almost as small as machine precision for m = 2, 4, 6, suggesting that utilizing the Taylor 
expansions should not lead to loss of accuracy.
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