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Abstract. Finding optimal (or low energy) centroidal Voronoi tessellations (CVTs) on a two-
dimensional domain is a challenging problem. One must navigate an energy landscape whose de-
sirable critical points have sufficiently small basins of attractions that are inaccessible with Monte
Carlo initialized gradient descent methods. We present a simple deterministic method for efficiently
navigating the energy landscape in order to access these low energy CVTs. The method has two
parameters and is based upon each generator moving away from the closest neighbor by a certain
distance. We give a statistical analysis of the performance of this hybrid method comparing with
the results of a large number of runs for both Lloyd’s method and state-of-the-art quasi-Newton
methods. Stochastic alternatives are also considered.
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1. Introduction. A fundamental problem in information theory and discrete ge-
ometry is known, respectively, as optimal quantization and optimal centroidal Voronoi
tessellations (CVT); see [14, 15, 20, 40] for an overview of the many concrete applica-
tions. Let us present the problem in its simplest form where the underlying density is
assumed to be uniform. Consider a bounded Ω ⊂ Rd with a collection of N distinct
points X := {xi}Ni=1 ⊂ Ω referred to as generators. The collection of points X gives
rise to a Voronoi tessellation V(X) = {Vi}Ni=1 of Ω, where

(1.1) Vi(X) = {y ∈ Ω
∣∣ ||xi − y|| < ||xj − y|| ∀j 6= i}, i = 1, . . . , N.

In other words, Voronoi cell Vi contains the points of Ω closer to xi than to any other
generator. We define for any X the nonlocal energy

(1.2) F (X) =

∫
Ω

dist2(y,X) dy =

N∑
i=1

∫
Vi

||y − xi||2 dy =:

N∑
i=1

Fi,

and minimize F over the possible positions X of the generators. As seen in section 2,
criticality of this energy gives rise to a CVT; that is, a placement of the generators
{xi}Ni=1 such that they are exactly the centroids of their associated Voronoi cell Vi,
i.e.,

xi = ci :=
1

|Vi|

∫
Vi

y dy, i = 1, . . . , N.

In the context of information theory and particularly in vector quantization [20], the
set X is viewed as a quantizer that discretely models data; here, uniformly distributed
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A1528 I. GONZALEZ, R. CHOKSI, AND J.-C. NAVE

(a) V(X) (b) CVT

(c) periodic-V(X) (d) periodic-CVT

Fig. 1. Two examples of the two-dimensional framework for Voronoi tessellations with N = 10.
The top row considers a bounded square Ω while the bottom row shows Ω as a square flat torus. Sets
of generators X := {xi}Ni=1 are marked as “◦,” and centroids ci of the corresponding cells Vi are
marked as “×.” (a) Generic collection X and associated Voronoi tessellation. (b) A centroidal
Voronoi tessellation, i.e., generators xi and respective centroids ci coincide for all i. (c) The same
sampling of generators found in (a) to emphasize the changes in centroids and in the connectivity
of the tessellation when on the torus. (d) A periodic centroidal Voronoi tessellation (PCVT). The
dual graphs of the boundary sets ∪i≤N∂Vi (i.e., the Delaunay triangulations) are shown in dotted
lines. Notice the superior regularity of the tessellation and its corresponding triangulation in both
centroidal cases.

over Ω. The quantization error is given by F (X) with the optimal quantizer being the
minimizer X∗ with the least error (alternatively, the CVT with lowest energy). Figure
1 contains some visual examples to illustrate these notions.

The energy (1.2) has a wealth of critical points (CVTs) [33, 46], and low energy
CVTs have tiny basins of attractions making them difficult or impossible to find via
gradient based descent with random initializations. Finding optimal or at least low
energy CVTs with desirable geometric properties is of fundamental importance in
many concrete applications; cf. [14, 15, 20], for example: (1) spatial optimization, (2)
mesh generation and numerical analysis, and (3) vector quantization. To this end, one
does have a benchmark for the optimal geometry in the limit N →∞ wherein we dis-
pense with shape and boundary effects. Indeed, Gersho’s conjecture [19] addresses the
periodic structure of the optimal quantizer as N →∞. The conjecture is completely
solved in two dimensions wherein the optimal Voronoi cell is the regular hexagon,
corresponding to generators on a triangular lattice. However, to date it remains open
in three dimensions (3D) wherein the belief is that the optimal Voronoi period-cell
is the truncated octahedron, corresponding to generators on a body centered cubic
(BCC) lattice; see [2, 9, 16].

The purpose of this paper is to present and assess in two dimensions (2D) a sim-
ple deterministic method for efficiently navigating the energy landscape in order to
access low energy CVTs which are otherwise inaccessible with Monte Carlo initializa-
tions coupled to gradient based descent methods (i.e., taking optimal results among
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NAVIGATING THE ENERGY LANDSCAPE OF CVTs A1529

hundreds of thousands to millions of gradient based descents on randomly sampled
initial configurations). The proposed method has two parameters, namely the precon-
ditioning number K and the probing number Q, and is based upon a very simple
scheme: each generator moving away from the closest neighbor (MACN) by a certain
distance (displacement); i.e., the basic MACN scheme moves each generator in the
opposite direction from its closest neighbor in X. For this scheme we consider two
choices of displacement:

• The individual displacement ||xi−ci|| of xi to the centroid of its Voronoi cell.
Our scheme using this displacement is labelled as the MACN-c step.

• A fixed displacement δ for all generators where

(1.3) δ :=
1

4

√
|Ω|
N

is set in terms of the average distance between generators in the approximate
regular hexagonal lattice. Our scheme with this distance is labelled as the
MACN-δ step.

Our method is then a coupling procedure repeating three steps. Starting from a
random initialization (placement of generators in Ω) we have the following:

Step 1. Iterate the MACN-c step K times as a preconditioning.
Step 2. Implement Lloyd’s, or any other deterministic method surveyed in section

3, minimizing (1.2) to a CVT.
Step 3. A single MACN -δ step working as a geometric based annealing to disrupt

the CVT from Step 2.
Step 4. Repeat Steps 1–3 a total number of Q times, ending at Step 2.
Step 1 results in a configuration which is close to a CVT. However, this is not

the point: it results in a configuration which lies in the basin of an energetically
desirable CVT. By energetically desirable we mean two things: (i) it has low energy
in the sense that its energy is comparable with the optimal result of any standard
gradient based descent algorithm assessed over a “large” number of runs (for us with
N ∼ 1000, a large number of runs is on the order of 100000). (ii) The same holds true
for the measures of regularity described in section 2. Step 2 achieves this energetically
desirable CVT. Step 3 breaks away from this basin to another basin which can contain
a more optimal CVT. In the end, one run of our method will have probed a number
Q of potentially different basins of attraction and their corresponding CVTs.

The choice of δ in (1.3) is subtle: it is large enough in order to change basins but
sufficiently small in order to not lose the desired regularity achieved thus far. In two
dimensions, the optimal configuration is partial to N regular hexagonal Voronoi cells.
In this case, δ can be thought of as half the distance from the generator to its Voronoi
cell boundary plane. Indeed, in the case of regular hexagonal Voronoi cells, the six
neighboring generators are equally distant. In this scenario, Step 3 chooses one of the
six closest generators according to some pre-established tie breaking rule.

The probing number Q encapsulates a degree of freedom common to all coupling
methods (see section 3). The preconditioning number K is chosen to remain constant
over the Q stages. This simple choice of constant K is shown to produce excellent
results on 2D domains. Moreover, preliminary implementation with a constant K has
also produced similar results on the sphere. The adaptation of the MACN method
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A1530 I. GONZALEZ, R. CHOKSI, AND J.-C. NAVE

to the sphere and possibly other manifolds is, however, outside the scope of the pres-
ent paper and will be addressed in subsequent work. On the other hand, one could
devise several strategies—with higher degrees of freedom—for a generalized sequence
{Kq}Q−1

q=0 ; for example, taking an initial value K0 combined with a suitable decaying
profile adapted to both present and past history of the energy along the dynam-
ics. Such variants could potentially improve convergence and energy efficiency of the
method. It is, however, difficult to find consistent strategies that will systematically
render desirable results across different problem sizes. Our crude tuning using a con-
stant preconditioning number does render desirable results across different domains
and problem sizes (cf. section 5).

We implement and assess our method on two choices of 2D domains, both having
periodic boundary conditions in order to dispense with boundary effects. To start, we
work on a primary domain for which the ground state is known: the periodic regular
hexagon, which can be tessellated into N regular hexagons provided N is suitably cho-
sen [10]. We then work on a primary domain that does not permit a perfect regular
tilling: the flat square torus. Here there is always frustration due to the size effects,
and it is surprisingly unclear as to the true nature of the lowest energy state. With the
number of generators N taken from the range 1000 to 4000, we show that our hybrid
method with Q ≤ 10, implemented with less than two dozens initializations, readily
finds states with far lower energy (and other metrics of optimal regularity) than the
ones accessible with Lloyd’s method, or any state-of-the-art gradient based descent
method, assessed over hundreds of thousands of random initializations; see Figure 2.
In sections 5 and 6 we present the full details of this comparison, emphasizing the
role of statistics for assessing ours and other numerical methods.

lowest energy PCVT sampled lowest energy PCVT sampled
with our hybrid method with gradient based algorithms

Fig. 2. Case N = 1000 on the square torus; comparative performance of our hybrid method
with Q = 10 (left) versus the lowest energy configuration obtained during our statistical sampling of
the landscape with selected gradient based methods (right). The PCVT on the left is energetically
548% closer to the nonachievable regular hexagonal lattice than the one on the right. Full statistical
details on this comparison is found in Figure 9 and Table 3. The color of each Vi scales with Fi
to indicate local energy contribution. The reader is referred to section 2 and subsequent figures for
further details on the color map.

The motivation and scope of our hybrid method is twofold. First, there is the
direct goal of generating low energy CVTs which has an impact in many applications
such as the ones already presented above. In contrast to methods which are based
upon initial sampling or building on regular hexagons, our method is based only
on basic structures of the energy (centroids and distance functions). Moreover, on
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NAVIGATING THE ENERGY LANDSCAPE OF CVTs A1531

domains like the square torus, optimality is subtle with regard to the presence of
nonregular hexagons and defects (nonhexagonal cells): indeed, there is probably not
even one perfectly regular hexagon in the Voronoi diagram of the optimal energy
configuration.

There is a second scope to our work. Probing nonconvex and nonlocal energy
landscapes is a fundamental problem in physics and applied mathematics. Determin-
istic strategies for navigating such landscapes are far and few between. The CVT
energy (1.2) is perhaps the simplest nontrivial example of such a landscape; while it
is finite dimensional with a simple geometric characterization of criticality (namely a
CVT), it is challenging (even in two dimensions) to navigate the landscape of CVTs.
As such, it perfects an ideal problem to address deterministic navigation. Our results
demonstrate that while the CVT energy landscape on the square torus with N ∼ 1000
is indeed complex, our hybrid algorithm is able to efficiently navigate it with only 9–10
deterministic “annealing” steps.

We emphasize that our MACN algorithm is designed for navigating the CVT
energy landscape. We make no claim that our algorithm has any direct applications
for navigating general nonconvex energy landscapes. In fact, even for the closest
energetic models of crystallographic particle interactions [3], it is unclear whether or
not our work has any application.

In light of our two scopes we would like to point out that there is another method
able to successfully probe the landscape, namely the global Monte Carlo method from
[33] (cf. section 3). However, the novelty and change of paradigm here is that our
method, motivated entirely by geometry, probes the energy in a completely deter-
ministic way. Moreover, our method shows a probing improvement compared to the
global Monte Carlo. Precisely, the number of computed CVTs needed to reach low
energy configurations is lower with the MACN algorithm than with this alternative
method. We elaborate on this comparison in section 6.

Finally let us remark on the empirical nature of our work. While we give a
heuristic rationale for our MACN steps, the precise nature of the distance chosen is
based in part on empirical tries. For the MACN -δ step, we experimented with other
choices of distance; for example, the intrinsic length-scale of the Voronoi cell (cf.
section 6). Our choice is one with sensibly the most effective performance. Overall,
while we only have heuristics to explain certain aspects of our method, we feel the
remarkable results justify its presentation and discussion here.

This paper is organized as follows: in section 2 we give a brief description of
periodic centroidal Voronoi tessellations (PCVTs). We also discuss, besides the nor-
malized energy, certain natural local measures of regularity, one of which is novel.
Then, in section 3 we survey methods to generate and improve CVTs. We present
our hybrid algorithm in section 4 and then an analysis for its predictions in section
5. Later, in section 6 we discuss the advantages and disadvantages of our method
compared to stochastic alternatives and then finish with closing remarks and future
directions in section 7.

2. Periodic CVTs and regularity measures. For the remainder of this paper
we will consider 2D torii spaces, namely polygons Ω with opposite and pairwise iden-
tifiable sides that can be periodically extended to the plane. With the enforcement
of these boundary conditions we have the definitions of a periodic-VT (PVT) and
periodic-CVT (PCVT) by using the metric ||.||T that is inherited from the Euclidian
metric in the above definitions (1.1) and (1.2), respectively. See Figure 1 (c) and (d)
for a concrete example. In addition, the dual graph of the set ∪i≤N∂Vi known as the
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A1532 I. GONZALEZ, R. CHOKSI, AND J.-C. NAVE

periodic-Delaunay triangulation (PDT) will be of importance. The PDT has an edge
eij linking xi and xj iff they are neighbors in the PVT, in other words the index sets
Ni := {j 6= i | ∂Vj ∩ ∂Vi 6= ∅}, i = 1, . . . , N , are intrinsic to the triangulation. We
refer the reader to [40] for an introductory treatment on Delaunay triangulations and
other variants of the Voronoi tessellation and to [46, 45, 6] for a detailed definition of
the periodic framework.

For further details on a popularized use of the Voronoi/Delaunay duality, see,
for example, [1, 8, 16] where optimal triangulations, used in mesh generation and
numerical analysis, are defined as the duals of optimal CVTs as opposed to the result
of directly optimizing triangulations over prescribed criteria. See also [7] for additional
discussion on the topic, this time concerning the nonachievable Delaunay triangulation
made of equilateral triangles in three dimensions (that, therefore, is not the dual of
an achievable ground state CVT).

Centroidal characterizations. In addition to the geometrical property xi =
ci ∀i, a PCVT admits a variational characterization via F : D → R+ given by (1.2)
here D := {X ∈ R2N |xi 6= xj ∀ j 6= i ; xi ∈ Ω ∀ i} represents the set of nondegenerate
configurations of generators in our periodic space. Depending on the application,
the functional F =

∑N
i=1 Fi is often referred to as the distortion, cost function, or

potential. Alternatively, one can interpret each Fi from a physical point of view as
the trace of the 2× 2 inertia tensor of Vi with respect to xi, i.e., the resistance of Vi
to its rotation around an axis passing through xi that is orthogonal to Ω.

It is a well-established fact in rigid mechanics (parallel axis theorem) that the
trace of this tensor will be minimized whenever the orthogonal axis of rotation passes
through the centroid. This locally translates to a Voronoi region being generated by
its centroid and, therefore, globally translates to a PCVT. Indeed, one can formally
prove this: by the definition of V(X) with the Euclidian metric we have according
to [26, 12] that ∂F

∂V (X,V(X)) ≡ 0 and thus the Reynolds transport theorem gives the
gradient components

Di F (X) :=
∂F

∂xi
(X) = 2|Vi|(xi − ci), i = 1, . . . , N,

which show that the gradient vanishing configurations of F are exactly PCVTs. More-
over, a nontrivial second application of Reynolds theorem yields the entries of the
Hessian D2F (X)

(2.1)



∂2F

∂x
(m)
i ∂x

(m)
i

= 2|Vi| −
∑
j∈Ni

2
||xi−xj ||

∫
∂Vi∩∂Vj (x

(m)
i −y(m))2 dy,

∂2F

∂x
(m)
i ∂x

(l)
i

= −
∑
j∈Ni

2
||xi−xj ||

∫
∂Vi∩∂Vj (x

(m)
i −y(m))(x

(l)
i −y

(l)) dy, m 6=l,

∂2F

∂x
(m)
i ∂x

(l)
j

= 2
||xi−xj ||

∫
∂Vi∩∂Vj (x

(m)
i −y(m))(x

(l)
j −y

(l)) dy, j∈Ni,

∂2F

∂x
(m)
i ∂x

(l)
j

≡ 0, j 6=i, j /∈Ni.

Furthermore, F has been shown to be C2(D) [31, 46], and although the Hessian is
sparse, it is, in general, not definite. As noted in [33], this is a consequence of the
energy functional being highly nonconvex with the presence of saddle points; see also
[46].

Optimal PCVT, ground state energy, and regularity measures. Based
upon the hexagon theorem [21, 37, 43], and in a similar spirit to [11, 44], we scale the
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NAVIGATING THE ENERGY LANDSCAPE OF CVTs A1533

energy functional with respect to N Fhex. Here Fhex denotes the second moment of a
regular hexagon with area |Ω|/N , and a simple calculation shows that

Fhex =
5

18
√

3

|Ω|2

N2
.

The scaled energy that is thus independent of the size of the problem is

E(X) :=
F (X)

NFhex
=

1

N

N∑
i=1

Fi
Fhex

=:
1

N

N∑
i=1

Ei,

with the same scaling carrying out trivially to DE(X) and D2E(X).
As an additional way to help us quantify the quality of a PCVT, and as it has

been customary in the literature, we use the fraction of hexagonal cells:

H(X) :=
#{Vi , i = 1, . . . , N | #Ni = 6}

N
.

However, regularity measures such as H or the Voronoi entropy used in [5] (and
rediscussed in [4]) only give us information about the connectivity of the PDT and
make no direct connection with the hexagon theorem requiring hexagons to be regular
to achieve the energy E = 1. For this reason we create a refinement on H that takes
into account the regularity of the hexagonal cells through their isoperimetric ratio.
We recall that the isoperimetric ratio r of a polygon is the dimensionless ratio of
its perimeter squared and area. Using r(Vi) of each Voronoi cell together with the
isoperimetric ratio of the regular hexagon rhex := 8

√
3, and for given ε > 0 small we

introduce the following regularity measure of a tessellation V(X):

Rε(X) :=
#{Vi , i = 1, . . . , N | #Ni = 6 ; |1− r(Vi)

rhex
| ≤ ε}

N
.

That is, Rε is the fraction of cells that are regular hexagons within an isoperimetric
tolerance of ε. Generators whose cell is taken into account by Rε will be depicted in
red in the PVTs of Figure 3 and onwards.

In sections 4–6 we will rely on E − 1, H, and Rε to measure the performance of
our method and others in reaching high quality PCVTs. The data will also make the
compelling case that Rε is a more sensitive measure of low values of E than H (for
appropriate ε). Finally, the statistics on these three quantities will be at the core of
the conjecture that our method acts at a semiglobal scale.

3. Generating and improving CVTs. We divide this brief literature survey
into methods available to compute CVTs and ways to enhance their quality.

Computing CVTs. These methods either rely on the characterization xi = ci ∀i
and seek to solve these nonlinear equations or are of variational character on E(X):

1. Lloyd’s method, introduced in the seminal work [32], is unquestionably the
most widespread method due to its simplicity. It iteratively applies the map T :
D → D defined by T(X) = C, where C := {ci}Ni=1 is the collection of centroids of
V(X). We refer the reader to [14, 13, 18] for properties and analysis of the map.

Due to the importance of the method in the remainder of this paper we provide
explicit pseudo-code as a subroutine in Algorithm 4.1.
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2. McQueen’s and probabilistic Lloyd’s methods [28] generate small sets of ran-
dom sampling points in Ω and use these to approximate the centroid of Voronoi
regions.

3. Lloyd–Newton [12] uses Newton’s root finding method on S(X) := X−T(X)
after some Lloyd steps to reach the vicinity of a root in D. The authors also propose
multilevel based extensions: one using an algebraic multigrid preconditioner combined
with Gauss–Seidel iterations to solve the linear system involved in each Newton step
and another using a nonlinear multigrid approach in solving DE = 0. See also [17] for
further development. However, as discussed in [31], unstable CVTs may be produced
(i.e., saddle points of E).

4. Newton’s classical technique minimizes Hessian based quadratic models of
E ∈ C2(D). With (2.1) available, the method converges at least quadratically when
coupled with a line-search ensuring the strong Wolfe conditions [39]. Nonetheless,
this method suffers from two downsides: (i) D2E is often indefinite and needs to be
altered, for example, by adding a “small” matrix to render it SPD prior to executing an
incomplete Cholesky factorization; see [34, 30] for theory and low memory algorithms.
(ii) The Hessian is expensive to populate due to the boundary integrals.

5. Quasi-Newton BFGS collection. These methods only use E and DE to give an
iterative approximation of the inverse Hessian. They remain to this day the favored
methods in the literature for fast CVT/PCVT computation due to their expected
superlinear convergence whenever they are coupled with a line-search method that
ensures the strong Wolfe conditions. The two families suited for medium/large scale
problems that will be used in this paper are the following:

(a) the low memory L-BFGS(M) in which the inverse Hessian approximation
remains sparse and is computed recursively from the M previous approxima-
tions;

(b) the Preconditioned-L-BFGS(M,T ) (P-L-BFGS(M,T )) uses, every modulo T
iterations, an SPD preconditioner matrix Ã (that does not necessarily need
to approximate the Hessian) with the goal of redirecting the algorithm to a
more suitable descent direction.

See [39] for a thorough description and analysis of the classical BFGS and L-BFGS(M)
and [27, 31] for the use of P-L-BFGS(M ,T ). Finally, an explicit routine of the pre-
conditioned algorithm is provided in Appendix A.

6. Non-Linear Conjugate Gradient (NLCG) methods generalize the classical CG
used in quadratic programming. Several updates for the conjugate directions are
available [22, 39]. One can also use a relevant preconditioner SPD matrix Ã to improve
the descent-conjugate directions.

There are several preconditioner matrices Ã, for example: the Hessian D2E itself
(along with the often necessary modification to make it SPD) or a Graph Laplacian
G introduced in [25] whose purpose is to approximate DE(X) = 0 to first order by
the matrix equation GX = 0.

Originally presented for the Ω-bounded case, below is our adaptation of G for
the periodic case; denoting by τi,j the pyramid with base ∂Vj ∩ ∂Vi and apex xi, the
N ×N matrix is then given by

(3.1) G :=


gij = −

∫
τi,j∪τj,i ρ(y)dy if j ∈ Ni,

gii =
∑
j∈Ni

|gij |,
0 otherwise.

However, contrary to the original construction for Ω-bounded, our adaptation is sym-
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NAVIGATING THE ENERGY LANDSCAPE OF CVTs A1535

metric and positive semidefinite (G given by (3.1) is not strictly diagonal dominant
and can thus be singular). As a consequence we will need to use a modified Cholesky
factorization of G.

Energetic improvements. Next, we survey initializations and other methods
used jointly with the above algorithms in order to improve the quality of CVTs.

Initializations.

(a) A Greedy Edge-Collapsing initialization [36] that meshes Ω using more than N
vertices; then it repeatedly uses an edge-collapsing scheme, and finally the decimated
vertices are employed as the initial generators.

(b) Quasi-random samplings of Ω reduce the discrepancy of the initial cloud of
generators, i.e., the sampling of each site depends on the position of the others. These
QR samplings use low discrepancy sequences such as those of Halton, Hammersley,
Niederreiter, and Sobol [38, 24, 23]; see also [41] for CVT results.

Couplings

(a) A hierarchical method [44] that refines a CVT by cleverly inserting new gener-
ators over the Delaunay triangulation. In this way the “regular” portions of the CVT
“grow” when alternating with an energy descent method.

(b) An Atomic Operation method [35]. Here the authors establish three oper-
ations on “defects” that merge or split nonhexagonal cells prior to minimizing the
energy; the process is then repeated.

(c) A global Monte Carlo method [33] which applies ideas from Simulated An-
nealing. This method starts at a CVT and after a specific random perturbation of
generators, which is dependent on the size of each Vi, a new CVT is obtained by a
nonlinear minimization method. If the new energy is lower than the previous one,
then the algorithm automatically accepts that new configuration; otherwise it accepts
it only according to a transitional probability that is dependent both on a cooling
temperature and on the energy gap between the two CVTs.

While the method has been proven to find the ground state in infinite time [29], a
crucial disadvantage in practice is the number of parameters that need to be adjusted
to obtain good performances, namely, the initial temperature, the temperature de-
cay to zero, the perturbation amplitude, and the number of iterations repeating the
procedure.

Indeed, the above-mentioned literature shows that these initializations and cou-
plings yield significant energetic improvements, even more so when combined.

4. Our hybrid algorithm. This section describes in more detail our three stage
method and subsequently provides an individual and deeper insight on the MACN-c
and MACN-δ dynamics, respectively.

Given a set of generators X := {xi}Ni=1 and its associated V(X), a closest neighbor
to xi is denoted xj∗i ; i.e., xj∗i solves minj 6=i ||xi − xj || = minj∈Ni ||xi − xj ||, where Ni

was defined earlier to be the index set of Delaunay edge-connected neighbors to the
site xi. Notice that xj∗i may not be unique. However, it suffices for our implementation
to simply pick one solution via a pre-established tie breaking rule (e.g., selection of
the closest candidate up to machine precision).

Our MACN scheme is a displacement of xi by a distance di in the opposite
direction to xj∗i , i.e., a MACN iteration with distances {di}Ni=1 consists of the update
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A1536 I. GONZALEZ, R. CHOKSI, AND J.-C. NAVE

scheme

(4.1) xi ← xi + di
xi − xj∗i
||xi − xj∗i ||

, i = 1, . . . , N.

Here di is a dummy quantity representing either the distance to the centroid di :=

||xi − ci|| for a MACN-c step or di := δ = 1
4

√
|Ω|
N for a MACN-δ step—as in (1.3).

Explicit pseudo-code of the overall method comprising the four steps listed in
section 1is provided in Algorithm 4.1 for completeness.

Algorithm 4.1 MACN algorithm over Q stages with Lloyd subroutine.
Input: (1) initial generators X = {xi}Ni=1; (2) probing number Q; (3) preconditioning number K;
(4) tol for convergence to a PCVT

for q = 0 : Q− 1 do

I. MACN-c:
for k = 0 : K − 1 do

1. compute PDT(X), associated PVT(X) and centroids {ci}Ni=1

2. extract {Ni}Ni=1 and find {j∗i }Ni=1 solving minj∈Ni
||xi − xj || for each i

3. set di = ||xi − ci|| and update X: xi ← xi ∀ i with (4.1)
end for

II. Reaching criticality:
[X∗q , PDT(X∗q), PCVT(X∗q)]=Lloyd(X, tol)

III. MACN-δ:
if q < Q− 1 then

1. extract {Ni}Ni=1 from PDT(X∗q) and find {j∗i }Ni=1 solving minj∈Ni
||xi − xj || for each i

2. set di = δ and get new X by δ-perturbing X∗q : xi ← xi ∀ i with (4.1)
end if

end for

Output:
{
X∗q
}Q−1

q=0
, a collection of stable local minimizers of E and their corresponding PCVTs

and PDTs

subroutine [X, PDT(X), V(X)]=Lloyd(X, tol)
set diff=Inf
while diff > tol do

1. compute V(X) (i.e., PVT(X)), centroids {ci}Ni=1, areas {|Vi|}Ni=1 and set diff = ||DE||/N
2. update X: xi ← ci ∀ i

end while
end subroutine

As briefly mentioned in the introduction, the K initial MACN-c iterations yield
more evenly distributed sets of generators. This preconditioning is common in out-
come to other initializations listed in section 3. Thus the success of MACN-c+Lloyd
in reaching “low” energy PCVTs is not surprising. Then by disrupting the centroidal
configuration with MACN-δ and introducing the Q− 1 supplementary repetitions we
create a coupling technique involving a symbiosis of relaxation and contraction. By
this we mean that the combination of our preconditioning and perturbation helps
Lloyd’s algorithm in reaching lower energy states while, conversely, Lloyd’s method
gets the system to PCVTs that our MACN stages use as a stepping-stone to success-
fully probe the landscape.
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NAVIGATING THE ENERGY LANDSCAPE OF CVTs A1537

We emphasize next that the sequence {E(X∗q)}
Q−1
q=0 obtained with our method

may not be strictly decreasing. It is, in fact, quite likely that our algorithm moves
to a higher energy basin of attractions from one stage to another, thus resembling
Simulated Annealing in that sense (while remaining completely deterministic). The
advantage, however, is, again, the low probing number needed. With Q ≤ 10 we are
able to sample low energy states that are impossible or scarcely achievable by other
deterministic methods (even when using a stochastic sampling of the landscape done
with a great number of initial configurations); cf. section 5.

Concerning the complexity of our method, most of the software used to con-
struct VT/PVT with Euclidean distance rely on an early construction of the Delau-
nay triangulation, e.g., the CGAL (Computational Geometry Algorithms Library)—
https://www.cgal.org [42]—for C++ or the built-in MATLAB function voronoin.
Thus one can extract Ni ∀ i before the computation of the tessellation while keep-
ing the same complexity. Moreover, the remaining difference between one MACN-c
step and one Lloyd step is the computation of the indices j∗i ∀ i which simply adds a
lower order term O(N) to the optimal overall complexity O(N ln(N)) in two dimen-
sions [40]. Hence, our overall scheme (4.1) benefits from the same low complexity of
Lloyd’s algorithm as well as a comparable simple implementation. This is the rea-
son we chose Lloyd’s method for our coupling rather than any other gradient based
method.

MACN-c. We now focus on MACN-c as a stand-alone initialization in order to
gain first insight on the functionality of this iterative scheme. With the concise exam-
ple presented in Figure 3 we show the general long-term behavior of these dynamics
over iterations k = 0, . . . ,K − 1 with K = 7× 104.

The first immediate observation is the reduction of the discrepancy of the original
cloud of points X. Indeed, when applying MACN-c we obtain a significant decrease
in energy, often close to two orders of magnitude when compared to a general random
sampling. It is worth noting, however, that this scheme alone is not contractive due
to the abrupt topological changes in the PDT from one iteration to another and thus
will most likely fail to provide a PCVT by itself, even in the limit K →∞.

The second observation is that the system eventually reaches a “low” energy pla-
teau and oscillates around it (see Figure 3 (h)). This suggests that in order to max-
imize energetic performance, the subsequent coupling with Lloyd’s algorithm should
be performed when the MACN-c dynamics attain this regime. However, it is difficult
to estimate a priori when the system will reach such a mesostability and even more
so the required K might be too large. Thus, in practice K (more precisely Q ×K)
should be chosen by the user to retain tractability of the overall method we presented
in Algorithm 4.1. For this reason the presentation of our numerical results in section
5 will start by a parameter sweep over values of K that yield not necessarily the best
energetic results but a suitable trade-off between computation time and energy.

MACN-δ. We again emphasize the empirical nature of our choice for the dis-
tance δ (1.3) that was found among scalings of

√
|Ω|/N (the linear length-scale of the

geometry in question). In particular, the a priori mysterious factor 1/4 was chosen
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A1538 I. GONZALEZ, R. CHOKSI, AND J.-C. NAVE

(a) k = 0 (b) k = 500 (c) k = 1000

(d) k = 2000 (e) k = 4000 (f) k = 8000

k 0 500 1000 2000 4000 8000

E − 1 0.98007 0.02933 0.02598 0.02132 0.01875 0.01608

H (%) 29.33 77.86 81.60 84.80 87.46 89.60

Rε (%) 0.00 25.60 34.13 42.13 52.26 62.86

(g) measures specific to configurations (a)–(f)

100 101 102 103 104 105
10-2

10-1

100

100 101 102 103 104 105
0

10

20

30

40

50

60

70

80

90

100

(h) energy profile showing mesostability (i) Rε and H profiles

Fig. 3. Example of MACN-c dynamics with N = 1500 in the square torus Ω. The kth iterations
displayed start from the uncorrelated uniform random sampling of the domain shown in (a); the table
contains the measures of the respective tessellations. The coloring represents Ei, and generators in
red are those taken into account by Rε (ε = 0.5%). Finally, we plot the three regularity measures
against the iterate number up to k = 7 × 104 = K to show the different regimes; the system’s
mesostability after k ≈ 104 is apparent.

to be in the small threshold of such scalings that simultaneously allows a change of
basin of attraction while remaining small enough to preserve a “certain regularity” in
the structure and topology of the tessellation. Perhaps the strongest ascertainment is
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NAVIGATING THE ENERGY LANDSCAPE OF CVTs A1539

that δ equals the intrinsic length-scale of the regular hexagonal tessellation, namely
|V |/|∂V | where V here represents the regular hexagon with inscribed circle of diameter√
|Ω|/N . More details on this latter interpretation of δ and on the global behavior of

other variants of MACN for PCVT dislocations are provided in section 6.
We finish the section with the example of Figure 4 showing a prototypical PCVT

dislocation using MACN-δ.

Fig. 4. Example of a MACN-δ perturbation with N = 1000 in a square torus Ω. On the left is a
generic PCVT, and on the right is its resulting perturbation with δ = 1

4

√
|Ω|/N . The colormap rep-

resents energy, and hexagonal cells with red generators are regular within the isoperimetric tolerance
ε = 0.5%.

5. Numerical results. A total of six examples with different N ’s are presented
below: the first two are on the regular hexagonal torus while the remaining four are
on the square torus. In the former the perfect honeycomb lattice is attainable iff
N = a2 + ab + b2 ∀a, b ∈ N [10] while in the latter the ground state is unknown
due to size frustration. For conciseness of the exposition we will from now on fix the
probing number to Q = 10; this value will be large enough to demonstrate the power
of our method vis-à-vis the alternatives. Our study of the six cases thus begins by
finding a preconditioning number K offering a suitable trade-off between time and
energy performance. Once K is chosen we deepen the analysis of the performance of
our method and then finish the section with a comparison of Rε and H as measures
faithful to E.

Throughout this section we use uniformly uncorrelated initial configurations over
Ω and our hybrid method is compared with L-BFGS(7) and P-L-BFGS(20,20). For
the latter our implementation of the pseudo-code of Appendix A uses the periodic
adaptation of the preconditioner matrix Ã = G as described in (3.1). Additionally,
we include results obtained with Lloyd’s algorithm in our periodic set up to have a
solid point of reference for past and future work since this is the only algorithm with
a complete lack of tuning parameters.

Following collectively the results of [31, 44, 25] as well as our own implementation
of some of the deterministic methods recalled in section 3, we believe that the two
quasi-Newton choices of comparison paint a good overview of the current deterministic
state-of-the-art methods: in particular, Ã = D2E as well as other (M,T ) values were
tested for the torus but did not achieve noticeable systematic improvements in the
regularity measures.

We further emphasize that, while the objective and main contribution of this pa-
per is to establish a dynamical and fully deterministic way of sampling energy basins
with as few parameters as possible, we tested the global Monte Carlo method from
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A1540 I. GONZALEZ, R. CHOKSI, AND J.-C. NAVE

[33] on the torus; we report results later in section 6 where the energy outcomes are
comparable to ours and we discuss the comparative advantages of both methods. Fur-
thermore, although not adapted to the periodic boundaries, quasi-random samplings
of Ω were also tested prior to quasi-Newton minimization; the energies achieved out
of 1000 runs were comparable with those of the basins sampled by Lloyd’s method out
of the 10000 runs initialized with uncorrelated distributions that are discussed below.

Let us next introduce some notation; once K is fixed, our hybrid method and its
lowest sampled energy Emin will primarily be compared with respect to the reference
energy Eref given by the minimal energy PCVT obtained from a large batch of
initial configurations using the three gradient based methods. More precisely, Emin
will be recorded with our method over 100 or 1000 initial configurations (depending
on the example) while Eref will be the lowest energy among 100000 runs for each of
L-BFGS(7) and P-L-BFGS(20,20) as well as 10000 runs for Lloyd’s algorithm.

We then define the following performance ratio for the sampled minimal energies:

(5.1) τ :=
Emin − 1

Eref − 1
.

We will also employ the empirical cumulative distribution functions (ECDFs)
fE−1, fRε , fH of our respective regularity measures as well as the values f∗E−1, f

∗
Rε
, f∗H

obtained when evaluating the ECDFs of our hybrid method at Eref , Rrefε , Href ,
respectively; these quantities will establish the frequency of PCVTs for which our
hybrid algorithm outperforms the best comparative method. Other basic statistics
provided on regularity measures include averages and standard deviations taken over
the designated number of runs; we denote them by 〈·〉 and σ(·), respectively. Finally,
we fix the isoperimetric tolerance to be ε ≡ 0, 5%. Further details on this choice will
be discussed at the end of this section.

A final note on our energy measurements: no quadrature was involved (i.e., exact
calculations were performed), and a tolerance was used on ||DE||/N guaranteeing
that the values of energy listed in all the tables and figures are accurate at least up
to the significant digits provided.

Choosing K. The two scenarios on the hexagonal torus Ω (allowing the honey-
comb tiling) are withN = 973 = 172+17×19+192 andN = 2029 = 252+25×27+272.
On the square torus we’ll work with the values N = {n× 1000}4n=1. For these set ups
we run our hybrid method on a reduced set of 15 initial configurations using a selected
list of K’s; the energy results shown in Figure 5 will allow us to choose trade-off values
between time and energy. We remark on the general decrease tendency over the Q
hybrid stages but note that the decrease is not monotone in K.

Note as well that because the first two values of N on the square torus are close
to those on the hexagonal torus there is no need to run sweeps for N = 1000 and
2000; we’ll just retain the same parameter values.

The graphs of 〈E − 1〉 in Figure 5 (a) and (b) suggest that we pick K = 6000 for
Examples 1 and 3 and K = 8000 for Examples 2 and 4. For Examples 5 and 6, how-
ever, energy averages do not provide clear insight. We turn then to minimums from
which Figure 5 (c) and (d) suggest we pick K = 8000 and K = 12000, respectively.

Hexagonal torus Ω.
Example 1. With N = 973 and K = 6000 chosen, we run our method on a larger

batch of 100 initial configurations; it reaches the ground state with Emin − 1 ≈ 1e-14
(highest precision allowed by our implementation) while the optimal PCVT from the
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(a) N = 973 on the hexagonal torus (b) N = 2029 on the hexagonal torus
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(c) N = 3000 on the square torus (d) N = 4000 on the square torus

Fig. 5. K-sweeps: the joint markers represent 〈E − 1〉 while the isolated ones represent min-
imums over 15 initial configurations. In black dotted lines are the values Eref − 1 appearing in
Tables 1, 2, 5, and 6 for a first comparison.

comparative methods is Eref − 1 = 0.00287 (achieved by L-BFGS(7)); see Figures
6 and 7 as well as the statistics summary of Table 1. In particular, Figure 6 (c)
shows how the symbiotic blocks of MACN -δ+MACN-c act on probing non-PCVT
configurations with energy close to (if not below) Eref .

Notice at last how the values f∗E−1, f
∗
Rε
, f∗H indicate that our method outperforms

the others for a significant fraction of the runs. In particular, not only do we get the
ratio τ (5.1) to be sensibly zero but on average one needs to run our hybrid algorithm
on approximatively three uniformly sampled initial configurations to obtain an energy
lower that Eref . In other words, we only need ≈ 30 PCVTs so that our way of probing
the energy landscape achieves comparable results to the sampling of the basins done
by L-BFGS(7) out of 100000 runs.

Example 2. For N = 2029 we first remark from the reduced sets of runs from
Figure 5 (b) that energy averages and their deviation from Eref immediately compare
favorably to those in Example 1. This is the first indicator that our hybrid method
is less affected than the comparative methods by the increasing nonconvexity of the
energy with N . The same conclusion can be drawn from the data from a hundred
runs in Tables 1 and 2; more precisely we have that although our hybrid method did
not achieve the honeycomb structure, our optimal PCVT with Emin − 1 = 0.00150
is still far more regular and gets τ−1 ≈ 3.2 times closer to the ground state than
the compared methods. Furthermore, the impressive value f∗E−1 = 1.00 achieved
suggests that despite the increased nonconvexity with N , the required number of
PCVTs needed to navigate the energy landscape, in a similar fashion as the random
sampling made with gradient based methods, has decreased to nine (i.e., less than
one full run).
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(a) PCVT achieving Emin (b) PCVT with Eref

0 1 2 3 4 5 6 7

10
4

10
-10

10
-5

10
0

0 1 2 3 4 5 6 7

10
4

0

10

20

30

40

50

60

70

80

90

100

(c) hybrid run reaching Emin (d) Rε, H profiles of (c)

Fig. 6. Optimal PCVTs from Example 1: (a) Ground state with Emin − 1 ≈ 1e− 14 reached
by our hybrid method. (b) Configuration carrying Eref − 1 = 0.00287 achieved by L-BFGS(7). (c)
and (d) The measures of a hybrid run that reached Emin among the larger batch of 100 runs with
K = 6000 (the dashed black line designates Eref − 1 again).
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(b) fRε (c)fH

Fig. 7. Data from Example 1: ECDFs of the three regularity measures for 100 hybrid runs
with K = 6000 along with 100000 runs of L-BFGS(7).
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Square torus Ω. We now work with Ω being the square torus and N = {n ×
1000}4n=1 to investigate the behavior of our method when the shape effects are tight-
ened.

Example 3. For N = 1000 with K = 6000 (as in Example 1), we implemented a
large batch of 1000 runs of our algorithm so as to have more robust statistics that are
presented in Figure 9 and Table 3. We further wish to emphasize, through the mono-
tone skewness in q of the ECDFs and histograms, the increasing performance tendency
from one stage to another in this scenario where the contraction and relaxation phases
are more constrained by the domain’s shape.

The behavior is illustrated in the mosaic of PVTs from Figure 8 where snapshots
of the run achieving Emin − 1 = 5.27e-4 were taken. In particular, one appreciates
how stage after stage we achieve the following:

(i) The MACN-c dynamics make defective (nonhexagonally regular) regions of
the PVTs “communicate” with each other by creating a flow between regions
with high average of individual energy Ei and ones with sensibly lower value,
then exhibiting a clear nonlocal behavior.

(ii) Lloyd’s algorithm contracts the system while preserving the localization of
the defects.

(iii) MACN-δ preserves regions of hexagonal regularity better and better as the
energy of the perturbed PCVT diminishes while, similarly to MACN-c, cre-
ating a nonlocal “communication” between defects.

At last, we point out that the progressive constriction of the defect “interfaces” we ob-
serve after the Lloyd block (the two middle columns on the mosaic) is recurrent across
all set ups that were tested; this is simply a consequence of the remarkable navigation
of the energy that our hybrid method performs. The video animating the iterations
of this particular run can be found in the accompanying supplementary material (An-
imation_Emin_MACN_Stages_N1000.mp4 [local/web 22.7MB]). It will appear in
more detail how the combination of these symbiotic blocks seems to have a similar
effect to a grain boundary evolution algorithm in polycrystals when looking at the
produced sequence of PCVTs.

Example 4. For N = 2000 with K = 8000 (as in Example 2) our results for 100
runs are summarized in Table 4. Here P-L-BFGS(20,20) achieved Eref − 1 = 0.00495
which yields the ratio τ−1 ≈ 2.6. We note that despite the nonnegligible performance
decrease of τ−1 when compared to Example 2, the values of f∗E−1 above 90% for X∗q≥4

indicate that, statistically, the overall comparative efficiency is remarkably similar to
what we obtained in the hexagonal torus domain. This suggests that the aforemen-
tioned change in τ could be mainly attributed to the increased rigidity of the square
torus.

On the other hand, when restricting our attention to the distributions of E
achieved thus far from 100 runs or more, we make the point that there is no such
discrepancy since our energy scaling shows remarkable robustness for each method
(e.g., 〈E − 1〉 measurements seem to remain comparable regardless of N and Ω; this
will be seen as well in the remaining cases).
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Example 5. When running our algorithm on a total of 100 initial configurations
with K = 8000 for N = 3000 and comparing against P-L-BFGS(20,20), we get τ−1 ≈
3.1 as well as values of f∗E−1 above 90% for X∗q≥1; see Table 5. The increasing relative
performance with N is once again apparent.

Example 6. At last we consider N = 4000 and 100 runs with K = 12000; see
Table 6. The reader can appreciate how this set up comes to further corroborate the
assertions made thus far about the nature of our hybrid algorithm, namely:

(i) The monotone decrease of 〈E − 1〉 in terms of q for batches of 100 runs or
more. Additionally, we’ve seen the robustness of E in terms of N for the
PCVTs produced by each method individually. This suggests, for example,
that within Q = 10 stages our hybrid method is able to get on average twice
as close to the nonachievable regular hexagonal configuration as the quasi-
Newton methods.

(ii) As the nonconvexity of the problem increases with N, it is of course harder
to get closer to the ground state (the smallest energies recorded increase
regardless of the method), yet we observe that, as the nonconvexity increases,
we require fewer stages of our method so that f∗E−1 surpasses 90%. This shows
that the manner in which our method probes the energy landscape manages
to overcome this stiffness remarkably better than gradient based methods
combined with random-like sampling.

Graphics providing visual insight on the results of Examples 2, 4, 5, and 6 can
be found (SuppMaterial_NavigatingCVTLandscape.pdf [local/web 5.43MB]) in the
accompanying supplementary material.

Scope on Rε. We have taken ε to be fixed at 0.5% because this value is bounded
above by the deviation from rhex obtained from the δ-perturbation of a single gen-
erator in the honeycomb PCVT, yet it remains big enough so that the data clearly
shows the following:

• A higher variation |∆E| between consecutive iterations in our method results
in a higher |∆Rε| than |∆H|, regardless of the block MACN-c/Lloyd/MACN-
δ.

• We have systematically that |f∗E−1 − f∗Rε | < |f
∗
E−1 − f∗H |.

• The ECDFs of H present larger discontinuity jumps than the ones of Rε,
meaning that for given X∗ the number of computed PCVTS states sharing
the value H(X∗) is higher than the one sharing Rε(X∗).

These combined observations point out that Rε is indeed a measure more faithful
to E and a better indicator of “well-distributed” PCVTs thanH is. We provide further
insight on this matter in Table 7 through the correlation ratio

% :=
σRεcov(E − 1, H)

σHcov(E − 1, Rε)

and in Figure 10 through scatter plots of the data from Example 3.
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NAVIGATING THE ENERGY LANDSCAPE OF CVTs A1545

(a) Lloyd (b) L-BFGS(7) (c) P-L-BFGS(20,20)

MACN-c Lloyd block MACN-δ MACN-c Lloyd block MACN-δ
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(d) hybrid run achieving Emin (e) Rε, H profiles associated with (d)

Fig. 8. Configurations with N = 1000 from Example 3: (a) optimal PCVT obtained with
Lloyd’s method with E − 1 = 0.00466, (b) optimal PCVT obtained with L-BFGS(7) having value
E−1 = 0.00349, (c) minimal energy configuration obtained among the three comparative methods—
achieved by P-L-BFGS(20,20)—with Eref − 1 = 0.00289. The mosaic shows the last iteration
of each of the three blocks of our hybrid method across the 10 stages of the run that achieved
Emin − 1 = 5.27e-4; the PCVT carrying that minimal value is framed in a red box. These images
are to be read starting on the left side of the vertical double black bar and then on the right; each
row is for a stage q = 0, . . . , 9. Both left columns are the last iteration of the MACN-c blocks, the
middle columns contain the PCVTs from the Lloyd blocks, and the right columns are their respective
MACN-δ dislocations. Finally, (d) and (e) are the regularity measures’ profiles of the run depicted
in the mosaic, i.e., the one that achieved Emin among the 1000 runs using K = 6000.
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Fig. 9. Distributions from Example 3 for N = 1000 with K = 6000: ECDFs and histograms
of regularity measures for the 1000 hybrid runs as well as for the 100000 runs of P-L-BFGS(20,20).
Further details on these measures are given in Table 3.
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NAVIGATING THE ENERGY LANDSCAPE OF CVTs A1547

Table 1
Statistics of Example 1 for N = 973 with 100 runs of our hybrid method using K = 6000; the

values Emin − 1, Rminε , Hmin as well as Eref − 1, Rrefε , Href are boldfaced.

Hybrid Lloyd LBFGS PLBFGS
X∗0 X∗1 X∗2 X∗3 X∗4 X∗5 X∗6 X∗7 X∗8 X∗9

〈E − 1〉 0.00574 0.00488 0.00435 0.00401 0.00377 0.00356 0.00342 0.00328 0.00316 0.00309 0.00807 0.00790 0.00789
σE−1 0.00075 0.00087 0.00095 0.00105 0.00113 0.00116 0.00116 0.00121 0.00123 0.00124 0.00082 0.00082 0.00082
max 0.00737 0.00641 0.00626 0.00625 0.00582 0.00613 0.00529 0.00606 0.00565 0.00517 0.01102 0.01116 0.01114
min 0.00321 0.00173 0.00137 0.00135 0.00062 ≈1e-14 ≈1e-14 ≈1e-14 ≈1e-14 ≈1e-14 0.00383 0.00287 0.00349
f∗E−1 0.00 0.04 0.10 0.15 0.19 0.23 0.26 0.28 0.33 0.36 - - - - - - - - -
〈Rε〉 66.71 71.76 76.94 76.88 78.22 79.48 80.22 81.11 81.81 82.33 50.42 51.56 51.63
σRε 5.01 5.57 6.06 6.69 7.05 7.33 7.34 7.83 7.90 7.96 5.99 5.98 5.98
max 83.55 90.33 95.58 93.73 97.73 100 100 100 100 100 79.44 85.81 82.01
min 56.11 61.56 62.79 61.15 66.49 63.20 68.65 63.51 67.52 69.68 31.55 26.92 28.57

1− f∗Rε 0.00 0.02 0.08 0.12 0.15 0.19 0.20 0.21 0.24 0.25 - - - - - - - - -
〈H〉 90.72 91.98 92.66 93.11 93.38 93.69 93.85 94.08 94.23 94.35 88.26 88.38 88.39
σH 1.51 1.60 1.76 2.00 2.15 2.23 2.34 2.52 2.59 2.60 1.46 1.47 1.47
max 96.09 96.71 99.17 98.97 99.58 100 100 100 100 100 94.65 96.30 95.68
min 87.05 89.31 89.92 89.92 90.33 89.72 90.33 90.13 90.33 90.54 82.52 81.91 81.91

1− f∗H 0.00 0.01 0.05 0.10 0.14 0.16 0.16 0.20 0.22 0.21 - - - - - - - - -

Table 2
Statistics of Example 2 for N = 2029 with 100 runs of our hybrid method using K = 8000.

Hybrid Lloyd LBFGS PLBFGS
X∗0 X∗1 X∗2 X∗3 X∗4 X∗5 X∗6 X∗7 X∗8 X∗9

〈E − 1〉 0.00559 0.00482 0.00445 0.00423 0.00397 0.00379 0.00370 0.00357 0.00342 0.00335 0.00802 0.00784 0.00783
σE−1 0.00047 0.00053 0.00053 0.00046 0.00047 0.00050 0.00054 0.00054 0.00059 0.00065 0.00057 0.00057 0.00057
max 0.00659 0.00598 0.00567 0.00548 0.00529 0.00515 0.00511 0.00493 0.00473 0.00518 0.00985 0.01013 0.01034
min 0.00401 0.00361 0.00301 0.00304 0.00245 0.00249 0.00202 0.00176 0.00176 0.00150 0.00572 0.00485 0.00523
f∗E−1 0.08 0.53 0.77 0.93 0.99 0.98 0.98 0.98 1.00 0.99 - - - - - - - - -
〈Rε〉 67.41 72.06 74.25 75.58 77.10 78.23 78.75 79.63 80.44 80.93 50.75 51.98 52.03
σRε 3.12 3.42 3.41 2.90 2.93 3.17 3.37 3.33 3.61 4.02 4.17 4.15 4.15
max 77.62 81.27 84.22 82.65 85.36 85.60 88.12 90.58 90.53 92.65 67.12 72.10 71.21
min 61.60 64.31 65.94 67.12 68.45 68.85 69.29 70.08 72.15 69.09 37.16 35.18 35.97

1− f∗Rε 0.07 0.50 0.73 0.90 0.97 0.97 0.98 0.99 1.00 0.99 - - - - - - - - -
〈H〉 90.99 92.04 92.61 92.90 93.32 93.57 93.77 93.95 94.19 94.33 88.38 88.50 88.50
σH 0.89 0.96 1.01 0.89 0.91 0.95 0.99 0.97 1.09 1.21 0.99 1.01 1.01
max 93.39 94.48 95.66 95.56 95.46 96.05 96.15 96.64 96.64 98.02 92.70 93.49 93.00
min 88.71 89.94 89.74 90.04 91.22 91.42 90.93 91.03 92.11 90.93 85.11 84.42 84.22

1− f∗H 0.00 0.06 0.21 0.29 0.42 0.61 0.64 0.68 0.78 0.80 - - - - - - - - -

Table 3
Statistics from Example 3 with N = 1000 and K = 6000: 1000 runs of our hybrid method versus

the comparative algorithms. The values Emin − 1, Rminε , Hmin as well as Eref − 1, Rrefε , Href

are boldfaced.

Hybrid Lloyd LBFGS PLBFGS
X∗0 X∗1 X∗2 X∗3 X∗4 X∗5 X∗6 X∗7 X∗8 X∗9

〈E − 1〉 0.00597 0.00516 0.00469 0.00437 0.00412 0.00392 0.00374 0.00358 0.00346 0.00333 0.00848 0.00790 0.00791
σE−1 0.00068 0.00075 0.00083 0.00092 0.00099 0.00106 0.00113 0.00117 0.00121 0.00126 0.00080 0.00081 0.00081
max 0.00822 0.00710 0.00686 0.00631 0.00643 0.00628 0.00628 0.00592 0.00610 0.00622 0.01106 0.01142 0.01116
min 0.00297 0.00161 7.40e-4 5.96e-4 6.26e-4 5.91e-4 5.82e-4 5.50e-4 5.27e-4 5.50e-4 0.00466 0.00349 0.00289
f∗E−1 0.000 0.009 0.030 0.058 0.114 0.143 0.188 0.227 0.262 0.283 - - - - - - - - -
〈Rε〉 65.32 70.05 72.93 74.76 76.26 77.43 78.47 78.48 80.24 81.03 47.77 51.57 51.51
σRε 4.67 4.96 5.42 5.93 6.33 6.78 7.19 7.50 7.75 8.06 5.79 5.90 5.87
max 86.20 93.60 98.20 98.20 98.20 98.20 98.20 98.20 98.40 98.30 74.59 82.50 88.09
min 50.50 57.60 57.50 62.30 62.30 63.50 62.70 64.40 63.30 62.60 27.89 28.30 30.10

1− f∗Rε 0.000 0.004 0.017 0.034 0.048 0.074 0.103 0.145 0.166 0.192 - - - - - - - -
〈H〉 90.42 91.50 92.15 92.56 92.91 93.22 93.50 93.73 93.95 94.16 87.71 88.38 88.37
σH 1.38 1.50 1.64 1.74 1.89 2.04 2.19 2.32 2.42 2.53 1.42 1.44 1.44
max 97.20 98.60 99.60 99.60 99.60 99.60 99.60 99.60 99.60 99.60 94.00 95.79 96.79
min 86.80 87.00 87.80 88.60 89.20 88.80 89.20 88.80 89.40 89.20 82.59 82.00 82.00

1− f∗H 0.001 0.003 0.019 0.029 0.042 0.061 0.079 0.112 0.138 0.161 - - - - - - - -

Table 4
Statistics out of 100 hybrid method runs from Example 4 with N = 2000 and K = 8000.

Hybrid Lloyd LBFGS PLBFGS
X∗0 X∗1 X∗2 X∗3 X∗4 X∗5 X∗6 X∗7 X∗8 X∗9

〈E − 1〉 0.00572 0.00500 0.00462 0.00433 0.00418 0.00402 0.00395 0.00377 0.00368 0.00355 0.00842 0.00784 0.00786
σE−1 0.00043 0.00044 0.00053 0.00057 0.00056 0.00060 0.00059 0.00061 0.00060 0.00060 0.00057 0.00057 0.00057
max 0.00671 0.00582 0.00584 0.00586 0.00552 0.00581 0.00523 0.00533 0.00520 0.00551 0.01051 0.01013 0.01034
min 0.00471 0.00345 0.00256 0.00196 0.00226 0.00195 0.00197 0.00193 0.00191 0.00204 0.00585 0.00511 0.00495
f∗E−1 0.04 0.42 0.75 0.88 0.93 0.97 0.99 0.99 0.99 0.99 - - - - - - - - -
〈Rε〉 66.70 71.17 73.43 75.27 76.12 76.95 77.46 78.60 79.03 79.85 48.21 51.95 51.82
σRε 2.97 2.80 3.47 3.49 3.51 3.67 3.65 3.73 3.72 3.69 4.12 4.15 4.18
max 73.70 81.65 86.65 89.85 87.90 89.90 90.00 90.10 89.85 89.45 65.80 72.54 71.95
min 60.00 66.05 64.70 65.85 66.80 65.90 69.25 69.65 70.45 67.75 33.55 35.39 35.75

1− f∗
Rε 0.02 0.25 0.63 0.83 0.91 0.90 0.94 0.96 0.97 0.99 - - - - - - - - -

〈H〉 90.75 91.77 92.40 92.85 93.15 93.37 93.46 93.74 93.88 94.07 87.84 88.48 88.45
σH 0.84 0.91 1.01 1.03 1.03 1.09 1.05 1.10 1.08 1.06 1.01 1.01 1.02
max 92.40 94.70 95.95 96.40 96.50 96.40 96.40 96.50 96.65 97.00 91.70 93.50 93.30
min 88.90 89.80 90.00 90.10 90.00 90.40 90.50 91.10 91.90 91.10 83.90 84.00 83.90

1− f∗H 0.00 0.04 0.10 0.23 0.33 0.38 0.44 0.58 0.56 0.72 - - - - - - - - -
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Table 5
Statistics out of 100 hybrid method runs from Example 5 with N = 3000 and K = 8000.

Hybrid Lloyd LBFGS PLBFGS
X∗0 X∗1 X∗2 X∗3 X∗4 X∗5 X∗6 X∗7 X∗8 X∗9

〈E − 1〉 0.00577 0.00499 0.00462 0.00443 0.00427 0.00412 0.00396 0.00380 0.00368 0.00361 0.00842 0.00782 0.00786
σE−1 0.00044 0.00044 0.00047 0.00049 0.00056 0.00057 0.00057 0.00380 0.00053 0.00060 0.00057 0.00047 0.00047
max 0.00678 0.00587 0.00566 0.00547 0.00528 0.00530 0.00529 0.00519 0.00533 0.00540 0.01051 0.00985 0.00986
min 0.00425 0.00318 0.00314 0.00245 0.00199 0.00179 0.00208 0.00231 0.00218 0.00219 0.00585 0.00583 0.00568
f∗E−1 0.44 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - - - - - - - - -
〈Rε〉 66.41 71.15 73.42 74.52 75.518 76.44 77.38 78.32 79.03 79.53 48.21 52.12 51.89
σRε 2.97 2.83 2.97 3.20 3.60 3.57 3.54 3.31 3.34 3.72 4.12 3.42 3.42
max 76.93 82.63 82.06 85.96 89.30 90.36 89.23 87.66 88.53 87.53 65.80 66.13 67.20
min 60.40 65.10 66.40 67.83 69.00 69.40 69.53 70.33 69.23 67.80 33.55 38.36 38.46

1− f∗Rε 0.40 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - - - - - - - - -
〈H〉 90.67 91.79 92.35 92.70 92.95 93.18 93.44 93.72 93.97 94.11 87.84 88.53 88.46
σH 0.94 0.86 0.89 0.98 1.09 1.12 1.10 1.03 1.05 1.14 1.01 0.83 0.83
max 93.76 95.40 95.00 96.53 97.20 97.53 97.26 96.73 96.93 96.73 91.70 92.06 92.73
min 88.66 90.00 90.66 90.66 91.00 91.00 90.86 91.46 91.00 90.86 83.90 85.20 85.13

1− f∗H 0.03 0.17 0.34 0.45 0.60 0.64 0.76 0.81 0.89 0.89 - - - - - - - - -

Table 6
Statistics out of 100 hybrid method runs from Example 6 with N = 4000 and K = 12000.

Hybrid Lloyd LBFGS PLBFGS
X∗0 X∗1 X∗2 X∗3 X∗4 X∗5 X∗6 X∗7 X∗8 X∗9

〈E − 1〉 0.00535 0.00474 0.00441 0.00424 0.00404 0.00396 0.00380 0.00376 0.00375 0.00368 0.00833 0.00781 0.00786
σE−1 0.00033 0.00036 0.00039 0.00038 0.00040 0.00042 0.00042 0.00046 0.00047 0.00048 0.00041 0.00040 0.00040
max 0.00626 0.00545 0.00517 0.00507 0.00502 0.00486 0.00486 0.00472 0.00479 0.00499 0.00989 0.00956 0.00946
min 0.00448 0.00389 0.00338 0.00321 0.00314 0.00300 0.00268 0.00255 0.00240 0.00228 0.00645 0.00584 0.00601
f∗E−1 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - - - - - - - - -
〈Rε〉 69.11 72.61 74.64 75.75 76.93 77.44 78.43 78.72 78.66 79.15 48.84 52.21 51.86
σRε 2.24 2.36 2.51 2.49 2.50 2.65 2.66 2.93 2.83 2.94 2.96 2.96 2.95
max 75.25 78.15 81.15 82.50 82.55 84.15 84.60 86.87 87.27 88.22 61.65 66.02 65.40
min 61.75 67.85 69.75 70.12 71.17 71.80 71.52 73.17 72.40 71.57 38.25 40.12 40.25

1− f∗Rε 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - - - - - - - - -
〈H〉 91.28 92.19 92.74 92.98 93.34 93.49 93.79 93.85 93.87 93.96 88.00 88.57 88.45
σH 0.64 0.73 0.77 0.78 0.75 0.77 0.76 0.79 0.77 0.83 0.72 0.72 0.72
max 92.90 93.90 94.60 95.30 95.10 95.52 95.40 95.95 96.30 96.60 91.30 92.00 91.60
min 89.35 90.65 91.35 91.15 91.45 91.75 91.80 92.20 91.90 91.65 85.50 85.59 85.60

1− f∗H 0.16 0.53 0.80 0.91 0.98 0.99 0.99 1.00 0.99 0.98 - - - - - - - - -

Table 7
Correlation ratios % for each method from the PCVT data presented in Examples 1–6.

Ex Hybrid
Lloyd LBFGS PLBFGS

X∗0 X∗1 X∗2 X∗3 X∗4 X∗5 X∗6 X∗7 X∗8 X∗9
1 1.0621 1.0924 1.0838 1.0675 1.0550 1.0687 1.0674 1.0581 1.0523 1.0578 1.0750 1.0663 1.0666
2 1.0691 1.0594 1.0732 1.1228 1.1250 1.1451 1.1594 1.1924 1.1515 1.1035 1.0817 1.0688 1.0683
3 1.0636 1.0717 1.0746 1.0744 1.0667 1.0605 1.0561 1.0555 1.0476 1.0457 1.0822 1.0671 1.0678
4 1.0995 1.0690 1.0646 1.0964 1.0759 1.0649 1.0743 1.0806 1.0960 1.0849 1.0869 1.0692 1.0673
5 1.0644 1.0608 1.0752 1.0490 1.0382 1.0230 1.0389 1.0449 1.0455 1.0430 1.0820 1.0689 1.0679
6 1.0566 1.0586 1.0742 1.0803 1.0724 1.0736 1.0602 1.0447 1.0508 1.0449 1.0842 1.0688 1.0685

Fig. 10. Scatter plots of E versus H and E versus Rε displaying the same data as Figures 9
(a)–(f) from Example 3.D
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6. Deterministic versus stochastic. In this section we present evidence of
both positive and negative aspects of the fully deterministic nature of our method vis-
à-vis stochastic alternatives. For this we start by comparing our MACN algorithm
with the global Monte Carlo Method (MCM ) presented in [33] and we finish the
section by considering variants of centroidal dislocations to ratify our use of MACN-
δ.
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0

1

2

3

4

5

6

7

8
10

-3

0 5 10 15 20

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Fig. 11. Comparison of Q = 10 stages of MACN (K = 6000) and 24 stages of MCM for
N = 1000. Left: Averages 〈E − 1〉 over 1000 runs are shown with joint markers while minimums
achieved are isolated ones. Right: The energy of the PCVTs obtained for the respective runs that
first achieved the lowest recorded value Emin − 1 = 5.27e-4.

MACN versus MCM . We implemented the MCM method for N = 1000 with
the parameter values used for constant densities in [33]; the results along with the
MACN data from Example 3 of section 5 are summarized in Figure 11. We first
depict the energy averages 〈E − 1〉 and minimums obtained over 1000 runs, and we
also show the energy of each PCVT obtained during two runs, respectively achieving
Emin − 1 = 5.27e-4 at the earliest iteration.

It becomes clear from these statistics that our method has a lower probing number
than the comparative stochastic approach; e.g., Figure 11 (right) shows we need to
compute 9 versus 24 PCVTs to achieve the same low energy basins of attraction as
MCM.

Moreover, as already noted in section 3, a crucial advantage of our method is
the simple tuple {Q,K} of parameters to adjust compared to the more complex set
{K,T0, Tk, h} used by MCM (note that K serves a different purpose in each method).
On the other hand, MCM benefits from having a substantially lower computation
time. This is due to the fact that: (1) a quasi-Newton method is used instead of
Lloyd’s method and (2) the lack of preconditioning spares a total of K ×Q iterations
of complexity O(N log(N)) compared to MACN ; thus making MCM still desirable
for applications where fast computation time is critical.

Random direction versus MACN motions. As defined in (1.3), the value
of δ is crucial since it has the peculiarity of making our perturbation stage preserve
a certain regularity in the structure of the tessellation. However, the direction of
the perturbation seems to be of primary importance compared to the step size when
the latter is fixed. To gain insight on this matter, we define three variants of our
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perturbation step:

1. Inspired by the relation between δ and the intrinsic length-scale of the regular
hexagonal lattice discussed in section 4, the first variant consists of moving
away from the closest neighbor by the length-scale proper to each cell in the
PCVT. Precisely, the perturbation follows

(6.1) xi ← xi +
|Vi|
|∂Vi|

xi − xj∗i
||xi − xj∗i ||

, i = 1, . . . , N.

2. The next variant contemplates δ as in (1.3) but chooses a random neighbor
xj , j ∈ Ni, to move away from, thus not necessarily being the closest one.

3. Finally, we consider each generator moving by the distance δ and at a random
angle θi ∈ [0, 2π) taken from the uniform distribution.

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

10
-3

Fig. 12. Comparison in the energy performance of the original MACN-δ step and its three
variants across stages of our hybrid method with N = 1000 and K = 6000. The joint markers
represent averages while the isolated ones represent minima over 100 runs.

Figure 12 illustrates how close the performance of our variants of the MACN -
δ step are from one another but with particular distinction of the random angle
θi perturbation, being then of some reassurance that our original neighbor-guided
dislocation of PCVTs is better suited than some random search in a δ-vicinity.

7. Closing remarks and future directions. We have introduced and assessed
a simple deterministic method for navigating the energy landscape of CVTs in two
dimensions. This deterministic coupling algorithm (i) only has two degrees of free-
dom, (ii) shows remarkable robustness with respect to the increasing nonconvexity
of the energy as N grows larger, (iii) statistically allows us to systematically obtain
configurations closer to the ground state compared to the current state-of-the-art de-
terministic methods, and (iv) finds energetically comparable results to the leading
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stochastic method while needing fewer CVT computations (lower probing number).
We also introduced the isoperimetric ratio via Rε as an indicator of low energy CVTs.

We point out that while we prioritized simplicity of the method in this paper, the
algorithm’s performance could be further improved by the following: (i) using initial
quasi-random distributions, (ii) replacing Lloyd’s block with other gradient based de-
scent methods that satisfy Wolfe conditions, and most importantly (iii) by introducing
a suitable decay in the sequence {Kq}Q−1

q=0 (possibly adapted to {E(X∗q)}
Q−1
q=0 ). The

point made is that even with the crude tunings made on Kq ≡ K in section 5, the
resulting regularity measures are remarkable.

It would be natural to explore our global method in two different settings. First,
explore our algorithm on the 3D cubic torus wherein we expect similar comparative
results with the appearance of the BCC lattice and truncated octahedron Voronoi
cells. Second, explore our algorithm on the 2-sphere. As we previously mentioned
in the introduction, work in progress shows that our algorithm works well on the
2-sphere, systematically obtaining configurations closer to the ground state. Of par-
ticular interest on the sphere is the nature of the ground state. For certain values
of N , for example N = 32, the folklore suggests that optimality is tied to the soccer
ball configuration: hexagons except for exactly 12 regular pentagonal defects. Our
results on the 2-sphere as well as structural results of the ground state are forthcom-
ing. We note, however, that in the extension of our method to other manifolds the
increased complexity of the underlying computation of the Voronoi tessellation and
centroids needs to be compensated by reducing the product K × Q. In particular,
time tractability will be at the cost of energy efficiency.

A different related question is the inclusion of an underlying inhomogeneous prob-
ability density ρ over Ω wherein the energy (1.2) takes the form F (X) =

∑N
i=1

∫
Vi
||y−

xi||2 ρ(y) dy. However, here it is unclear how to choose the distance δ in the MACN
annealing step. In order to gain better insight on how to tackle this generalized prob-
lem, we strive to cast both our MACN iterations as a low order approximation of
some yet-to-be-determined gradient flow involving the Voronoi energy.
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Appendix A. Explicit pseudo-code for the P-L-BFGS method.

Algorithm A.1 P-L-BFGS(M,T ).
Prior definitions: to ease notation we define at each iteration k

sk := X(k+1) −X(k), yk := DE(X(k+1))−DE(X(k)),

ρk :=
1

y>k sk
, and H(k)

0 :=
s>k−1yk−1

y>k−1yk−1
I

Input: (i) initial iterate X(0); (ii) integer parameters M and T ; (iii) tolerance tol
for convergence

set k = 0
set diff=Inf
while diff > tol do

set q = DE(X(k))

1st L-BFGS update
for i = k − 1 : −1 : k −M do

ai = ρis
>
i q

q ← q − aiyi
end for

Redirect search direction
if k mod T = 0 then

construct preconditioner matrix Ãk and solve the system Ãk r = q
else

construct H(k)
0 and set r = H

(k)
0 q

end if

2nd L-BFGS update
for i = k −M : k − 1 do

r ← r + si(ai − ρiy>i r)
end for

set descent direction p(k) = −r
update iterate X(k+1) = X(k) + α(k)p(k), where α(k) is a step length satisfying
the strong Wolfe conditions

if k > M then
erase the tuple {sk−M ; yk−M}
compute and store {sk; yk}

end if

diff = ||DE||/N
k ← k + 1

end while

Output: X∗, a stable local minimizer of E and its corresponding PCVT and PDT
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