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Abstract. We present and analyze a fast algorithm for directly computing measures of general-
ized Voronoi regions associated with generators of arbitrary codimension. The algorithm consists of
solving one eikonal equation to construct a kernel-based operator whose iteration accumulates mass
along the closest generator. In particular, the algorithm does not require the computation of the
Voronoi diagram or the gradient of the solution to the eikonal equation. The algorithm is shown to be
first order and converge very quickly. By discretizing the distance to the generators on the grid (and
not the generators themselves), very accurate geometric information is used even for coarse grids.
Several examples are presented, including the computation of the population influence associated
with the Los Angeles County highway system. The method is also one of the key ingredients for
the fast computation of centroidal Voronoi tessellations (CVTs) of general rigid objects (e.g., rigid
curves and surfaces) in higher dimensions. We present a few simple examples of these generalized
CVTs.
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1. Introduction. In this article, we present and analyze an algorithm for di-
rectly computing measures of generalized Voronoi regions. Let Ω ⊂ R

d be a bounded
domain and Γ1, . . . ,Γn ⊂ Ω a fixed collection of subsets of Ω with codimension in
{1, . . . , d}. We call the sets Γ1, . . . ,Γn generators. Each generator has a correspond-
ing generalized Voronoi region, which is simply the set of points in the domain that
are closer to that generator than to any other generator. We assign the points that
are equidistant to two or more generators via a tie-breaking rule. More precisely, we
define the generalized Voronoi region, Vi, as follows:

Vi :=
{
x ⊂ Ω

∣∣∣ dist(x,Γi) ≤ dist(x,Γj) for j ∈ {1, . . . , n} \ {i}, i < j
}
,

where

dist(x,Γi) : = inf
y∈Γi

|x− y|.

The generalized Voronoi diagram associated with the generators is the set of points
which are equidistant to two or more generators, i.e.,

∪i�=j (∂Vi ∩ ∂Vj) .
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COMPUTING MEASURES OF GENERALIZED VORONOI REGIONS A793

In the special case where each generator is a singleton, the regions correspond to the
well-studied Voronoi regions which comprise a Voronoi diagram or Voronoi tessella-
tion.

Voronoi diagrams [26, 36, 15] have been the subject of intense study in computa-
tional geometry. For a collection of points, the Voronoi diagram consists of straight
line segments. Efficient algorithms for generating the Voronoi diagram are readily
available (see [4] for a survey). Thus measures associated with each polygonal region
can be computed efficiently.

For the planar case where generators are not points (instead, they are open or
closed curves), much work has been done to produce efficient algorithms to compute
the generalized Voronoi diagram. Algorithms exist for various types of planar input
curves (linear and circular arcs [50], rational curves [13], circles or additively weighted
points [24, 25, 14], and NURBS curves [42]; see also [1, 2, 8, 7]). Additionally, there
has been work to speed up computation of the generalized Voronoi diagram using
the GPU, first by [18]. This algorithm becomes computationally intensive for general
curves; more recently, a jump flooding algorithm on the GPU has been proposed to
compute the generalized Voronoi diagram of planar curves efficiently [51]. In this
algorithm, the curves are discretized on the computational grid, and the general-
ized Voronoi diagram can be recovered accurately for a large grid. Due to memory
constraints, a three-dimensional analogue of this algorithm on the GPU is not yet
feasible.

In fact, for generators which are surfaces in three dimensions, efficient algorithms
for computing the generalized Voronoi diagram are far less developed. Algorithms
exist only for simple geometrical ansatzes. For three-dimensional spheres, the gener-
alized Voronoi diagrams have been calculated in [22, 3, 16]. These generalized Voronoi
diagrams in R

3 have applications in the analysis of proteins and other molecular struc-
tures [23, 39]. The generalized Voronoi diagrams in R

3 of planes and cylinders have
also been considered in [16]. The generalized Voronoi diagram is far more complicated,
even for curved generators in the plane (cf. Figure 1).

In the following sections, we propose a method to compute integrals over gen-
eralized Voronoi regions. As a motivation, we outline an algorithm for explicitly
calculating the Voronoi diagram for any generators in any dimension and describe in
detail the computational complexities involved. Due to the preventative complexity of
this calculation, the integration method we propose does not require the generalized
Voronoi regions to be explicitly computed. This allows our method to work efficiently
for general curves and surfaces.

Definition 1.1. Given a function μ ∈ L1(Ω), we define the measure wi associ-
ated with the ith generator as follows:

(1.1) wi :=

∫
Vi

μ(x) dx.

Our goal is as follows:

Given Ω, generators Γi, and an integrable function μ, compute wi without
finding the generalized Voronoi regions Vi explicitly.

This paper describes a numerical integration algorithm to achieve this goal. Given
the ubiquitous nature of the problem, there are many potential applications where
the fast computation of such measures is important. For example, one particular
application comes from geographic and urban planning wherein μ denotes a population
density: Given a collection of hospitals (points) or highways/subway lines (curves),
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A794 L. J. LARSSON, R. CHOKSI, AND J.-C. NAVE

these measures give the fraction of the population which lives closest to the respective
hospital or highway/subway line (cf. section 5.2).

While the method proposed here should be considered as a stand-alone method,
a very important and natural application is the centroidal Voronoi tessellation (CVT)
of rigid bodies. See [11, 12] for a survey of the literature on CVT for point generators.
Indeed, let us use the CVT of rigid bodies to motivate why this goal is so important.
Calculating a CVT for general rigid bodies in two and three dimensions has largely
remained open (see [33] for a method to compute CVTs for nonrigid line segments
and graphs, and [17] for an extension of Lloyd’s method [32] to shapes in R

2).
What exactly is involved in finding a CVT of a collection of rigid bodies? To

this end, suppose we are given curves or surfaces Γi ⊂ Ω which, by rotation and/or
translation, we wish to optimally distribute throughout Ω in the sense that they are
“best centered” within their Voronoi region. If the generators are points, then we
wish to find a placement of the points which has the property that the points are
also the centroids of their associated Voronoi regions. For general generators, we seek
to find a configuration of the generators which minimizes the CVT energy (cf. [11]).
To define this energy, let us assume the location of the ith generator Γi is entirely
determined by a location vector and an angle vector. For example, for line segments,
the location vector is the midpoint, whereas for spheres, it is the center. Let X denote
the vector of location coordinates and α the vector of angles. To obtain a CVT of
the rigid shapes, {Γi}ni=1, one must find the locations X and angles α that minimize
the following energy:

(1.2) CVT energy: F (X,α) =

n∑
i=1

∫
Vi(X,α)

dist2(y,Γi) dy.

A key observation is that in order to minimize the CVT energy, for example, via
gradient descent or quasi-Newton iteration, one does not need to find the Voronoi
regions Vi, but rather one needs to evaluate integrals of certain functions over the Vi,
i.e., evaluate suitable measures of Vi.

In this paper we present and analyze an algorithm for computing measures of
generalized Voronoi regions which bypasses the explicit calculation of the Voronoi
diagram. Rather, it relies on the iteration of a Markov kernel operator until the input
density is accumulated in a neighborhood of the generators. This transforms the
problem completely: instead of integrating a density over a priori unknown regions,
we evolve the input density to be able to integrate over known regions. Our algorithm

• solves an eikonal equation (cf. (3.2)) once;
• uses the eikonal solution to construct a Markov kernel operator (cf. (3.1) and
(3.7)) whose application to an input density moves mass towards the closest
generator;
• iterates the operator until all mass from the input density is accumulated in
a fixed neighborhood of the generators;
• computes wi by integrating around this neighborhood.

Recently Saye and Sethian [40, 41] treated generalized Voronoi regions for tracking
multiple interacting and evolving regions in complex multiphase physical systems. We
note that while their goals and results are different, they use similar tools to tackle
the interface-tracking problem.

We remark that the eikonal solution φ gives a distance function associated to the
closest generator. Given that the spirit of our algorithm is to move mass towards the
closest generator, one can naturally see the analogue with a gradient flow associated
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COMPUTING MEASURES OF GENERALIZED VORONOI REGIONS A795

Fig. 1. The generalized Voronoi diagram and the points in the domain that are equidistant to
the same generator (in dashed lines). Along these dashed lines, the gradient of the distance function
to the generators is discontinuous. The generators consist of three curves (in bold) and two points.

with φ. However, at no point do we need the explicit calculation of ∇φ. The disconti-
nuity set of ∇φ is not a priori known and can be larger than the generalized Voronoi
diagram. Figure 1 illustrates this point, as the set along which ∇φ is discontinuous
includes points where the closest distance is attained by more than one point on the
same generator.

Thus the main novelties of our algorithm are as follows:
• It solves a fundamental geometric problem: how to efficiently integrate func-
tions over generalized Voronoi regions.
• It applies in any space dimension and to any finite collection of generators
consisting of sets of arbitrary codimension.
• It requires one solution φ of an eikonal equation associated with all the gener-
ators, and never requires the computation of the generalized Voronoi diagram.
It also does not require the explicit calculation of the gradient ∇φ.
• The generators themselves are not discretized on the computational grid;
instead the distance to the generators (the eikonal solution) is discretized on
the grid. This geometric information can be precisely calculated (to machine
precision using [46]) even for coarse grids.
• The method encompasses one of the basic steps needed to find CVTs of rigid
bodies in R

d.
The paper is organized as follows: We first discuss the direct approach to this

problem, that is, computing the Voronoi diagram explicitly, and then integrating over
the obtained regions. In particular, we write out an explicit algorithm to calculate
these boundaries and describe exactly where the computational inefficiencies arise.
Next, we introduce our integration algorithm and address how we approximate the
true measures of the generalized Voronoi regions. We then introduce the compu-
tational algorithm and provide error estimates. For notational purposes alone it is
often convenient to write out the details of the numerical scheme in R

2; however, we
stress that the computational method and the analysis of the method are valid in any
spatial dimension. We end with several applications in R

2 and R
3 (sections 5.2 and

5.4), including a few results for CVTs of circles (in R
2) and spheres (in R

3). How-
ever, we emphasize that we show these examples simply to motivate and showcase
our method—the detailed and comprehensive application of this integration scheme
to compute the CVT of rigid bodies is not the purpose of this article, and will be
addressed elsewhere.
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A796 L. J. LARSSON, R. CHOKSI, AND J.-C. NAVE

2. The direct approach. We first motivate our approximation algorithm by
presenting a more direct approach, and by detailing key inefficiencies we aim at cir-
cumventing. To calculate the measures directly, the boundaries of the generalized
Voronoi regions are calculated, and then the input density is integrated over each of
these regions to obtain the measure of each generator.

2.1. Computing the boundaries. There are only very special cases where the
generalized Voronoi diagram, ∪ni=1∂Vi, is available explicitly.1 In most cases, the
Voronoi diagram must be computed numerically. To compute the diagram, we first
obtain a distance function, φi, corresponding to each generator Γi, i = 1, . . . , n. Using
these distance functions, we present an algorithm below (Algorithm 1) to find n level
set functions φ∂V i

, i = 1, . . . , n, whose zero contours give the Voronoi diagram. For
each i ∈ {1, . . . , n}, the distance functions, φi, can be obtained by solving the eikonal
equation with Γi as the initial contour. The generalized Voronoi boundaries are simply
the sets where φ∂V i

= 0 for i = 1, . . . , n.

Algorithm 1 Calculate boundary level set functions φ∂V i
, i = 1, . . . , n.

for i = 1 : n do
Solve |∇φi| = 1 in Ω,
such that φi(Γi) = 0.

end for
for i = 1 : n do
φ∂V i

(x)← min
j∈{1,...,n}\{i}

φj(x)− φi(x);

end for

2.1.1. The algorithm. Let us look a little closer at this algorithm. For any fixed
generator, Γi, the zeros of the functions φji (where φji = φi−φj), j ∈ {1, . . . , n}\ {i},
are all candidates for the Voronoi boundaries. These functions are zero at any point
that is equidistant to both Γi and Γj . For each i, the algorithm picks the true
solution by computing a minimum among all candidates, φji, j ∈ {1, . . . , n} \ {i}. A
one-dimensional example of this algorithm is presented in Figure 2. For i = 1, the
candidates for the Voronoi boundary are φ21 and φ31. By taking the minimum of
these two functions, we calculate the Voronoi bisector to be at x = 0.3, which is the
correct solution. The same characterization is true in higher dimensions.

2.1.2. Computational complexity. There are very few generators that admit
an explicit distance function. One example is circular generators: the distance func-
tion is simply a cone (see Appendix A). For more general generators, it is necessary
to solve an eikonal equation, using the generator as the initial contour. For each
generator, one distance function is required. Assume there are M gridpoints in each
of d dimensions. That results in n computations of O(Md) complexity (using a fast
sweeping method [47, 52, 53, 5]), or O(Md log(Md)) (using a fast marching method
[44, 43, 37, 20]). For each i, all distance functions may be required to calculate φij

for every j (a curve in R
2 or surface in R

3 can intersect all other generators). Then
the computational time (assuming the fast sweeping method) is

O(Md)(n2 + n).

As the dimension and number of generators grow, this becomes prohibitively slow.

1See Appendix A for the equation of the bisectors in the case of circular and spherical generators.
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φ
φ

φ

φ

φ

φ

φ

1ii

Fig. 2. (a) Level set functions φ1(x), φ2(x), φ3(x) with generators at x = 0.2, 0.4, 0.8. (b) φj1,
j = 2, 3, corresponding to the level sets in panel (a).

2.2. Integration. The calculation is not complete until we integrate the density
function over the generalized Voronoi regions. First find the points where φ∂V i

= 0
for all i = 1, . . . , n. Then connect the points using interpolation, and integrate over
each region. This can be done in a variety of ways, and the accuracy of the approach
will depend on the accuracy of the eikonal solver that was used to obtain the distance
functions φi, and the method used for obtaining the zeros of the φ∂V i .

3. Our approach. We now introduce a method for approximating the measures
which does not require explicit knowledge of region boundaries. This avoids the
computational challenges addressed in the previous section. We call any function a
density if it is nonnegative and integrates to one over the domain Ω. The main idea is
simple: instead of computing an integral over each generalized Voronoi region, Vi, to
obtain the measure, accumulate the input density to a neighborhood of the generator,
and then integrate the accumulated mass over this neighborhood. This shifts the
problem from integrating over an unknown region to integrating over a known region.
The key to this approach is to accumulate the input density in the correct way: we
do this by iterating a Markov operator until a stationary density is reached.2 The
Markov operator accurately moves the input density towards the closest generator,
albeit with some controlled error in a neighborhood of the region boundaries.

Our goal is to integrate any μ ∈ L1. To this end, we use the decomposition

μ = c+μ+ − c−μ−,

where c+ =
∫
Ωmax(μ(x), 0) dx, c− =

∫
Ω max(−μ(x), 0) dx, μ+(x) = 1

c+ max(μ(x), 0),

and μ−(x) = 1
c− max(−μ(x), 0). Without loss of generality, we perform the analy-

sis on densities, and all results carry over to integrable functions under the above
decomposition by the linearity of the constructed operator.

3.1. The Markov kernel operator. Let D denote the set of densities on Ω,
that is, all nonnegative μ ∈ L1(Ω) such that ‖μ‖L1(Ω) = 1. A linear operator P :
L1(Ω) → L1(Ω) is called a Markov operator if PD ⊂ D. A Markov kernel operator
has even more structure. It is defined in terms of a stochastic kernel, which is a
nonnegative function k : Ω× Ω→ R that satisfies∫

Ω

k(x, y) dx = 1, a.e. y ∈ Ω.

2See [27, 28] for more information on Markov operators and stochastic kernels.
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The stochastic kernel is deterministic; it is termed stochastic in the same spirit as a
stochastic matrix. In fact, by discretizing a stochastic kernel appropriately, a stochas-
tic matrix is obtained. We define the Markov kernel operator3 P by its action on
μ ∈ D:

(3.1) P [μ](x) =

∫
Ω

k(x, y)μ(y) dy.

We iterate such a Markov kernel operator to accumulate the input density to
neighborhoods around the generators, and finally integrate over these known regions
to obtain the associated measure. In the following we show how this accumulation is
encapsulated in the stochastic kernel and present its construction.

3.2. The stochastic kernel. The kernel is constructed by first solving for the
minimum distance from points x ∈ Ω to any generator—this is the solution to the
eikonal equation with the generators as initial contours. In particular, we first solve
the following eikonal equation: Find the function φ : Ω→ R such that

|∇φ| = 1 in Ω,
(3.2)

φ = 0 on ∪ni=1 Γi.

We will transform this solution, φ, by changing the sign and scale, to put the
generators at a local maximum and convert the “ridges” into “valleys.” We also scale
the solution to be in the range of [0, 1]. In doing so, the kernel will ensure that the
input density moves towards the generators. To this end, we define the transformed
eikonal solution φ̄ : Ω→ [0, 1] as

(3.3) φ̄(x) := 1− |φ(x)|
maxy∈Ω(|φ(y)|) .

Let α > 0. We may now define the function that assigns highest value to the generators
and converts the ridges of the eikonal solution to valleys. We call this function q :
Ω→ [0, 1− α] and define it as follows:

(3.4) q(x) =

{
φ̄(x) if φ̄(x) < 1− α,

1− α otherwise.

The parameter α is introduced to guarantee that the stochastic kernel is not
singular. This will be discussed further in the following sections. The construction of
q(x) is depicted in Figure 3 for one spatial dimension.

To define the stochastic kernel we require some notation. Let Bε(x) be the closed
ball of radius ε > 0 around a point x ∈ Ω. Moreover, let β > 0; this is another
parameter that ensures the regularity of the kernel. We will first define k̃(x, y) and
then normalize it to be stochastic (to preserve the L1 norm of the input density, μ).
The form of k̃(x, y) is

(3.5) k̃(x, y) =

{
q(x)− q(y) + β for y ∈ Bε(x) and q(x) ≥ q(y),

0 otherwise.

3This equation was obtained by looking at a discrete-time Markov pure jump process whose
initial position is generated by μ. P [μ](x) describes the probability that the process is at the point
x in Ω after one time step.
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Fig. 3. (a) Distance from generators at x = 0.1, 0.4, 0.85. (b) Minimum of distances from
generators, i.e., the eikonal solution φ(x). (c) Transformed eikonal solution, φ̄(x). (d) Truncated
function q(x) with α = 0.2.

This function is positive only for x and y within a small distance ε of one another.
We do not allow the input density to evolve nonlocally, as we would like the density
to accumulate around the closest generator. We constrain the function k̃(x, y) to be
positive only where q(x) is greater than or equal to q(y): that is, k̃(x, y) > 0 when
point x is closer to the generator than point y is. In this way k̃(x, y) will help to push
the input density towards the closest generator. The stochastic kernel is

kΓ(x, y) =
k̃(x, y)∫

u∈Ω
k̃(u, y) du

(3.6)

=
(q(x) − q(y) + β) {q(x)≥q(y)} Bε(x)

(y)∫
u∈Ω

(q(u)− q(y) + β) {q(u)≥q(y)} Bε(y)
(u)du

.(3.7)

By construction the kernel in (3.7) is stochastic and the associated Markov kernel
operator sends mass towards the closest generator. In fact, we show in the next
section that when P is iterated, mass will accumulate in a neighborhood of the clos-
est generator. The constant β ensures there is positive density associated to mov-
ing to a location equally close to a generator. This parameter should be chosen to
be much smaller than ε. If α and ε are chosen such that 2α < ε, then the set
A := {x : q(x) ≥ 1 − α} is invariant. This means that once mass moves to A, it
may never move outside of this set. We will give these properties a detailed look in
the next section. In Figure 4, we show two different stochastic kernels for the one-
dimensional case. In (a), the generator is at x = 0.5. To the left of the generator,
the density will move only towards x = 0.5. To the right of the generator, the den-
sity moves back towards x = 0.5. Moreover, once the density has jumped to a point
of distance α or less from the generator, the point will stay in the invariant region
{y : |0.5− y| ≤ α}.

In Figure 4(b), we return to the example from Figure 3, where we have three
generators at x = 0.1, 0.4, 0.85. This is to show how the kernel behaves near the
boundary of the Voronoi region. Similar to part (a), we have density moving in the
positive direction to the immediate left of a generator, and in the negative direction
to the immediate right of a generator. The α-neighborhoods of each generator are
invariant sets, where the density gets trapped. Moreover, at the Voronoi boundary (at
x = 0.25, 0.625), there is symmetric probability of moving towards either generator.
Table 1 summarizes the role of each parameter in kΓ.
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A800 L. J. LARSSON, R. CHOKSI, AND J.-C. NAVE

Fig. 4. Stochastic kernels for a one-dimensional problem on Ω = [0, 1]: The probability of
moving from a point x in the domain to another point y in the domain. (a) One generator at
x = 0.5, α = 0.067, ε = 0.14. (b) Three generators, as in Figure 3, α = 0.06, ε = 0.1267. In both
cases, β = 5.5× 10−4.

Table 1

Summary of parameters from stochastic kernel.

Parameter Description Values

ε The maximum distance mass ε > 0
can move in one iteration

α Controls the size of the invariant 0 ≤ α ≤ ε/2
set around each generator

β Allows density to move to 0 ≤ β � ε
areas equally close to a generator

3.3. Stationary densities and convergence results. In this section, we prove
some results concerning the kernel operator. In particular, we discuss invariant sets,
how the Markov kernel operator accumulates the input density, and how this allows
us to calculate these measures.

3.3.1. Invariant sets and stationary densities. We define a set A ⊂ Ω to
be invariant under P if for any μ ∈ D concentrated on A,

∫
x∈A

P [μ](x)dx = 1.

Let Γα
i :=

{
x ∈ Ω

∣∣ |x − y| ≤ α for some y ∈ Γi

}
denote the α-neighborhood of the

generator Γi for i = 1, . . . , n.
Proposition 3.1. The sets Γα

i are invariant under P .
Proof. Let μ be a density that is concentrated on Γα

i . Then

P [μ](x) =

∫
y∈Ω

kΓ(x, y)μ(y) dy =

∫
y∈Γα

i

kΓ(x, y)μ(y) dy.

For any y ∈ Γα
i , the stochastic kernel reduces to

kΓ(x, y) =

{
(
∫
u∈Γα

i ∩Bε(y)
du)−1 for x ∈ Γα

i ∩Bε(y),

0 otherwise.
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So we have∫
x∈Γα

i

P [μ](x) dx =

∫
x∈Γα

i

(∫
y∈Γα

i

kΓ(x, y)μ(y) dy

)
dx

=

∫
x∈Γα

i

(∫
y∈Γα

i

x∈Γα
i ∩Bε(y)∫

u∈Γα
i ∩Bε(y)

du
μ(y) dy

)
dx

=

∫
y∈Γα

i

∫
x∈Γα

i ∩Bε(y)
dx∫

u∈Γα
i ∩Bε(y)

du︸ ︷︷ ︸
=1

μ(y) dy(3.8)

=

∫
y∈Γα

i

μ(y) dy = 1.

In (3.8), Fubini’s theorem was applied.
We define a stationary density of P to be any density μ such that P [μ](x) = μ(x).

Before looking at how the operator P moves density to the invariant sets, we first
consider the special case of point generators. As the following theorem shows, in this
case the operator P has stationary densities of the following form:

γi(x) = vα,i Γα
i
,

where vα,i =
( ∫

Γα
i
dx
)−1

and Γα
i
denotes the indicator function of the set Γα

i .

Theorem 3.2. Let Γi = {zi} for some point zi ∈ Ω for all i = 1, . . . , n. Further
let 2α ≤ ε, and for i = 1, . . . , n, let w̃i ≥ 0 and

∑n
i=1 w̃i = 1. Then

P
[ n∑

i=1

w̃iγi(y)
]
(x) =

n∑
i=1

w̃iγi(x).

Proof. Since P is a linear operator, it suffices to show

(3.9) P [ Γα
i
(y)](x) =

∫
Ω

kΓ(x, y) Γα
i
(y) dy = Γα

i
(x).

We consider separately the cases x �∈ Γα
i and x ∈ Γα

i . For x �∈ Γα
i and y ∈ Γα

i ,
kΓ(x, y) = 0. This is because the stochastic kernel kΓ(x, y) never sends mass from a
higher q(y) to a lower q(x): kΓ(x, y) = f(x, y) {q(y)≤q(x)}(x, y). On the other hand,
if y ∈ Γα

i , then q(y) = 1 − α. However, for x �∈ Γα
i , q(x) < 1 − α. Thus for x �∈ Γα

i ,
kΓ(x, y) = 0, and hence P [ γi(y)](x) = 0 on this set.

Suppose x ∈ Γα
i . Then for any y ∈ Γα

i ,

|x− y| = |x− zi + zi − y| ≤ |x− zi| + |zi − y| ≤ 2α ≤ ε.

That is, x ∈ Γα
i and y ∈ Γα

i imply y ∈ Bε(x), and in particular the kernel is nonzero.
For x ∈ Γα

i ,

P
[

Γα
i
(y)
]
(x) =

∫
Ω

kΓ(x, y) Γα
i
(y) dy

=

∫
Ω

(q(x)− q(y) + β) {q(y)≤q(x)} Bε(x)
(y)∫

u∈Ω
(q(u)− q(y) + β) {q(y)≤q(u)} Bε(y)

(u)du
Γα
i
(y) dy

=

∫
Γα
i

β∫
Γα
i
(u) β du

dy = 1.
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In the last line, we used the fact that for x, y ∈ Γα
i , q(x) = q(y) = 1 − α, and that

q(y) ≤ q(u) if and only if u ∈ Γα
i . Note that for u ∈ Γα

i , u is at most a distance of ε
from y.

Remark. Theorem 3.2 holds for any positive constants w̃i that sum to one. We
will show that for a given input density μ and a given ε, the Markov operator P will
approach a stationary density such that the constants w̃i approximate the general-
ized Voronoi measures, wi. For nonpoint generators, we will demonstrate that the
measures are similarly approximated by∫

Γα
i

Pm[μ](x) dx

for m large enough so that the density has concentrated on the invariant sets. Here
Pm denotes the mth iterate of P .

3.3.2. Convergence to invariant sets. In this section we will show that given
any starting density, μ ∈ L1(Ω), P will accumulate μ onto the invariant sets. That is,

lim
m→∞

∫
Ω\∪Γα

i

Pm[μ](x)dx→ 0.

First we show that any density concentrated on an annulus around the invariant set
Γα
i will have some mass transported to the invariant set in one iteration of P . To this

end, denote the annulus around the invariant set by R := Γα+ε
i \ Γα

i , that is,

R = {x ∈ Vi | α < |x− y| ≤ α+ ε for y ∈ Γi}.
Lemma 3.3. Let μ ∈ D be supported on R and strictly positive. Then∫

Ω|Γα
i

P [μ](x)dx <

∫
R

μ(x)dx.

Proof. Consider how P acts on μ:

P [μ](x) =

∫
y∈Bε(x)

kΓ(x, y)μ(y)dy

=

∫
y∈Bε(x)∩R

kΓ(x, y)μ(y)dy

= {x∈Γα
i }

∫
y∈Bε(x)∩R

kΓ(x, y)μ(y)dy + {x/∈Γα
i }

∫
y∈Bε(x)∩R

kΓ(x, y)μ(y)dy

= {x∈Γα
i }

∫
y∈Bε(x)∩R

kΓ(x, y)μ(y)dy︸ ︷︷ ︸
=:I

+ {x∈R}

∫
y∈Bε(x)∩R

kΓ(x, y)μ(y)dy.

In the last line, we used the fact that for x /∈ Γα
i , the kernel is zero outside R (in that

region q(y) > q(x)). We claim I > 0. To this end, note that Bε(x)∩R �= ∅ since R is
adjacent to Γα

i . For y ∈ R and x ∈ Γα
i , q(y) < 1 − α = q(x) and hence kΓ(x, y) > 0.

On the other hand, the support of μ is R, and for y ∈ R, μ(y) > 0. Thus I > 0 and
hence ∫

Ω\Γα
i

P [μ](x)dx = 1−
∫
Γα
i

P [μ](x)dx < 1 =

∫
R

μ(x)dx.

The lemma is proved.
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As a corollary we have that this is true for any annulus a certain distance d from
the invariant set: In one iteration of P , the support will include a region at a distance
d− ε from the invariant set.

Corollary 3.4. Let μ be a positive density with support on the (nontrivial) set
R := Vi ∩ (Γα+d

i \ Γα+d−ε
i ). Then∫

Ω\Γα+d−ε
i

P [μ](x)dx <

∫
R

μ(x)dx.

In fact in each iteration, the support will include regions a distance ε closer to
the invariant set. Therefore we have the following result.

Proposition 3.5. If μ is a density concentrated on a set whose minimum dis-
tance to Γα

i is d, then supp(Pm[μ]) ∩ Γα
i �= ∅ for all m ≥ �dε �.

Before proving the main convergence result, we recall the following definitions.
Definition 3.6. A sequence of measures μm is called tight if for any ε > 0 there

is a compact subset Kε ⊂ Ω such that for all m ∈ N, μm(Kε) > 1− ε.
Definition 3.7. We say a sequence of measures μm converges weakly to a

measure μ∗ if for all bounded continuous functions g,∫
Ω

g(x)μm(dx)→
∫
Ω

g(x)μ∗(dx).

In this case we write μm
w→ μ∗.

We now wish to prove that as m → ∞, Pm[μ] loses its support on Ω \ ∪Γα
i .

For the proof presented below, we will require the application of P to potentially
singular measures. Our current definition of P is based upon the kernel kΓ which
is discontinuous because of the cut-off {|x−y|≤ε}. By including an annular region of
thickness λ � ε around Bε(y) which linearly decreases in the radial direction to 0,
we obtain an analogous kernel k̄Γ(x, y) which is continuous in x and y. Recall k̃(x, y)
from (3.5). We define this linearly decreasing function to be

klin(x, y) =
k̃(y + ε x−y

|x−y| , y)

λ

∣∣∣∣(x − y)
(
1− ε+ λ

|x− y|
)∣∣∣∣ .

Then the modified kernel has the following form:

k̄Γ(x, y) =
k̃(x, y) {|x−y|≤ε} + klin(x, y) {ε<|x−y|≤ε+λ}∫

u∈Ω
k̃(u, y) {|u−y|≤ε} + klin(u, y) {ε<|u−y|≤ε+λ} du

.

By taking λ to be smaller than the grid size, P and P̄ yield the same algorithm. Hence
we may carry out the convergence analysis for P̄ instead of P . In particular, Lemma
3.3, Corollary 3.4, and Proposition 3.5 hold for P̄ and any probability measure μ.

Theorem 3.8. Let μ ∈ L1(Ω) be a density. Then

lim
m→∞

∫
Ω\∪Γα

i

P̄m[μ](x)dx→ 0.

Proof. Let

a0 =

∫
Ω\∪Γα

i

μ(x)dx . . . am =

∫
Ω\∪Γα

i

P̄m[μ](x)dx.
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By Lemma 3.3, Corollary 3.4, and Proposition 3.5, {am}∞m=0 is a nonincreasing
sequence: Indeed, if P̄m[μ] has support in an α+ε-neighborhood of any generator, then
by Lemma 3.3, am+1 < am. If P̄m[μ] doesn’t have support in an α+ ε-neighborhood,
but has support in an α+ ε+ d-neighborhood of some generator, then am+�d/ε < am
by Corollary 3.4 and Proposition 3.5. If P̄m[μ] has no support outside ∪Γα

i , we’re
done, because am ≡ 0.

Since 1 ≥ am ≥ 0 for all m, the sequence {am}∞m=0 converges. Our goal is to show
that this sequence converges to zero. Suppose this is not the case. Then there is some
c ∈ (0, 1) such that

lim
m→∞ am = c.

Because P̄ is a Markov operator on a closed, bounded domain, the sequence of mea-
sures P̄m[μ] is tight. By Prokhorov’s theorem [6], for every tight sequence of measures,
there is a weakly convergent subsequence. So for some mk, k ∈ N,

P̄mk [μ]
w→ μ∗.

Note here that a priori we cannot guarantee that the measure μ∗ is absolutely
continuous with respect to Lebesgue measure. For this reason we are working with
P̄ . Since limm→∞ am = c, we know that

∫
Ω\∪Γα

i
μ∗(dx) = c. So there is some set in

Ω \ ∪Γα
i to which μ∗ assigns mass. We claim that for any l ∈ N,

(3.10) P̄mk+l[μ]
w→ P̄ l[μ∗].

First let l = 1. Then for any g ∈ C(Ω \ ∪Γα
i ), it suffices to prove that

(3.11)

∫
g(x)k̄Γ(x, y)dx is a continuous function of y,

as then ∫
g(x)P̄ [P̄mk [μ]](x)dx =

∫
g(x)

∫
k̄Γ(x, y)P̄

mk [μ](y)dy dx

=

∫ (∫
g(x)k̄Γ(x, y)dx︸ ︷︷ ︸
∈C(Ω\∪Γα

i )

)
P̄mk [μ](y)dy

→
∫ (∫

g(x)k̄Γ(x, y)dx

)
μ∗(dy)

=

∫
g(x)P̄ [μ∗](dx).

But (3.11) holds true by the continuity of k̄Γ. Since the induction step is analogous,
we have (3.10). But now μ∗ assigns positive probability on Ω \ ∪Γα

i . By Proposition
3.5 (applied to P̄ and any probability measure μ∗), for l ≥ � d

ε+λ�+1 ∈ N, P̄ l[μ∗] will
send some of this mass to the generators. Therefore

∫
Ω\∪Γα

i
P̄ l[μ∗](dx) < c. But this

is a contradiction and therefore c = 0.
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3.3.3. Approximating the measures. In this section we demonstrate the er-
ror induced from iterating the Markov operator.

Theorem 3.9. Given a positive function μ ∈ L1+δ(Ω), then

lim
m→∞

∫
Γα
i

Pm[μ](x) dx = wi +O
(
ε

δ
1+δ

)
.

Proof. Consider the generalized Voronoi region Vi. Define

V
ε/2
i = {x ∈ Ω | |x− y| < ε/2, y ∈ ∂Vi}.

Furthermore for m = 1, 2, . . . , define km(x, y) inductively by

k1(x, y) = kΓ(x, y), . . . km(x, y) =

∫
kΓ(x, z)km−1(z, y)dz,

and note that Pm[μ] =
∫
Ω
km(x, y)μ(y) dy. Moreover, let μ(x) = μ1(x)+μ2(x)+μ3(x),

where supp(μ1) ⊂ Vi \V ε/2
i , supp(μ2) ⊂ V

ε/2
i , and supp(μ3) ⊂ (Vi ∪V ε/2

i )c. Then for
any m,∫

Γα
i

Pm[μ](x) dx =

∫
Γα
i

Pm[μ1](x) dx +

∫
Γα
i

Pm[μ2](x) dx +

∫
Γα
i

Pm[μ3](x) dx︸ ︷︷ ︸
=0

=

∫
Γα
i

Pm[μ1](x) dx︸ ︷︷ ︸
=:I1

+

∫
Γα
i

Pm[μ2](x) dx.︸ ︷︷ ︸
=:I2

For y ∈ supp(μ1), kΓ(x, y) will only be nonzero for x ∈ supp(μ1). Thus, supp(P
m[μ1])

⊂ Vi \ V ε/2
i . But we know that all mass converges to the invariant sets Γα

i , so
supp(Pm[μ1])→ Γα

i as m→∞. Since this mass is conserved,

lim
m→∞ I1 =

∫
Vi\V ε/2

i

μ1(x) dx.

Now consider I2:

I2 =

∫
Γα
i

(∫
Ω

km(x, y)μ(y)
V

ε/2
i

(y) dy

)
dx

=

∫
Ω

μ(y)
V

ε/2
i

(y)

∫
Γα
i

km(x, y) dx dy

≤
∫
Ω

μ(y)
V

ε/2
i

(y) dy

≤ ‖μ‖1+δ

(∫
Ω

(
V

ε/2
i

(y)
) 1+δ

δ

dy

) δ
1+δ

≤ ‖μ‖1+δ measure(V
ε/2
i )

δ
1+δ

= O
(
ε

δ
1+δ

)
.
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Here we use Fubini’s theorem, Hölder’s inequality, and the facts that km is a stochastic

kernel and that the measure of the set V
ε/2
i is O(ε). Similarly,

∫
Vi∩V

ε/2
i

μ(x)dx ≤ ‖μ‖1+δ measure
(
Vi ∩ V

ε/2
i

) δ
1+δ

= O
(
ε

δ
1+δ

)
.

Therefore,

lim
m→∞

∫
Γα
i

Pm[μ](x) dx = lim
m→∞(I1 + I2)

=

∫
Vi\V ε/2

i

μ(x) dx+O(ε δ
1+δ )+

∫
Vi∩V

ε/2
i

μ(x) dx−
∫
Vi∩V

ε/2
i

μ(x) dx

=

∫
Vi

μ(x) dx +O
(
ε

δ
1+δ

)
= wi +O

(
ε

δ
1+δ

)
.

The theorem is proved.
Corollary 3.10. For μ ∈ L∞(Ω),

lim
m→∞

∫
Γα
i

Pm[μ](x) dx = wi +O(ε),

that is, bounded densities will yield a linear approximation of the true measure.
Remark. For d = 2, μ = |Ω|−1, and point generators,

lim
m→∞

∫
Γα
i

Pm[μ](x) dx = wi +O(ε2).

For point generators, the region boundaries ∂Vi are piecewise linear. In the region

V
ε/2
i , the operator P sends mass to the “wrong” generator. However, when the

region boundaries are linear and μ = 1, this error is canceled symmetrically. For

any point y ∈ V
ε/2
i , there is a symmetric point y′ ∈ V

ε/2
i such that y′ ∈ Vj and∫

Vj
P [δy]dx =

∫
Vi

P [δy′ ]dx. To find y′, simply reflect y perpendicularly in ∂Vi. This

symmetry degrades in ε-neighborhoods of the corners of ∂Vi. However, the corners
are O(ε2). For point generators, this symmetry is apparent in higher dimensions as
well.

3.4. Remark on non-Euclidean distances. In the development of the Markov
operator, Euclidean distance was used (through φ(x)). The Euclidean distance func-
tion can be replaced by any distance function. To use a different notion of distance,
one need only change φ, for example, by solving a different eikonal equation. Us-
ing the algorithm of [46], �p distance and multiplicatively weighted distances—i.e.,
φ(x) = min i

(
ai dist(x,Γi)

)
, where ai are positive constants—can be used.

D
ow

nl
oa

de
d 

04
/1

7/
14

 to
 1

32
.2

06
.1

50
.6

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPUTING MEASURES OF GENERALIZED VORONOI REGIONS A807

4. Numerical scheme. In this section we discuss the numerical discretization
of the Markov operator, the algorithm to compute the measures, and error estimates.

4.1. Computational domain. We now discuss how to calculate these measures
on a discrete computational grid. Because we are interested in the integral of Pm[μ]
on the invariant set, we construct a finite volume method. By using a finite volume
approach to discretize the Markov operator, we can explicitly deal with the singu-
larities in the kernel, as we are no longer working with the density, but rather the
integrated density. Therefore, we take α = 0, β = 0, and we set ε = h, for example.
In the previous sections, we carefully defined the stochastic kernel in terms of the
regularization parameters α and β, though we now set them to zero. This was for
ease of analysis: we first demonstrate that the operator P has invariant sets Γα

i . Then
it is clear that as α→ 0, the operator concentrates mass along singular sets. Because
we simply need the measure that limm→∞ Pm[μ] assigns to the invariant sets, compu-
tationally, we can set α, β = 0. Numerically, the discretized kernel is a left-stochastic
matrix: for any column that sums to zero, there must be a corresponding diagonal
value of one; these are exactly the grid points where mass accumulates, the invariant
sets. We present the discretization of the Markov operator in two dimensions for ease
of notation; however, we emphasize that the method is first order in any dimension
by the analogous calculations.

Because Ω ⊂ R
2 is a bounded domain, there exist R1, R2, R3, R4 ∈ R such that

Ω ⊂ [R1, R2] × [R3, R4]. We take R1, R2, R3, R4 such that [R1, R2] × [R3, R4] is the
smallest square covering Ω. Let h = R4−R3

N . Then the computational domain Ωh is
defined to be all pairs (xi, yj) of the following form:

xi = R1 + (i− 1)h, i = 1, . . . , N + 1,

yj = R3 + (j − 1)h, j = 1, . . . , N + 1.

For all functions previously defined on the bounded domain Ω, including the density
μ ∈ L1(Ω) and the kernel kΓ, we extend them by zero to all of the computational
domain.

4.2. Discretization and error analysis: One iteration. To obtain an iter-
ative scheme, we first approximate the kernel by a piecewise constant function, and
subsequently discretize all remaining integrals using the trapezoidal rule. We analyze
the error associated with one iteration, and then with multiple iterations.

4.2.1. Approximating the kernel. We approximate kΓ(x, y, u, v) by a piece-
wise constant function along each grid cell in (u, v). In particular, for (u, v) ∈
[xi, xi+1) × [yj , yj+1), we approximate the kernel kΓ(x, y, u, v) by its value at the
left lower endpoint,

(4.1) kΓ(x, y, u, v) = kΓ(x, y, xi, yj) +O(h).

Let ε = ch for c ≥ 1 ∈ Z (but c� N). We let Q
(1)
ij denote the mass moved to the

region [xi, xi+1) × [yj , yj+1) after one iteration and Q
(0)
ij the density integrated over
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A808 L. J. LARSSON, R. CHOKSI, AND J.-C. NAVE

the same gridbox:

Q
(1)
ij :=

∫ xi+1

xi

∫ yj+1

yj

P [μ](x, y)dy dx

=

∫ xi+1

xi

∫ yj+1

yj

(∫ xi+c

xi−c

∫ yj+c

yj−c

kΓ(x, y, u, v)μ(u, v) dv du

)
dy dx(4.2)

=

∫ xi+1

xi

∫ yj+1

yj

i+c−1∑
k=i−c

j+c−1∑
l=j−c

(
kΓ(x, y, xk, yl) +O(h)

)
Q

(0)
kl dy dx

=

i+c−1∑
k=i−c

j+c−1∑
l=j−c

∫ xi+1

xi

∫ yj+1

yj

kΓ(x, y, xk, yl) dy dx︸ ︷︷ ︸
=:Kijkl

Q
(0)
kl

+O(h)
∫ xi+1

xi

∫ yj+1

yj

∫ xi+c

xi−c

∫ yj+c

yj−c

μ(u, v) dv du dy dx︸ ︷︷ ︸
≤‖μ‖∞(2c+1)2h4O(h)

(4.3)

=

i+c−1∑
k=i−c

j+c−1∑
l=j−c

Kijkl Q
(0)
kl +O(h5).(4.4)

The summations and integrals above run from k = max(i − c, 1) to k = min(i +
c− 1, N − 1), and similarly for l, to remain in the computational domain. The kernel
is only nonzero for (x, y) and (u, v) within a distance ε = ch of each other. For
(x, y) ∈ [xi, xi+1) × [yj , yj+1), (u, v) is restricted to [xi−c, xi+c) × [yj−c, yj+c), which
is precisely the range of the inner integration.

In (4.4), Kijkl is an element of a sparse tensor, with at most (2c+1)2N2 nonzero
elements (out of N4). By (4.4), we see that iterating the discretized Markov operator
reduces to multiplying a sparse N2 ×N2 matrix (K) by an N2 × 1 vector (Q).

The error from assuming kΓ(x, y, u, v) is piecewise constant in (u, v) is O(h5)
under one iteration of the Markov operator. We must still discretize the integral of
the kernel and the integral of the input density; these integrals are discretized using
the trapezoidal rule.

4.2.2. Integrating the kernel. We construct the discretized kernel with ele-
ments

(4.5)

Kijkl =

∫ xi+1

xi

∫ yj+1

yj

kΓ(x, y, xk, yl) dy dx

=
(∫ xi+1

xi

∫ yj+1

yj

k0(x, y, xk, yl) dy dx︸ ︷︷ ︸
:=I1

)(∫ xk+c

xk−c

∫ yl+c

yl−c

k0(x, y, xk, yl) dy dx︸ ︷︷ ︸
:=I2

)−1
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COMPUTING MEASURES OF GENERALIZED VORONOI REGIONS A809

for i, j, k, l ∈ {1, . . . , N}. These integrals are computed using the trapezoidal rule.
Let K̂ijkl denote the discretized tensor element and define

Trap1 =
h2

4

(
k0(xi, yj, xk, yl) + k0(xi, yj+1, xk, yl)

)
+

h2

4

(
k0(xi+1, yj, xk, yl) + k0(xi+1, yj+1, xk, yl)

)
,

Trap2 =

k+c−1∑
r=k−c

l+c−1∑
p=l−c

h2

4

(
k0(xr , yp, xk, yl) + k0(xr , yp+1, xk, yl)

)

+

k+c−1∑
r=k−c

l+c−1∑
p=l−c

h2

4

(
k0(xr+1, yp, xk, yl) + k0(xr+1, yp+1, xk, yl)

)
.

Then I1 = Trap1 + O(h3) (see Appendix C).4 Similarly, I2 = Trap2 + O(h3). The
error from discretizing Kijkl using the trapezoidal rule is O(h3), that is,

∣∣∣ i+c−1∑
k=i−c

j+c−1∑
l=j−c

Kijkl Qkl −
i+c−1∑
k=i−c

j+c−1∑
l=j−c

K̂ijkl Qkl

∣∣∣
︸ ︷︷ ︸

=:E

≤ O(h3).

Observe that

E ≤
i+c−1∑
k=i−c

j+c−1∑
l=j−c

∣∣∣Kijkl − K̂ijkl

∣∣∣Qkl(4.6)

=

i+c−1∑
k=i−c

j+c−1∑
l=j−c

∣∣∣I1
I2
− Trap1

Trap2

∣∣∣Qkl(4.7)

=

i+c−1∑
k=i−c

j+c−1∑
l=j−c

∣∣∣I1 Trap2 − Trap1I2
Trap2 I2

∣∣∣Qkl(4.8)

≤
i+c−1∑
k=i−c

j+c−1∑
l=j−c

=O(h3)︷ ︸︸ ︷
|I1 − Trap1|

=O(h2)︷ ︸︸ ︷
|Trap2|+

=O(h2)︷ ︸︸ ︷
|Trap1|

=O(h3︷ ︸︸ ︷
|I2 − Trap2|

|Trap2 I2|︸ ︷︷ ︸
=Ch4

Qkl︸︷︷︸
=O(h2)

(4.9)

= O(h3).(4.10)

Once we have discretized the final integral and the integral of the input density, the
Markov operator will be fully discretized, and we can analyze the error accumulated
in the first step.

4.2.3. Integrating the input density. We must take the input density μ and
compute the mass matrix Q(0),

(4.11) Q
(0)
ij :=

∫ xi+1

xi

∫ yj+1

yj

μ(u, v) dv du.

4The error is different from the standard trapezoidal rule error because the limits of integration
depend on the grid size; see Appendix C for details.
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A810 L. J. LARSSON, R. CHOKSI, AND J.-C. NAVE

These integrals are also computed using the trapezoidal rule. Denote by Q̂
(0)
ij the

discretized mass function. Then

Q̂
(0)
ij =

h2

4

(
μ(xi, yj) + μ(xi, yj+1) + μ(xi+1, yj) + μ(xi+1, yj+1)

)
and Q

(0)
ij = Q̂

(0)
ij +O(h4) (see Appendix C). Therefore we have that

∣∣∣ i+c−1∑
k=i−c

j+c−1∑
l=j−c

K̂ijkl Q
(0)
kl −

i+c−1∑
k=i−c

j+c−1∑
l=j−c

K̂ijkl Q̂
(0)
kl︸ ︷︷ ︸

=Q̂
(1)
ij

∣∣∣ ≤ O(h4).

4.2.4. Error summary for the first iteration. For the first iteration, the
error obtained by discretizing the Markov operator is as follows:

∣∣∣Q(1)
ij − Q̂

(1)
ij

∣∣∣ ≤ ∣∣∣Q(1)
ij −

i+c−1∑
k=i−c

j+c−1∑
l=j−c

Kijkl Q
(0)
kl

∣∣∣
︸ ︷︷ ︸

=O(h5)

+
∣∣∣ i+c−1∑
k=i−c

j+c−1∑
l=j−c

Kijkl Q
(0)
kl −

i+c−1∑
k=i−c

j+c−1∑
l=j−c

K̂ijkl Q
(0)
kl

∣∣∣
︸ ︷︷ ︸

=O(h3)

+
∣∣∣ i+c−1∑
k=i−c

j+c−1∑
l=j−c

K̂ijkl Q
(0)
kl − Q̂

(1)
ij

∣∣∣
︸ ︷︷ ︸

=O(h4)

= O(h3).

After one iteration we retain third order accuracy.

4.3. Error analysis for m iterations. Assume that after m iterations of the
numerical scheme, the input density has concentrated on the invariant sets. Com-
putationally, we find m to be finite, and in fact O(N). See Appendix B for more
information on the number of iterations until convergence. The error after m itera-
tions is bounded as follows:

∣∣∣Q(m)
ij − Q̂

(m)
ij

∣∣∣ ≤ ∣∣∣Q(m)
ij −

i+c−1∑
k=i−c

j+c−1∑
l=j−c

Kijkl Q
(m−1)
kl

∣∣∣
︸ ︷︷ ︸

=:E1

+
∣∣∣ i+c−1∑
k=i−c

j+c−1∑
l=j−c

Kijkl Q
(m−1)
kl −

i+c−1∑
k=i−c

j+c−1∑
l=j−c

K̂ijkl Q
(m−1)
kl

∣∣∣
︸ ︷︷ ︸

=:E2

+
∣∣∣ i+c−1∑
k=i−c

j+c−1∑
l=j−c

K̂ijkl Q
(m−1)
kl − Q̂

(m)
ij

∣∣∣
︸ ︷︷ ︸

E3

.
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COMPUTING MEASURES OF GENERALIZED VORONOI REGIONS A811

The error E1 comes from assuming the kernel is piecewise constant in (u, v). As in
(4.3),

E1 = O(h)
∫ xi+1

xi

∫ yj+1

yj

∫ xi+c

xi−c

∫ yj+c

yj−c

Pm−1[μ] dv du dy dx.

However, Pm−1[μ] should be almost concentrated along the generators. In the case of
point generators, the maximum of the iterated density should be O(N2), as the mass
should be concentrated on n grid boxes of area h2 (recall that n is the number of
generators, which is independent of h). In the case of curved generators, the iterated
density should be O(N), as for each generator, the mass should be concentrated on
O(N) grid cells of area h2. Therefore,∫ xi+c

xi−c

∫ yj+c

yj−c

Pm−1[μ] dv du ≤
{ O(h) for curved generators,
O(1) for point generators.

And in particular,

E1 ≤
{ O(h4) for curved generators,
O(h3) for point generators.

The second error comes from discretizing the kernel using the trapezoidal rule. This
calculation is also analogous to the error in the first iteration, adjusting for the con-
centrated nature of Pm−1[μ]. As in (4.9),

E2 ≤
i+c−1∑
k=i−c

j+c−1∑
l=j−c

=O(h3)︷ ︸︸ ︷
|I1 − Trap1|

=O(h2)︷ ︸︸ ︷
|Trap2|+

=O(h2)︷ ︸︸ ︷
|Trap1|

=O(h3)︷ ︸︸ ︷
|I2 − Trap2|

|Trap2 I2|︸ ︷︷ ︸
=Ch4

Qkl︸︷︷︸
O(h) or O(1)

≤
{ O(h2) for curved generators,
O(h) for point generators.

The third error is as follows:

E3 =
∣∣∣ i+c−1∑
k=i−c

j+c−1∑
l=j−c

K̂ijkl Q
(m−1)
kl −

i+c−1∑
k=i−c

j+c−1∑
l=j−c

K̂ijklQ̂
(m−1)
kl

∣∣∣
≤

i+c−1∑
k=i−c

j+c−1∑
l=j−c

∣∣∣K̂ijkl

∣∣∣ ∣∣∣Q(m−1)
kl − Q̂

(m−1)
kl

∣∣∣ .
This error is the same order as the error of the previous iteration. Since that error will
always be dominated by the error from integrating the kernel using the trapezoidal
rule, in the final step, this error will be

E3 ≤
{ O(h2) for curved generators,
O(h1) for point generators.

4.3.1. Error summary for m iterations. After m iterations, when the mass
has concentrated on the generators, the error is∣∣∣Q(m)

ij − Q̂
(m)
ij

∣∣∣ ≤ { O(h2) for curved generators,
O(h1) for point generators.
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4.4. Obtaining the measures. Given Q̂(m) and the indices corresponding to
each generator, it only remains to sum the values of Q̂(m) along each generator
to obtain the approximated weights. Define Ii := {(j, k) | d((xj , yk),Γi) < h}.
These are the computational points which lie closest to the generator Γi. Then

w̃i =
∑

(j,k)∈Ii
Q̂

(m)
jk . Let the union of these sets be denoted I = ∪ni=1Ii.

4.4.1. Measures associated with curves. In the case of curved generators,
this summation will be over O(N) points, so an order of accuracy will be lost. The
error we obtain by discretizing the Markov operator is∣∣∣w̃i −

∑
(j,k)∈I

Q̂
(m)
jk

∣∣∣ ≤ ∑
(j,k)∈I

|Q(m)
jk − Q̂

(m)
jk |

= O(N)O(h2)

= O(h).

Finally, recall that the true measure was denoted wi. The error for curves between
the true measure and that obtained by numerically iterating the Markov operator is
first order: ∣∣∣wi −

∑
(j,k)∈Ii

Q̂
(m)
jk

∣∣∣ ≤ |wi − w̃i|︸ ︷︷ ︸
=O(h)

+
∣∣∣w̃i −

∑
(j,k)∈I

Q̂
(m)
jk

∣∣∣
︸ ︷︷ ︸

≤O(h)

= O(h).

Therefore the method is first order for curved generators.

4.4.2. Measures for points. In the case of point generators, Ii consists of one
or at most four gridpoints, which is a size O(1) set. Then

∣∣∣w̃i −
∑

(j,k)∈Ii

Q̂
(m)
jk

∣∣∣ ≤ 4 max
(j,k)∈Ii

|Q(m)
jk − Q̂

(m)
jk | ≤ O(h).

Moreover,∣∣∣wi −
∑

(j,k)∈Ii

Q̂
(m)
jk

∣∣∣ ≤ |wi − w̃i|︸ ︷︷ ︸
≤O(h2)

+
∣∣∣w̃i −

∑
(j,k)∈Ii

Q̂
(m)
jk

∣∣∣
︸ ︷︷ ︸

≤O(h)

≤ O(h).

Therefore the numerical method is first order for point generators as well. These
error rates are demonstrated in the next section on numerical results.

Remark. By the same reasoning, it is clear that this scheme is first order accurate
in any spatial dimension for generators of any codimension. So far in our discussion
on errors, we have not addressed the error induced by solving the eikonal equation
numerically. The error of the numerical scheme determines the error in the placement
of the Voronoi diagram. A first order numerical scheme should therefore result in
a first order error for the area of the generalized Voronoi regions, which does not
degrade the error rate of our scheme. The eikonal equation can be solved numerically
via the fast sweeping method or fast marching method (see [47, 52, 53, 5, 43, 44, 37];
see also [46, 20]).
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4.5. Algorithm. Implementing this iterative scheme to compute Voronoi mea-
sures involves five steps. The first is to solve the eikonal equation numerically, and
for that we use the fast sweeping method [52]. In the case of points and circles, the
eikonal solution is the minimum of conical surfaces, which can be computed exactly
(see Appendix A). Next, the probability transition tensor K̂ must be populated using
the trapezoidal discretization. Third, the input density must be integrated numeri-
cally (via the trapezoidal rule, exactly, or by any higher order quadrature scheme).
Fourth, the scheme must be iterated until the mass is accumulated on the generators.
For this, iteration is terminated after the mass outside the set I (all gridpoints in
an h-neighborhood of the generators) is less than some tolerance level. The tolerance
should be less than the accuracy divided by the number of gridpoints in I. For an idea
of the accuracy, see Figure 5(d). Finally, the measures are calculated by summing the
mass along the gridpoints closest to each generator. These five steps are summarized
in Algorithm 2.

Algorithm 2 Calculate approximate measures.

Given: a bounded domain Ω ⊂ Rd, a density μ, and generators {Γi}ni=1.
Set TOL, h.
Find gridpoints Ii := {(j1, . . . , jd) | d((xj1 , . . . , xjd),Γi) < h}.
1. Solve an eikonal equation:

a. Initialize φ(I), by interpolation, and set φ(Ωh \ I) =∞.
b. Solve eikonal equation for φ on Ωh (equation (3.2)).
c. Obtain the function q on Ωh (equation (3.4)).

2. Compute probability transition tensor K̂ from q (equation (4.5)).
3. Integrate μ along grid cells to obtain Q̂ (equation (4.11)).
4. Accumulate mass to I:
while ‖Q̂‖L1(I) < 1− TOL do

Q̂← K̂Q̂
end while
5. Obtain the measures:
for i = 1 : n do
w̃i =

∑
(j1,...,jd)∈Ii

Q̂j1,...,jd .
end for

4.6. Algorithm complexity. The algorithm that has been developed here to
evaluate integrals over generalized Voronoi regions is a convergent algorithm that
circumvents explicitly identifying the typically nonconvex generalized Voronoi regions.
The efficiency of the algorithm is in fact independent of the number of generators
(though h must be small enough for the asymptotic regime to be reached).

As for the algorithm’s complexity, Appendix B contains detailed numerical results
showing the computational time required to populate the discretized kernel, and the
number of iterations until convergence for the Voronoi and generalized Voronoi cases.
It is useful to emphasize that the basic idea behind evaluating these integrals is the
same regardless of dimension. Recall the procedure: Once the operator has been
iterated long enough (see criteria in Algorithm 2), the mass has accumulated on
gridpoints that lie in a neighborhood of generators. It is trivial to find these points,
so one only needs to perform a straight sum of these values. The task in three
dimensions is the same as that in two dimensions, with the difference being that the
gridpoints surrounding the generators live on a cubic lattice, and so on for higher
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dimensions. The overall complexity is then controlled primarily by the matrix-vector
multiplication required to iterate the discretized Markov operator. As demonstrated
in Appendix B, for N gridpoints in each of d spatial dimensions, the complexity
of the matrix-vector multiplication is O(Nd), and O(N) iterations are required for
convergence, yielding an overall complexity of O(Nd+1).

5. Numerical results. In this section we first provide numerical verification
that the numerical scheme is first order for the case of points, curves, and surfaces.
In each case, the density function is identically 1. For the case of curves and surfaces,
we use the calculations in Appendix A to compute these measures exactly. We then
give an application of the method with nonuniform density to the Los Angeles County
highway system. The method computes the fraction of population that lives closest to
each highway. Then we show moment computations in two and three spatial dimen-
sions, and we conclude with two examples of CVT, one in R

2 for circular generators,
and one in R

3 for spherical generators.

5.1. Error. Below we present the error rates for the numerical scheme in the
case of point, circular, and spherical generators.

The point generators are the white dots shown in Figure 5(a). We include the
standard Voronoi case (point generators) to complement the theoretical error rates
previously presented. The circular generators are the solid white lines in Figure 5(c),
and the spherical generators are the spheres in Figure 5(e). We use circular and
spherical generators to demonstrate the theoretical error rate in a case where the
generalized Voronoi diagram can be found and the measure of each region explicitly
calculated. The Voronoi diagram for the circular and spherical generators was calcu-
lated using the formulas of Appendix A. The scheme results in first order convergence
for both points, circles, and spheres.

5.2. Generalized Voronoi example in R
2 with nonuniform density: The

Los Angeles County Highway System. Next we compute the population in-
fluences (measures) of the highways in Los Angeles (L.A.) County. The influence
describes the fraction of population living closest to each highway in L.A. County,
and hence μ is simply the population density of L.A. The population density data
and influences are depicted in Figures 6(a) and 6(b).

The map tiles are from [45, 38]. The highway data and geographic boundary data
for L.A. County zip codes are from the U.S. Census Bureau [49] and is accurate as of
January 1, 2010. The population density for each L.A. county zip code is also from
the U.S. Census Bureau [48]. The highway data came in the form of latitude and
longitude coordinates. These coordinates were used as the initial contour for solving
the eikonal equation. The solution was obtained in a square domain, where the
population density was set to zero outside L.A. County; the grid size was h = 0.005.
From a purely qualitative perspective, the results are intuitive: there are more people
living near the larger interstate freeways, and fewer people living in the domain of
influence of the state highways. The numerical results are in Table 2.

5.3. Moments of generalized Voronoi regions in R
2 and R

3. To demon-
strate the algorithm further, we present examples in R

2 and R
3 where the generators

are nonconvex, are nonsymmetric, and have C0 boundaries. Let m0 denote the area
or volume of each region, and let m1 denote the center of mass. In the following
figures (Figures 7, 8, and 9), the dots represent the center of mass (m1) of their cor-
responding Voronoi region. The underlying contour plot is the minimum distance to
the generators.
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Fig. 5. Two- and three-dimensional convergence plots.

From this, it is possible to infer information about each generalized Voronoi re-
gion. The example in Figure 7 shows overlapping generators. This, coupled with the
nonconvexity of the shapes, creates generalized Voronoi regions that are quite com-
plicated. The color scale of the background distance plot highlights the shape of the
generalized Voronoi regions in the most crucial regions, while sacrificing resolution in
the corners of the domain.

The areas (zeroth moment) of each generalized Voronoi region along with the
center of mass (the first moments) are presented in Table 3; these correspond to the
shapes in Figure 7. The grid size used was h = 0.0033. Here, we present only the
zeroth and first moments, because they are more easily verified in the figures; however,
there is no obstacle to computing any higher moment.

In Figure 8, we present an example where the centers of mass of the generalized
Voronoi regions are located at the center of mass of each shape. The moments for
these regions are presented in Table 3. The grid size used here was h = 0.0033.
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Fig. 6. (a) Population density in L.A. County. (b) Fraction of L.A. County population living
closest to each highway.
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Table 2

Percent of population living closest to major L.A. highways.

Highway name Influence Highway name Influence

I-10 13.05% I-710 5.46%

I-5 12.41% I-605 4.67%

I-405 11.64% State Rte. 91 3.81%

I-210 10.53% State Rte. 170 3.21%

I-110 10.52% State Rte. 118 2.30%

U.S. 101 8.07% State Rte. 134 1.80%

State Rte. 60 5.78% State Rte. 2 0.97%

I-105 5.49% State Rte. 57 0.30%
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Fig. 7. Overlapping Γi.
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Fig. 8. Nonconvex Γi.

Fig. 9. Integration example in R2 with 50 generators.

In Figure 9, we present an example with 50 generators in Ω = [0, 1]2. The centers
of mass are displayed, and the distance function is displayed in the background as a
contour plot. The grid size was h = 0.005.

In R
3, an example of the volume integration in the case of spheres was already

presented (see Figure 5(e)). Another example with nonspherical generators is pre-
sented in Figures 10 and 11. In these examples, the grid size was h = 0.005, and the
domain was Ω = [0, 1]3.
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Table 3

Areas and centers of mass for Figures 7 and 8.

Moments for Figure 7 Moments for Figure 8

Gen. m0 m1 m0 m1

1 0.0556 (0.4060, 0.2476) 0.0908 (0.8295, 0.1334)

2 0.4677 (0.7607, 0.4983) 0.0293 (0.4508, 0.4614)

3 0.1156 (0.4396, 0.7205) 0.2329 (0.2083, 0.7365)

4 0.2042 (0.1724, 0.7106) 0.2705 (0.3144, 0.2079)

5 0.1569 (0.2271, 0.1582) 0.3765 (0.7381, 0.6550)

This example uses five bunnies of different sizes and three elephants. The gen-
eralized Voronoi regions generated by these shapes were produced using the direct
method (see Algorithm 1) for illustration purposes.

5.4. Application: Three-dimensional CVT of spheres. To extend the no-
tion of a CVT from the point-generator case, one must find a suitable energy to
minimize. In fact, we have already shown the form of this energy in (1.2). For an
elegant survey of algorithms to compute CVTs for points, see [11, 12]. Included in
these references, one will find many useful algorithms, including Lloyd’s method [32],
probabilistic algorithms [34, 21], a Newton–Lloyd method [10], multigrid methods
[9], as well as quasi-Newton algorithms [31] that offer superlinear convergence to a
minimum of the energy.

Historically, the problem of computing CVTs of points has been approached from
both implicit and explicit algorithmic perspectives. On the explicit side, the Voronoi
region of the point generators is computed exactly and used directly [32, 33]. However,
there are also very efficient implicit algorithms to compute CVTs, where no compu-
tation of the Voronoi regions is needed [21]. In this spirit, our current algorithm
can be likened to the latter algorithms, because the explicit calculation of the gen-
eralized Voronoi regions is not required. Interestingly, the method described here is
also very much an extension of the Lloyd and quasi-Newton minimization algorithms
for points [32, 33]—explicit methods. To accommodate a wide class of generators,
the exact computation of the generalized Voronoi regions is avoided. However, for
some of the curve primitives mentioned in the introduction, very accurate algorithms
exist for computing the generalized Voronoi diagram. In the case that CVT should
be required for such generators, the trade-off between the accuracy of using explicit
Voronoi regions and the computational efficiency and flexibility obtained through the
implicit approach can be studied in detail. This is left for future study.

The primary focus of this paper is for more general generators, and there has
been recent work in this direction. One extension of Lloyd’s algorithm in R

2 for
points was in the area of nonphotorealistic rendering [17]. The authors modified
Lloyd’s method to allow for the rotation of lines and polygons, and used the method
to generate stippled drawings. Their algorithm first projects the center of the shape
to the center of mass of the Voronoi region generated by the shape (analogous to the
original Lloyd’s method). Then the angle of inertia of the shape is rotated to match
the angle of inertia of the Voronoi region. This algorithm computes the zeroth, first,
and second moments of the Voronoi regions via a discrete summation over pixels using
the algorithm of [18]. The method gives an approximate CVT for shapes, although
the variational foundations of the algorithm were not explored.

Another algorithm to compute the CVT of line segments (and graphs) was pro-
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(a) Three-dimensional integration example

(b) Γ1 & Γ2 (c) m1 for Γ1 & Γ2

(d) Γ3 (e) m1 for Γ3

Fig. 10. Three-dimensional generators for the integration example, part I.

posed in [33]. Here, the line segments are not constrained to have a fixed length;
instead, both endpoints of each line segment are allowed to move to minimize the
CVT energy (with a regularization term). The energy is simplified by approximat-
ing each line by a sequence of points and using the point-based CVT energy as an
approximation. This gives a good approximation for a dense point sampling of each
segment, and reduces the integration to a summation of integrals over polygons. Our
example is more closely related to previous work in nonphotorealistic rendering [17],
as the shapes we optimize are not deformed as a result of the energy minimization. In
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(a) Γ6 (b) m1 for Γ6

(c) Γ4,Γ5,Γ7,Γ8 (d) m1 for Γ4,Γ5,Γ7, & Γ8

Fig. 11. Three-dimensional integration example, part II.

the upcoming example, we can minimize the CVT energy for spheres directly, without
using a point-based approximation of the energy.

5.4.1. CVT of spheres. We now describe the CVT framework to optimize the
placement of spheres. Assume we are working in a convex domain Ω ⊂ R

d, d = 2, 3.
Moreover, we are given a fixed set of n shapes {Γi}ni=1 which depend on the sphere
center xi (spheres are rotationally invariant, so there is no angle to account for). Let
X denote the (dn × 1)-dimensional vector of location coordinates. Each sphere is
parametrized by a radius, ri. Let μ be a density in L1(Ω).

To obtain a CVT of spheres {Γi}ni=1, one must find the locations X that minimize
the following energy:

(5.1) F (X) =

n∑
i=1

∫
Vi(X)

dist2(y,Γi)μ(y) dy.

The Voronoi region Vi depends on the location of Γi and all neighbors of Γi. We
emphasize this by writing Vi(X).

5.4.2. Energy gradient. To minimize the CVT energy (equation (5.1)), we use
a quasi-Newton method [35, 30]. Although it is possible to write down the second
derivatives of the energy function F , they include boundary integrals along the curved
Voronoi diagram generated by {Γi}ni=1. By using a quasi-Newton method, we only
need to compute first order derivatives. The L-BFGS algorithm is guaranteed to
converge when the energy F is twice continuously differentiable in a neighborhood of
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the minimizer, though it is known to converge even in cases where F is less regular
[29]. An analysis of the smoothness of the energy for spheres is beyond the scope of
this example.

To implement the quasi-Newton algorithm, we need to compute the first deriva-
tives of the energy F with respect to the locations, X. For each term in the summation
that comprises F , the domain of integration as well as the integrand depend on these
locations. The derivative of an integral with respect to its domain of integration is
given in Lemma 6.1 of [11], and it can be shown that the first derivative of F with

respect to x
(k)
i (the kth component of the location vector xi) is

(5.2)
∂F

∂x
(k)
i

=

∫
Vi

∂

∂x
(k)
i

dist2(y,Γi) μ(y) dy.

The manner in which the boundary integrals vanish in the case of rigid bodies
is analogous to the case of points. See [19] for the point-based energy derivative
calculations.

To calculate the energy derivatives, the derivatives of the squared distance func-
tion dist2(y,Γi) must be computed. The distance from any point y ∈ Ω to a sphere
Γi is given by dist(y,Γi) =

∣∣|y − xi| − ri
∣∣, where xi is the center of the sphere, and

ri its radius. This distance function can be used to obtain explicit equations for the
energy gradient with respect to the sphere’s center, xi:

∂F

∂x
(k)
i

=

∫
Vi

2
(
x
(k)
i − y(k)

)(
1− ri
|y − xi|

)
μ(y) dy.

When the distance is not available explicitly, one must approximate the integrand
numerically by appropriate derivatives of eikonal solutions. This requires additional
analysis and will be presented in a separate paper on the CVT of rigid shapes in R

3.

5.4.3. Numerical examples. The numerical simulations presented here use a
constant density, μ = 1. Starting with the configuration of circles in Figure 12(a),
L-BFGS was run with M = 20 for 30 iterations. Notice that this initial configuration
has overlapping generators. This type of configuration makes for complicated Voronoi
regions, but the integration remains simple using the method in this paper.

In each step of the optimization, a unit step length was tested first before the
line search algorithm was run. After 30 iterations, the configuration of circles became
distributed as in Figure 12(b). The energy and L2 norm of the energy gradient per
iteration have been plotted in Figures 12(c) and 12(d).

Similarly, in three dimensions, we began with the configuration of spheres in
Figure 13. After 30 L-BFGS iterations, the spheres were distributed as in Figure 14.
The beginning energy was 0.0424, and the final energy was 0.0144.

6. Summary. We have presented an efficient numerical scheme to compute the
measures of generalized Voronoi regions. The scheme is first order accurate and can
deal with generators of arbitrary codimension. This algorithm computes a fundamen-
tal geometric quantity. The utility of the scheme was demonstrated on applications
to urban planning and the CVT of spheres of different radii.
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Fig. 12. CVT of two-dimensional circles.

Fig. 13. Initial configuration. Fig. 14. After 30 iterations.

Appendix A. Example of analytically available region boundaries. It
is worth noting that in some cases the formulas for the boundaries of the general-
ized Voronoi regions are analytically available. In this example we consider circular
generators (see also [24, 25, 22]).

In the case of nonoverlapping circular generators in two dimensions, we can derive
an explicit formula for φij = 0. In this case,

φi(x, y) =
√
(x− xi)2 + (y − yi)2 − ri.

Solving for φij = 0 yields

(A.1) y =
−B ±√B2 − 4AC

2A
,
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where A,B, and C are defined as

A =

(
yj − yi
ri − rj

)2

− 1,

B =
(yj − yi)

(ri − rj)2

(
y2i − y2j + (x− xi)

2 − (x − xj)
2
)
+ yi + yj ,

C =

(
y2i − y2j + (x − xi)

2 − (x− xj)
2

2(ri − rj)
− (ri − rj)

2

)2

− (x− xj)
2 − y2j .

In (A.1), the positive or negative root is chosen such that φi(x, y) = φj(x, y). If there
is not one unique y value for each x, one should use the analogous expression for x as
a function of y. This equation was used to find the Voronoi diagram in Figure 5(c).
There, the generators are shown in solid white and the region boundaries are shown
in dashed black lines. The contour plot of the distance function is in the background.

In three dimensions, we have φi(x, y, z) =
√
(x− xi)2 + (y − yi)2 + (z − zi)2−ri.

Solving for φij = 0 yields

z =
(c2j − c2i )(zi − zj) +K(zi + zj)±

√
(ri − rj)2

(
(c2i − c2j +K)2 − 4Kc2i

)
2K

,

where

cj =
√
(x− xj)2 + (y − yj)2,

K = (ri − rj + zi − zj)(ri − rj − zi + zj).

The equation φij = 0 can also be solved in terms of x or y. The curves that are
equidistant to three spheres can be found analytically as the solution of a quartic
polynomial.

Appendix B. CPU times. In this section, we report the CPU times for the
two-dimensional integration algorithm. In the following sections, N refers to the
number of gridpoints in each spatial dimension, so the total degrees of freedom here
is N2. These tests were run in MATLAB on a 3.0 GHz quad-core desktop with 8 GB
of RAM.

B.1. Solving the eikonal equation. The first step in our algorithm is to find
the eikonal solution with the generators as the initial contours. This is done via a fast
sweeping method, which is an O(N2) algorithm (see [52]).

B.2. Constructing the discretized kernel. To construct the discretized ker-
nel, we must populate a matrix with O(N2) nonzero elements. This takes O(N2)
seconds, which is verified below in Figures 15(a) and 15(b).
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Fig. 15. CPU time for kernel population.

B.3. Number of iterations until convergence. We conjecture the number
of iterations until the mass converges to be O(N). Figures 16(a) and 16(b) confirm
that the number of iterations until convergence is O(N).
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Fig. 16. Number of iterations for operator convergence.

B.4. CPU time for convergence to invariant sets. Each iteration of the
discretized Markov operator requires the multiplication of a vector with a sparse
O(N2) matrix.
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Fig. 17. CPU time for operator convergence.

The CPU time required for this is O(N2). As O(N) iterations are required to
obtain convergence, we expect a CPU time that is O(N3). This is exactly what is
observed in Figures 17(a) and 17(b).

Appendix C. Trapezoidal rule error. Let f : R2 → R have two continuous
partial derivatives in both x and y. Let h = xi+1−xi = yj+1−yj for i, j ∈ {1, . . . , N}.

D
ow

nl
oa

de
d 

04
/1

7/
14

 to
 1

32
.2

06
.1

50
.6

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPUTING MEASURES OF GENERALIZED VORONOI REGIONS A825

Then by integration by parts∫ h

0

∫ h

0

f(xi + t, yj + s)dt ds =
h2

4
(f(xi, yj) + f(xi, yj+1) + f(xi+1, yj) + f(xi+1, yj+1))︸ ︷︷ ︸

=:Trapij

+
h

2

∫ h

0

((s− h
2 )

2

2
− h2

8

)
fyy(xi+1, yj + s)ds

+
h

2

∫ h

0

((s− h
2 )

2

2
− h2

8

)
fyy(xi, yj + s)ds

+

∫ h

0

∫ h

0

( (t− h
2 )

2

2
− h2

8

)
fxx(xi + t, yj + s)ds dt.

Then

max
i,j∈{1,...,N}

∣∣∣ ∫ h

0

∫ h

0

f(xi + t, yj + s)dt ds− Trapij

∣∣∣ ≤ h4

12
(‖fyy‖∞ + ‖fxx‖∞).

So for any function with two continuous partial derivatives, we expect the trape-
zoidal rule to yield fourth order accuracy. The stochastic kernel we define is only
continuous on {(x, y) | |x − y| ≤ ε} (this is precisely the domain of integration). In
fact, there will be a gridpoint such that the left and right x derivatives (similarly for
the y derivatives) will not agree. Numerically, we see that for some gridpoint (xi, yj)

‖fxx‖∞ =
∣∣∣fx(xi+1, yj)− fx(xi, yj)

h

∣∣∣ = c

h
,

and similarly for fyy. Therefore in the case of the kernel we have defined, we expect
the trapezoidal rule to yield O(h3) convergence. Note that because the limits of
integration depend on the grid size h, the above analysis is different from the standard
trapezoidal rule, where the limits of integration are fixed, and the error depends upon
the number of quadrature points.
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