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Abstract
In this work, we propose staggered FDTD schemes based on the correction function method
(CFM) to discretizeMaxwell’s equationswith embedded perfect electric conductor boundary
conditions. The CFM uses a minimization procedure to compute a correction to a given FD
scheme in the vicinity of the embeddedboundary to retain its order. Theminimization problem
associated with CFM approaches is analyzed in the context of Maxwell’s equations with
embedded boundaries. In order to obtain a well-posed minimization problem, we propose
fictitious interfaces to fulfill the lack of information, namely the surface current and charge
density, on the embedded boundary. We introduce CFM-FDTD schemes based on the well-
knownYee scheme and a fourth-order staggered FDTDscheme.We investigate the stability of
these CFM-FDTD schemes using long time simulations. Convergence studies are performed
in 2-D for various geometries of the embedded boundary. CFM-FDTD schemes have shown
high-order convergence.

Keywords Embedded perfect electric conductor · Maxwell’s equations · Correction
function method · Finite-difference time-domain · High order
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1 Introduction

In electromagnetic dynamics, the perfect electric conductor is an important idealizedmaterial
that allows surface charges and currents. Since the surface charge and current density are
often unknown, PEC walls are modeled through the imposition of boundary conditions that
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require the continuity of the normal component of the magnetic field and the tangential
component of the electric field on the boundary of a domain [3,13].

In free-space simulations involving PECs, the interface between a PEC and its surrounding
medium is treated as an embedded boundary. Embedded boundary conditions can be difficult
to treat, particularly in a finite-difference context. Indeed, challenges include the develop-
ment of numerical methods that can handle various complex geometries of the PEC without
increasing the complexity of a numerical method while retaining high-order accuracy. It is
also worth mentioning that high-order schemes are important to diminish the phase error for
long time simulations [13].

Many numerical strategies are proposed to achieve high-order accuracy for problems
involving embedded PECwalls, such as discontinuous Galerkin (DG) approaches [14], pseu-
dospectral time-domain methods (PSTD) [9,10,26] or finite-difference time-domain (FDTD)
schemes [8,17,24,28,31]. A discontinuous Galerkin approach can treat complex geometries
of embedded PEC walls by an appropriate mesh. However, a large number of unknowns
for high-order accuracy is needed for these approaches. This is due to the use of piecewise
polynomial spaces that do not require continuity between two elements of a mesh. Various
strategies have been proposed to reduce the computational cost of DG based methods, such
as parallel computing strategies or particular choices of basis functions [6,7]. It is also worth
mentioning that finite-element approaches with non-body-fitted grids have been developed
for electromagnetic problems, but low-order basis functions have been used [4,5,25]. On the
other hand, finite-difference time-domain approaches use a simple Cartesian grid and have
low computational costs. However, the imposition of embedded boundary conditions is far
from trivial. A naive approach is to use the Yee scheme [27] with a staircased approximation
of the embedded boundary. Unfortunately, this approach leads to a first-order scheme at best
and sometimes to non-convergent approximations [8]. To overcome this issue, many FDTD
approaches have been proposed, such as overlapping grids [28], contour pathmethods [17,24]
and locally modifications of FD schemes [8,31]. A staircase-free FDTD scheme has been
proposed in [8] to recover a second-order scheme without significantly compromising the
simplicity of the usedFDscheme.They explicitly imposePECboundary conditions by locally
modifying a finite-difference scheme in the vicinity of the boundary. Following the same idea,
a fourth-order finite-difference scheme based on the Matched Interface and Boundary (MIB)
method [32] has been proposed to handle embedded PEC walls using the vector Helmholtz
equation [31]. This FD scheme is obtained by deriving and explicitly imposing jump con-
ditions for PEC walls on the embedded boundary. However, the complexity of a MIB based
scheme increases with its order or the complexity of the geometry of the embedded bound-
ary because of the imposition of high-order jump conditions [29,30]. Finally, pseudospectral
methods have the advantage to require less grid points perwavelength thanFDTDapproaches.
The Fourier and Chebyshev collocation methods with a multidomain strategy have been used
to achieve high-order accuracy [9,26]. These approaches need a multidomain decomposition
with an appropriatemesh grid for embedded boundary conditions, and therefore an additional
treatment of interfaces between subdomains is needed. An alternative approach is to use a
Fourier penalty method [10]. Although this approach does not need a multidomain strategy,
there are some stability issues that limit the order of the method in two and three dimensions.

Another avenue to handle embedded boundary conditions is FD schemes based on theCor-
rection Function Method (CFM). The CFM, which was inspired by the Ghost Fluid Method
(GFM), has been originally developed to treat Poisson’s equations with interface jump condi-
tions with arbitrarily complex interfaces. FD schemes based on the CFM achieve high-order
by means of a minimization problem. This numerical strategy has been successfully applied
to Poisson problems with constant and piecewise constant coefficients, and interface jumps

123



Journal of Scientific Computing (2021) 88 :72 Page 3 of 28 72

[20,21]. It is also worth mentioning that a CFM based strategy has also been used to treat
3-D Poisson equation with interface jump conditions [22]. Afterward, extensions of this
method have been used to handle the wave equation and Maxwell’s equations with constant
coefficients and interface jump conditions [2,19]. Briefly, the underline assumption of the
CFM is that jumps on the interface can be smoothly extended in the vicinity of the inter-
face. Therefore, a system of partial differential equations (PDEs) coming from the original
system of PDEs is derived to model jumps around the interface. The solution of this system
of PDEs is called the correction function. A square measure of the error associated with the
correction function’s system of PDEs is then minimized to compute approximations of the
correction function. Afterward, these approximations are used to correct a given FD scheme
that involves nodes in different subdomains. It is worth mentioning that the additional com-
putational cost associated with minimization problems of the CFM is not negligible. Hence,
this makes the use of parallel computing strategies unavoidable [1].

As mentioned before, a FDTD strategy based on the CFM has been developed to handle
Maxwell’s equations with constant coefficients and interface jump conditions [19]. Even
though this numerical scheme could also be used to enforce embedded boundary conditions,
one needs to impose all information on the boundary, that is both normal and tangential
components of each electromagnetic field. This is a major drawback when embedded PEC
wall boundary conditions are considered. As shown in this work, a direct application of the
numerical scheme proposed in [19] for PEC wall boundary conditions leads to an ill-posed
minimization problem because of the lack of information on the embedded boundary. Hence,
the main goal of this work is to overcome this issue and proposes high-order FDTD schemes
based on the CFM, which are referred as CFM-FDTD schemes, to handle embedded PEC
wall boundary conditions. The algorithm presented in this paper also provides an important
stepping stone towards a CFM-FDTD approach to handle Maxwell’s interface problems.

We first extend CFM-FDTD schemes for PEC problems for which the surface current
and charge density are unknown. Afterward, we describe a construction of appropriate local
patches that are needed for minimization problems. This construction reduces the computa-
tion cost of the CFMwhile guaranteeing the uniqueness of the correction function for a given
node to be corrected. We then introduce CFM-FDTD schemes based on the well-known Yee
scheme and a fourth-order staggered FDTD scheme. Finally, numerical examples based on
the transverse magnetic (TMz) and electric (TEz) modes are performed to verify the proposed
CFM-FDTD schemes.

The paper is organized as follows. In Sect. 2, we introduce Maxwell’s equations with
embedded PEC wall conditions. The CFM applied to Maxwell’s equations is presented in
Sect. 3. In this section, we propose an extension of the CFM for problems involving a PEC
for which the surface current and charge density are unknown. The minimization problems
coming from the CFM are analyzed. The impact of the CFM on a FDTD scheme is also
investigated and the construction of local patches is described. We then introduce CFM-
FDTD schemes based on the Yee scheme in Sect. 4 and on a fourth-order staggered FDTD
scheme in Sect. 5. Finally, we perform numerical examples to verify the proposed CFM-
FDTD schemes in both Sects. 6 and 7.

2 Definition of the Problem

Assume a domainΩ subdivided into two subdomainsΩ+ andΩ−. The interface Γ between
subdomains is independent of time and allows solutions, that is the magnetic field H and
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Fig. 1 Geometry of a domain Ω

with an interface Γ

the electric field E in this work, to be discontinuous along it. We define H+ and E+ as the
solutions in Ω+, and H− and E− as the solutions in Ω−. The jumps are denoted as

�H� = H+ − H−,

�E� = E+ − E−.

We consider the boundary ∂Ω of Ω and a given time interval I = [0, T ]. Assuming linear
media and a periodic domain, Maxwell’s equations with interface conditions are given by

∂t (μ H) + ∇ × E = 0 in Ω × I , (1a)

∂t (ε E) − ∇ × H = 0 in Ω × I , (1b)

∇ · (ε E) = ρ in Ω × I , (1c)

∇ · (μ H) = 0 in Ω × I , (1d)

n̂ × �E� = 0 on Γ × I , (1e)

n̂ × �H� = J s(x, t) on Γ × I , (1f)

n̂ · �ε E� = ρs(x, t) on Γ × I , (1g)

n̂ · �μ H� = 0 on Γ × I , (1h)

H(x, 0) = H0(x) in Ω, (1i)

E(x, 0) = E0(x) in Ω, (1j)

where μ is the magnetic permeability, ε is the electric permittivity, ρ is the electric charge
density, J s is the surface current density, ρs is the surface charge density and n̂ is the unit
normal to the interface Γ pointing toward Ω+. Figure 1 illustrates a typical geometry of
a domain Ω . Without loss of generality, we assume constant coefficients that are such that
ε, μ > 0 and ρ = 0.

For problems involving a PEC, we often do not know the surface current density J s and
the surface charge density ρs . Interface conditions (1e)–(1h) are then reduced to

n̂ × �E� = 0 on Γ × I ,

n̂ · �μ H� = 0 on Γ × I .

Let us assume that subdomain Ω− is a PEC, we then have E−(x, t) = 0,∀(x, t) ∈ Ω− × I .
Considering that the initial condition of the magnetic field is given by H−(x, 0) = 0 [3,16],
we also have H−(x, t) = 0,∀(x, t) ∈ Ω− × I . Thus, interface conditions on Γ can be
considered as embedded boundary conditions, given by

n̂ × E+ = 0 on Γ × I ,

n̂ · (μ H+) = 0 on Γ × I ,
(2)

123



Journal of Scientific Computing (2021) 88 :72 Page 5 of 28 72

for Ω+. In this work, we focus on problems involving PECs and therefore assume Γ to be
an embedded boundary of Ω+. For further discussions on Maxwell’s equations with PEC
boundary conditions (2) and results on its well-posedness, we refer the interested reader to
[3].

3 Correction FunctionMethod

The smoothness of solutions is important when one wants to use FD schemes. Realizing that
problem (1) can have discontinuous solutions, standard FD schemes cannot a priori be used
around the embedded boundaryΓ . TheCorrectionFunctionMethod allows one to circumvent
this issue. The purpose of the CFM is to find a correction for a finite difference approximation
that involves nodes that belong to different subdomains. To find such a correction, the CFM
assumes that solutions in Ω+ × I and Ω− × I can be smoothly extended in a small region
ΩΓ × I , where ΩΓ ⊂ Ω encloses the embedded boundary Γ , in such a way that the
original PDE is still satisfied. A functional that is a square measure of the error of a PDE
that describes the behaviour of jumps or correction functions in the vicinity of the embedded
boundary is derived. This functional is thenminimized in a discrete functional space to obtain
approximations of the correction function in ΩΓ × I . In practice, we define a local patch
Ωh

Γ ⊂ ΩΓ for which the correction function needs to be computed at a node xc ∈ Ωh
Γ and a

time interval I hΓ = [tn−ΔtΓ , tn]. The additional computational cost associatedwith the CFM
is not negligible when compared with the original FDTD scheme. In fact, the CFM consumes
most of the computational time. However, a parallel implementation of the computation of
correction functions can be performed since minimization problems associated with local
patches are independent. We refer to [1] for more details about the benefits of a parallel
implementation of the CFM.

In the following,we summarize the procedure for theCFMapplied onMaxwell’s equations
when electromagnetic fields are known on the embedded boundary [19]. Afterward, we
present an analysis of the minimization problem that is needed for the CFM. The functional
to be minimized is then modified and analyzed for embedded PEC walls for which the
surface current and charge density are unknown. We also investigate the impact of such
a modification on a FDTD scheme. We then describe a construction of local patches that
reduces the computation cost of the CFM and ensures an appropriate representation of the
embedded boundary within the local patch.

Let us first introduce some notations. The inner product in L2
(
Ωh

Γ × I hΓ
)
is defined by

〈v,w〉 =
∫

I hΓ

∫

Ωh
Γ

v · w dV dt

and we also use the notation

〈v,w〉Γ =
∫

I hΓ

∫

Ωh
Γ ∩Γ

v · w dS dt

for legibility. The correction functions are defined as

DH = H+ − H−,

DE = E+ − E−.
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Let us first assume that the surface current density and charge density are known. Following
the same procedure as in [19], one can obtain the following quadratic functional to minimize

J (DH , DE ) = �h

2

〈
μ∂t DH + ∇ × DE , μ ∂t DH + ∇ × DE

〉

+ �h

2
〈ε ∂t DE − ∇ × DH , ε ∂t DE − ∇ × DH

〉

+ cp
2

〈
n̂ × DH − J s, n̂ × DH − J s

〉
Γ

+ cp
2

〈
n̂ · DH , n̂ · DH

〉
Γ

+ cp
2

〈
n̂ × DE , n̂ × DE

〉
Γ

+ cp
2

〈
n̂ · DE − ρs

ε
, n̂ · DE − ρs

ε

〉
Γ

,

where cp > 0 is a penalization coefficient and �h is the length in space of the patch. We
scale the integral over the domain by �h to ensure that all terms in the functional J behave
in a similar way when the computational grid is refined [19]. To guarantee the divergence-
free constraint (1c) and (1d), we minimize the functional J in a divergence-free space–time
polynomial space, namely

V = {
v ∈ [

Pk(Ωh
Γ × I hΓ

)]3 : ∇ · v = 0
}
,

where Pk denotes the space of polynomials of degree k. It is worth mentioning that basis
functions of V are based on high-degree divergence-free basis functions proposed in [6] for
discontinuous Galerkin approaches. The problem statement is then

Find (DH , DE ) ∈ V × W such that (DH , DE ) ∈ argmin
v∈V ,w∈W

J (v,w), (3)

whereW = V . The following proposition shows that the quadratic functional J has a global
minimizer when finite-dimensional functional spaces are used and for an appropriate choice
of the penalization coefficient cp .

Proposition 1 Let us consider problem (3), and assume v and w to be basis functions of V
and W. There exists a positive constant c̃ = cp

�h
for which the functional J has a unique

global minimizer.

Proof Let us first notice that problem (3) is an unconstrained minimization problem. In this
case, if the Hessian matrix coming from a quadratic functional is positive definite, then the
critical point is a global minimum. Let us consider v and w to be basis functions of V and
W . The Hessian matrix coming from problem (3) is given by

[
�h a + cp b �h e

�h e �h c + cp d

]
,

where

a = 〈μ∂tv, μ ∂tv〉 + 〈∇ × v,∇ × v〉,
b = 〈n̂ × v, n̂ × v〉Γ + 〈n̂ · v, n̂ · v〉Γ ,

c = 〈∇ × w,∇ × w〉 + 〈ε ∂tw, ε ∂tw〉,
d = 〈n̂ × w, n̂ × w〉Γ + 〈n̂ · w, n̂ · w〉Γ ,

e = 〈μ∂tv,∇ × w〉 − 〈ε ∂tw,∇ × v〉.
Requiring the Hessian matrix to be positive definite, one finds the following conditions:

�h a + cp b > 0, (4)
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(�h a + cp b) (�h c + cp d) − (�h e)
2 > 0. (5)

Since v and w are basis functions of V and W , we have v 	= 0 and w 	= 0. Noticing that v
andw cannot be both orthogonal and collinear to n̂ except for the zero element, we also have
b 	= 0 and d 	= 0. Hence, condition (4) is always satisfied. However, condition (5) leads to
the following criterion

c̃ >
e2 − a c

c̃ b d
− a d + b c

b d
, (6)

where c̃ = cp
�h
. For a sufficiently large c̃, criterion (6) is satisfied. 
�

Let us now investigate the impact of the CFM based on minimization problem (3) on a
given FD scheme. Assume a spatial finite difference operator noted L , such that

∂tU(t) + L U(t) = 0, (7)

where U is a vector containing m unknowns that estimate electromagnetic fields on the grid
points in space. We consider that a correction is needed at r nodes in the vicinity of the
embedded boundary, system (7) then becomes

∂tU(t) + L U(t) + L A D(t) = 0, (8)

where D is a vector containing r values of the correction function coming from problem
(3) and A is a rectangular matrix of dimension m × r with either 0 or ±1 as components
depending on where the correction is needed. Hence, the correction function can therefore
be considered as a time-dependent force term. From Proposition 1, we have the existence
and unicity of the coefficients of polynomial approximations of the correction function for
an appropriate cp . Since DH (x, t) and DE (x, t) are polynomial functions, and Ωh

Γ × I hΓ
is a compact domain, these approximations and their derivatives are bounded in the infinity
norm. It is therefore sufficient to investigate the stability of the original FDTD scheme (7) to
identify any time-step criteria of the corresponding CFM-FDTD scheme (see Theorem 5.1.1
in [12]). As for the consistency, it can be shown that the order in space of a CFM-FDTD
scheme is min{k, n}, where k is the degree of polynomial approximations of the correction
function and n is the order of the FD scheme in space (see Proposition 3).

3.1 PECWall Boundary Conditions

Let us now focus on PECwall boundary conditions. By Proposition 1, one cannot just neglect
interface conditions (1f) and (1g) for PECproblems forwhich J s andρs are unknownbecause
this leads to an ill-posed minimization problem. To circumvent this issue, we propose to use
fictitious interfaces on which we enforce these conditions

n̂1,i × (E+ − E∗) = 0 on Γ1,i × I for i = 1, . . . , N1,

n̂2,i × (H+ − H∗) = 0 on Γ2,i × I for i = 1, . . . , N2,

n̂3,i · (E+ − E∗) = 0 on Γ3,i × I for i = 1, . . . , N3,

n̂4,i · (H+ − H∗) = 0 on Γ4,i × I for i = 1, . . . , N4,

(9)

where Nk is the number of fictitious interfaces Γk,i ⊂ Ω+ ∩ Ωh
Γ for k = 1, . . . , 4, n̂k,i

is the unit normal associated with fictitious interface Γk,i , and H∗ and E∗ are respectively
finite difference approximations of H+ and E+ in Ω+. In Sect. 3.2, we provide more details
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on the implementation of these fictitious interface conditions. The functional to minimize is
then given by

J̃ (DH , DE ) = �h

2

〈
μ∂t DH + ∇ × DE , μ ∂t DH + ∇ × DE

〉

+ �h

2
〈ε ∂t DE − ∇ × DH , ε ∂t DE − ∇ × DH

〉

+ cp
2

〈
n̂ × DE , n̂ × DE

〉
Γ

+ cp
2

〈
n̂ · DH , n̂ · DH

〉
Γ

+ c f

2 NE

N1∑

i=1

〈
n̂1,i × (DE − E∗), n̂1,i × (DE − E∗)

〉
Γ1,i

+ c f

2 NH

N2∑

i=1

〈
n̂2,i × (DH − H∗), n̂2,i × (DH − H∗)

〉
Γ2,i

+ c f

2 NE

N3∑

i=1

〈
n̂3,i · (DE − E∗), n̂3,i · (DE − E∗)

〉
Γ3,i

+ c f

2 NH

N4∑

i=1

〈
n̂4,i · (DH − H∗), n̂4,i · (DH − H∗)

〉
Γ4,i

,

(10)

where c f > 0 and cp > 0 are penalization coefficients, and NH = N2 + N4 and NE =
N1 + N3 are the total numbers of fictitious interfaces for each electromagnetic field. The use
of fictitious interface conditions (9) with Maxwell’s equations in functional (10) implicitly
estimates J s and ρs on the embedded boundary. From this perspective, these conditions fulfill
the lack of information on the embedded boundary. The problem statement is then

Find (DH , DE ) ∈ V × W such that (DH , DE ) ∈ argmin
v∈V ,w∈W

J̃ (v,w), (11)

where W = V . The following proposition guarantees that there is a global minimizer for an
appropriate choice of the penalization coefficient c f and fictitious interfaces.

Proposition 2 Let us consider problem (11), and assume v and w to be basis functions of V
and W.Moreover, assume that there are collinear and orthogonal fictitious interfaces to each
plane defined by the axis of the Cartesian coordinate system and for each type of fictitious
interface conditions (9). There exists a positive constant c̃ = c f

�h
for which the functional J̃

has a unique global minimizer.

Proof The demonstration is similar to the proof presented in Proposition 1. The Hessian
matrix coming from problem (11) is given by

[
�h a + cp b + c f b̃ �h e

�h e �h c + cp d + c f d̃

]
,
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where a, c and e are the same as in Proposition 1, but

b = 〈n̂ · v, n̂ · v〉Γ ,

d = 〈n̂ × w, n̂ × w〉Γ ,

b̃ = 1

NH

N2∑

i=1

〈n̂2,i × v, n̂2,i × v〉Γ2,i + 1

NH

N4∑

i=1

〈n̂4,i · v, n̂4,i · v〉Γ4,i ,

d̃ = 1

NE

N1∑

i=1

〈n̂1,i × w, n̂1,i × w〉Γ1,i + 1

NE

N3∑

i=1

〈n̂3,i · w, n̂3,i · w〉Γ3,i .

One can notice that b ≥ 0 and d ≥ 0. However, since there are fictitious interfaces that are
collinear and orthogonal to each plane defined by the axis of the coordinate system and for
each fictitious interface condition, we have b̃ 	= 0 and d̃ 	= 0. Requiring the Hessian matrix
to be positive definite, one finds the following conditions:

�h a + cp b + c f b̃ > 0, (12)

(�h a + cp b + c f b̃) (�h c + cp d + c f d̃) − (�h e)
2 > 0. (13)

Condition (12) is always satisfied and condition (13) leads to the following criterion

c̃ >
e2 − a c

c̃ b̃ d̃
− cp (a d + b c)

c f b̃ d̃
− a d̃ + b̃ c

b̃ d̃
− cp (b d̃ + b̃ d)

�h b̃ d̃
− c2p b d

�h c f b̃ d̃
, (14)

where c̃ = c f
�h
. For a sufficiently large c̃, criterion (14) is satisfied. 
�

Let us now investigate the impact of the CFM based on minimization problem (11) on the
stability of the original FD scheme. As shown previously, we have a system of the form (8)
with D coming from problem (11). However, this is not completely accurate since fictitious
interface conditions (9) depend on FD solutions in Ω+. Computing Gateaux derivatives and
using a necessary condition to obtain a minimum, we obtain

M c = c f b f + cp bΓ ,

where c contains coefficients of polynomial approximations of the correction function, and
b f and bΓ are associated with terms using respectively fictitious interfaces and embedded
boundaries. Moreover, we can define a linear operator B that is such that b f = B U . From
Proposition 2, problem (11) is well-posed for appropriate fictitious interfaces, cp and c f ,
which leads to c = c f M−1 B U + cp M−1 bΓ . Hence, we have

∂tU(t) + L (I + c f A M−1 B)U(t) + cp L A M−1 bΓ = 0,

where L is a finite difference operator, I is the identity operator and A is a linear operator that
computes polynomial approximations of the correction function at nodes where it is needed.
Since problem (11) is well-posed, we assume that the term L A M−1 bΓ can be bounded. It
is then sufficient to investigate the stability of

∂tU(t) + L (I + c f A M−1 B)U(t) = 0,

to identify any time-step criteria of the corresponding CFM-FDTD scheme [12]. We remark
that we recover the original FDTD scheme in the limit when c f → 0 and therefore its
properties. We therefore assume that we should be close to the stability condition of the
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original FDTD scheme for a sufficient small c f . This assumption is supported by numerical
examples performed in Sect. 6.

In order to choose an appropriate penalization coefficient c f , one should consider the
following constraints. First, the priority should be given to embedded boundary conditions
in problem (11), that is cp > c f . Second, the weight associated with fictitious interface
conditions in the minimization problem should diminish as the length of local patches �h
goes to zero, that is when the mesh grid size diminishes. This again enforces embedded
boundary conditions and avoids any stability issues of CFM-FDTD schemes as the time-step
size is refined. However, a too small value of c f could lead to poorly conditioned matrices
coming from the minimization problem (11).

3.2 Implementation of Fictitious Interface Conditions

This short subsection focuses on technical details concerning the implementation of fictitious
interface conditions (9). Since Ω− is a PEC domain, it is common to consider H− = 0 and
E− = 0 as explained in Sect. 2. The natural extension of these electromagnetic fields in the
non-PEC domain, that isΩ+, is then zero. Hence, DH = H+ and DE = E+. This allows us
to enforce fictitious interface conditions inΩ+ using finite difference approximations within
it, namely H∗ ≈ H+ and E∗ ≈ E+.

Remark 1 In the case where H− is known and non-zero but still independent of time, one
should also consider DH = H+, DE = E+, H∗ ≈ H+ and E∗ ≈ E+. However, the
embedded boundary condition for the magnetic field becomes n̂ · (μ H+) = b(x), where
b(x) = n̂ · (μ H−(x)).

To ease the implementation of fictitious interface conditions (9), we choose fictitious inter-
faces that are aligned with the mesh grid. In other words, fictitious interfaces Γk,i are chosen
in such a way that their normal n̂k,i is an element of the standard basis in R3. This facilitates
the construction of space–time interpolating polynomials that use FD approximations. Let
us consider the transverse magnetic (TMz) mode (see Sect. 6), which is a 2-D simplification
of Maxwell’s equations, as an example. In this case, the normal of a fictitious interface is
either n1 = (1, 0) or n2 = (0, 1). Hence, n1 · H∗ = H∗

x , n2 · H∗ = H∗
y , n1 × H∗ = H∗

y ,
n2×H∗ = −H∗

x , n1×E∗ = (0,−E∗
z ) and n2×E∗ = (E∗

z , 0). Figure 2 illustrates fictitious
interfaces that can be generated for a given local patch and a staggered grid that is described
in Sect. 6.1.

The functional (10) involves time integrals of finite difference approximations H∗ and
E∗ in the vicinity of the boundary Γ . Since the time interval associated with local patches
is given by I hΓ = [tn − ΔtΓ , tn], we can use previous computed finite difference solutions
to construct the space–time interpolant needed for fictitious interface conditions. However,
this makes difficult the initialization of a CFM-FDTD scheme that uses fictitious interfaces.
In Sects. 4 and 5, we propose an initialization strategy for the Yee scheme and a fourth-order
FDTD scheme.

3.3 Computation of Local Patches

The computation of an appropriate local patch Ωh
Γ is essential for the CFM. The well-

posedness of problem (3) and (11) highly depends on the representation of the embedded
boundary within the local patch Ωh

Γ . Hence, an appropriate local patch is of foremost impor-
tance to obtain an accurate approximation of a correction function. In previous CFM-FDTD
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(b)(a)

(c)

Fig. 2 An example of a local patch Ωh
Γ with fictitious interfaces. The x-component and the y-component

of the magnetic field are respectively represented by ◦ and � while the z-component of the electric field is
represented by •. Fictitious interfaces associated with n1 = (1, 0) and n2 = (0, 1) are respectively represented
by and

schemes, a “NodeCentered” approach is used to compute local patches [19,20]. This approach
consists to define a local patch and solve a minimization problem for each node to be cor-
rected. Even though it is more expensive than other constructions of local patches, “Node
Centered” approaches have the benefit to guarantee the uniqueness of the correction function
at a given node. Hence, a common discrete measure of the divergence for staggered FDTD
schemes is conserved for some nodes close to the embedded boundary [19].

In this work, as it is done for other immersed boundary methods [18,23], we directly
discretize the embedded boundary. Let us now summarize this approach. For simplicity, let
us consider Ω ⊂ R

2. Assume a given embedded boundary Γ that can be parametrized with
respect to the parameter s ∈ [sa, sb]. The number of local patches is given by

Ns ≈ LΓ

α h
+ 1, (15)

where LΓ is the estimated arc length of Γ , h is the mesh grid size and α is a positive
constant. In this work, we use α = 2. Hence, centre points of local patches are given by
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Fig. 3 Initialization strategy for
the proposed CFM-Yee scheme.
The black and white circle
marker represent respectively the
magnetic field and the electric
field. The dashed box illustrates
the time interval I hΓ of local
patches

xc,i = (x(si ), y(si )), where si = sa + i Δs for i = 0, . . . , Ns − 1 and Δs = sb−sa
Ns−1 . For a

given node to be corrected at xD , we find the closest xc,i and associate the corresponding local
patch to xD . We therefore guarantee the uniqueness of the correction function to each node
to be corrected while reducing the computational cost, particularly for large stencils, when
compared with “Node Centered” approaches. The local patches are square and aligned with
the computational grid. The length in space of local patches is �h = β h, where h is the mesh
grid size and β is a positive constant. It is worth mentioning that the parameter β is chosen in
such a way that enough fictitious interfaces can be generated within Ωh

Γ and that all nodes to
be corrected are associated with a local patch. As for the time interval I hΓ = [tn − ΔtΓ , tn],
we choose ΔtΓ in such a way that I hΓ includes the number of time steps needed to construct
space–time interpolants associated with fictitious interface conditions.

4 Application of the CFM to the Yee Scheme

In this section, we apply the CFM to the well-known Yee scheme [27], which is a popular
FDTD scheme in computational electromagnetics, with a particular attention on its initializa-
tion. Let us recall that the Yee scheme uses a staggered grid in both space and time. We then
need to adapt the functional (10), and more precisely the interval of integration in time of
fictitious interface conditions, in order to consider a staggered grid in time. Finally, we con-
clude with pros and cons of such an approach. In the following, we assume that the parameter
β has been chosen in such a way that enough fictitious interfaces have been generated within
Ωh

Γ (see Sect. 3.3) and we therefore focus on the time component.
Let us first define a staggered grid in time. We consider a time interval I = [0, T ]

subdivided into Nt subintervals of length Δt . We then have tn := n Δt for n = 0, . . . , Nt

and tn+1/2 := (n + 1/2)Δt for n = −1, . . . , Nt − 1. The magnetic and electric fields are
respectively defined at tn+1/2 and tn .

According to the Yee scheme, we first compute H1/2 using initial conditions H−1/2 and
E0, as illustrated in Fig. 3. In this case, the CFM-Yee scheme needs to provide corrections for
the electric field at t0, that is D0

E . The time interval of local patches is then I hΓ = [t−1/2, t0].
At first sight, we do not have enough information in time within local patches to build space–
time interpolants that are accurate enough for fictitious interface conditions. However, by
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Fig. 4 Strategy for a CFM-Yee scheme. The black and white circle marker represent respectively the magnetic
field and the electric field. The dashed box illustrates the time interval I hΓ of local patches

Faraday’s law (1a) and Ampère–Maxwell’s law (1b), we have ∂tH+ = −μ−1 ∇ × E+ and
∂t E+ = ε−1 ∇ × H+ in Ω+. We can then compute the first-order time derivative of H at t0
and E at t−1/2 using the curl of E0 and H−1/2. It is worth mentioning that one could estimate
the curl operator using appropriate finite difference approximations. First-degree polynomials
in time can be constructed using H−1/2 and ∂tH0, and E0 and ∂t E−1/2. Hence, the interval
of integration in time associated with all fictitious interface conditions in functional (10) is
also I hΓ .

For the computation of E1, one needs correction functions for themagnetic field at t1/2, that

is D1/2
H , as illustrated in Fig. 3. The time interval of local patches is then I hΓ = [t−1/2, t1/2].

In this situation, we construct a first-degree polynomial in time for the electric field using
again E0 and ∂t E−1/2. As for the magnetic field, we use H−1/2 and H1/2 to compute a
first-degree polynomial in time. The interval of integration in time associated with fictitious
interface conditions involving the magnetic field is then [t−1/2, t1/2]while the one associated
with the electric field is [t−1/2, t0].

Once the initialization of the proposed CFM-Yee scheme is done, we only have two cases
to consider, as illustrated in Fig. 4. The first case involves the computation of Hn+1/2 and
therefore Dn

E . The time interval of local patches is I hΓ = [tn−3/2, tn]. Approximations of the
magnetic field at tn−3/2 and tn−1/2 are used to construct a first-degree polynomial interpolant
in time. This leads to an interval of integration in time associated with fictitious interface
conditions involving the magnetic field of [tn−3/2, tn−1/2]. As for fictitious interface condi-
tions of the electric field, the interval of integration in time is [tn−1, tn], and En−1 and En are
used to construct a first-degree polynomial in time. The second case implies the computation
of En+1. We then need to compute Dn+1/2

H and therefore I hΓ = [tn−1, tn+1/2]. First-degree
polynomials in time are constructed using Hn−1/2 and Hn+1/2, and En−1 and En . This
leads to intervals of integration in time of fictitious interfaces given by [tn−1/2, tn+1/2] for
the magnetic field and [tn−1, tn] for the electric field.

Another avenue to initialize the proposed CFM-Yee scheme, although it is very specific to
some applications, is to consider that H+ and E+ in the vicinity of the embedded boundary
remain unchanged for t ≤ t0. Hence, the numerical strategy described previously for Fig. 4
can be directly used. As an example, this approach could be useful for scattering problems.
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Finally, the main disadvantage of this approach is the computation cost associated with
minimization problems of the CFM at each update of electromagnetic fields. In fact, the CFM
consumes most of the computational time when compared with the finite-difference part.
However, a parallel implementation of the computation of approximations of the correction
function can be performed since minimization problems associated with local patches are
independent at a given time step.We refer to [1] formore details about the benefits of a parallel
implementation of the CFM. It is also worthmentioning that we do not have to keep thewhole
previous solutions but only approximations associated with fictitious interfaces. Despite
this drawback, the proposed CFM-Yee scheme could achieve second-order convergence for
appropriate approximations of the correction function (see Proposition 3) while treating
various complex geometries of the embedded boundary without significantly increasing the
complexity of the numerical approach. Moreover, it can also be implemented as a black-box
for existing softwares that use the Yee scheme.

5 Application of the CFM on a Fourth-Order Staggered FDTD Scheme

In this section, we introduce a CFM-FDTD scheme based on a fourth-order staggered FDTD
scheme. The staggered space and time grids are defined as in the Yee scheme. Spatial deriva-
tives are estimated using the fourth-order centered approximation. As for time derivatives,
many avenues can be chosen, such as staggered Adams–Bashforth or staggered backward
differentiationmethods [11]. In this work, we choose a fourth-order staggered free-parameter
multistep method introduced in [11], which has a maximum imaginary stability boundary
close to the leapfrog method used in the Yee scheme.

In the following, we first describe a fourth-order staggered free-parameter multistep
method that is used to discretize time derivatives. We assume that previous solutions needed
for the initialization of the multistep method are given. Afterward, we introduce the associ-
ated CFM-FDTD schemewith a particular attention on the time component. As in Sect. 4, we
assume that the parameter β has been chosen in such a way that enough fictitious interfaces
have been generated within Ωh

Γ .
Let us consider ∂tH = f H (E) and ∂t E = f E (H). The considered fourth-order free-

parameter method is given by

Hn+1/2 = −α3 Hn−1/2 − α2 Hn−3/2 − α1 Hn−5/2 − α0 Hn−7/2

+ Δt
(
β3 f H (En) + β2 f H (En−1) + β1 f H (En−2)

)

En+1 = −α3 En − α2 En−1 − α1 En−2 − α0 En−3

+ Δt
(
β3 f E (Hn+1/2) + β2 f E (Hn−1/2) + β1 f E (Hn−3/2)

)

(16)

where β1 = t , β2 = s, β3 = 1
22 s + 12

11 ,

α0 = − 1

22
− 1

528
s + 1

24
t,

α1 = 5

22
+ 9

176
s − 9

8
t,

α2 = − 9

22
− 201

176
s + 9

8
t,

α3 = −17

22
+ 577

528
s − 1

24
t
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with s = −1 and t = 1.045.
Let us now introduce the corresponding CFM-FDTD scheme. The time scheme (16) needs

to compute f H (E) at tn , tn−1 and tn−2, and f E (H) at tn+1/2, tn−1/2 and tn−3/2. Hence, we
need to keep previous corresponding correction functions. For the computation of Hn+1/2,
we set I hΓ = [tn−7/2, tn] and compute Dn

E . It is worth mentioning that, at the first update
of the magnetic field to estimate H1/2, we compute the correction function DE at t0, t−1

and t−2, and DH at t−1/2 and t−3/2. For the update of the electric field, that is En+1, we

set I hΓ = [tn−3, tn+1/2] and compute Dn+1/2
H . As for the Yee scheme, we need to adapt the

interval of integration in time of fictitious interface conditions using a similar procedure as
in Sect. 4 for both cases.

6 Transverse Magnetic Mode Numerical Examples

Let us consider the transverse magnetic (TMz) mode. The unknowns are Hx (x, y, t),
Hy(x, y, t) and Ez(x, y, t). For a domain Ω ⊂ R

2 and constant physical parameters,
Maxwell’s equations are then simplified to

μ∂t Hx + ∂y Ez = 0 in Ω × I ,

μ ∂t Hy − ∂x Ez = 0 in Ω × I ,

ε ∂t Ez − ∂x Hy + ∂y Hx = 0 in Ω × I ,

∂x Hx + ∂y Hy = 0 in Ω × I

(17)

with the associated boundary, initial conditions and

n̂x H
+
x + n̂ y H

+
y = 0 on Γ × I ,

E+
z = 0 on Γ × I ,

(18)

as embedded boundary conditions for Ω+.
In the following, we name the CFM-FDTD scheme based on the Yee scheme as CFM-Yee

scheme while the one based on a fourth-order staggered FDTD scheme is named CFM-
4th scheme. The error of U = [Hx , Hy, Ez]T at tn is computed using approximations and
analytic solutions of the magnetic field and the electric field at respectively tn − Δt

2 and tn
because of the staggered grid in time.

6.1 A 2-D Staggered Space Discretization

In this subsection, we present a staggered grid in space. Let us consider a rectangular domain
Ω = [x�, xr ] × [yb, yt ] ⊂ R

2. The domain is divided in N = Nx Ny square cells, noted by
Ωi j = [xi−1/2, xi+1/2] × [y j−1/2, y j+1/2] and centered at

(xi , y j ) = (x� + (i − 1
2 )Δx, yb + ( j − 1

2 )Δy)

for i = 1, . . . , Nx and j = 1, . . . , Ny withΔx := (xr−x�)/Nx andΔy := (yt−yb)/Ny . The
z-component of the electric field is approximated at the center of the cell. The x-component
and y-component of the magnetic field are respectively approximated at

(xi , y j+1/2) = (x� + (i − 1
2 )Δx, yb + j Δy)
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for i = 1, . . . , Nx and for j = 0, . . . , Ny , and

(xi+1/2, y j ) = (x� + i Δx, yb + ( j − 1
2 )Δy)

for i = 0, . . . , Nx and for j = 1, . . . , Ny . We use either the second or fourth order centered
finite difference scheme in space. As an example, the x-derivative of Hy is of the form

∂x Hy(xi , y j , tn+1/2) ≈ Hn+1/2
y,i+1/2, j − Hn+1/2

y,i−1/2, j

Δx

and

∂x Hy(xi , y j , tn+1/2) ≈ Hn+1/2
y,i−3/2, j − 27 Hn+1/2

y,i−1/2, j + 27 Hn+1/2
y,i+1/2, j − Hn+1/2

y,i−3/2, j

24Δx

for respectively the second and fourth order centered finite-difference. Finally, as it is com-
monly used, we impose Ez = 0 and Hx = Hy = 0 in PEC subdomains.

6.2 Problems with an Analytic Solution

In this subsection, we perform numerical examples with analytic solutions to assess the
impact of the penalization coefficient c f and to verify the proposed numerical approach. The
domain Ω is divided into two subdomains Ω+ and Ω−. Periodic boundary conditions are
used on all ∂Ω . We set cp = 1. Themesh grid size is such that h = Δx = Δy. We use second
and third degree polynomial approximations of the correction function for respectively the
CFM-Yee scheme and the CFM-4th scheme. Hence, this should lead to a second and third
order convergence in L2-norm (see Proposition 3). We set �h = 7 h, and we construct E∗
and H∗ in Ω+ using at least a second degree interpolating polynomial in space for both
schemes.

6.2.1 Circular Cavity Problem

Let us consider a holed PEC material. The domain is Ω = [−1.25, 1.25] × [−1.25, 1.25].
SinceΩ− is a PEC subdomain, the embedded boundaryΓ then encloses subdomainΩ+. The
embedded boundary is a circle centered at (0, 0) with unit radius. The physical parameters
are ε = 1 and μ = 1. The time-step size is Δt = h

2 for both CFM-FDTD schemes. In
subdomain Ω+, the solution in cylindrical coordinates is given by

H+
ρ (ρ, φ, t) = i

αi, j ρ
Ji (αi, j ρ) sin(i φ) sin(αi, j t),

H+
φ (ρ, φ, t) = 1

2

(
Ji−1(αi, j ρ) − Ji+1(αi, j ρ)

)
cos(i φ) sin(αi, j t),

E+
z (ρ, φ, t) = Ji (αi, j ρ) cos(i φ) cos(αi, j t),

where αi, j is the j-th positive real root of the i-order Bessel function of first kind Ji . In this
numerical example, we choose i = 6 and j = 2.

Let us assess the impact of the penalization coefficient c f on the proposed CFM-FDTD
schemes. Fig. 5 illustrates convergence plots of U = [Hx , Hy, Ez]T in L2-norm for both
CFM-FDTD schemes using different values of c f , that isΔt , Δt

2 and Δt
4 . The time interval is

I = [0, 0.5]. We observe a clear second-order convergence for the CFM-Yee scheme. For the
CFM-4th scheme, a fourth-order convergence is observed, which is better than expected. The
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(b)(a)

Fig. 5 Convergence plots in L2-norm for a TMz mode circular cavity problem using the proposed CFM-FDTD
schemes for different values of c f , that is Δt , Δt

2 and Δt
4

Fig. 6 Evolution in time of the error of U in L2-norm for a TMz mode circular cavity problem using CFM-
FDTD schemes with h = 1

160 and different values of c f , that is Δt , Δt
2 and Δt

4

obtained convergence orders are in agreement with the theory for all values of c f . However,
one can notice that the error slightly increases as the value of c f diminishes. Let us now per-
form long time simulations. Figure 6 illustrates the evolution of the error of electromagnetic
fields in L2-norm as a function of the number of periods for different values of c f . The time
interval is I = [0, 10] and the mesh grid size is h = 1

160 . Numerical results suggest that
the CFM-Yee scheme is stable for the considered values of the penalization coefficient c f .
However, the CFM-4th scheme seems more sensitive than the CFM-Yee scheme to the value
of c f . Stability issues appear after a dozen periods for the largest considered value of the
penalization coefficient, that is c f = Δt . The penalization coefficient c f must be therefore
chosen small enough to avoid stability problems as the mesh grid size diminishes. Based on
these numerical results, we choose c f = Δt and c f = Δt

4 for respectively the CFM-Yee
scheme and theCFM-4th scheme to avoid any stability issues in all other numerical examples.
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Fig. 7 Convergence plots in
L2-norm for a TMz mode square
cavity problem using the
proposed CFM-FDTD schemes

Fig. 8 Geometry of a two
concentric PEC cylinders
problem

6.2.2 Square Cavity Problem

Let us consider a PEC material with square holes. The domain is Ω = [−0.75, 0.75] ×
[−0.75, 0.75] and the time interval is I = [0, 0.5]. Since Ω− is a PEC subdomain, the
boundaryΓ then encloses subdomainΩ+. The boundaryΓ is a square of unit length centered
at (0, 0) . The physical parameters are ε = 1 and μ = 1. The time-step size is Δt = h

2 for
both CFM-FDTD schemes. In Ω+, the solution is given by

H+
x (x, y, t) = −π n

ω
sin(m π x) cos(n π y) sin(ω t),

H+
y (x, y, t) = π m

ω
cos(m π x) sin(n π y) sin(ω t),

E+
z (x, y, t) = sin(m π x) cos(n π y) cos(ω t),

where ω = π
√
m2 + n2 with m, n > 0 [15]. In this numerical example, we choose m =

n = 4. Convergence plots are illustrated in Fig. 7 for both proposed CFM-FDTD schemes.
A second and fourth order convergence are observed for respectively the CFM-Yee scheme
and the fourth-order CFM-FDTD scheme in L2-norm. The obtained convergence orders are
in agreement with the theory.
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Fig. 9 Convergence plots in
L2-norm for a TMz mode two
concentric PEC cylinders
problem using the proposed
CFM-FDTD schemes

6.2.3 Two Concentric PEC Cylinders Problem

This problem considers a holed PEC containing a PEC cylinder as illustrated in Fig. 8.
It is recalled that Ω− is a PEC subdomain. We therefore have subdomain Ω+ enclosed
by two PEC walls on Γ1 and Γ2. There are two circular embedded boundaries centered
at (0, 0) with radius r1 = 1

3 and r2 = 1 for respectively Γ1 and Γ2. The domain is Ω =
[−1.25, 1.25]×[−1.25, 1.25] and the time interval is I = [0, 0.75]. The physical parameters
are ε = 1

2 and μ = 1
2 . The time-step size is Δt = h

4 for both CFM-FDTD schemes. In
subdomain Ω+, the solution in cylindrical coordinates is given by

H+
x (ρ, φ, t) = −1

2
sin(ω t + φ) sin(φ)

(
J0(

ω ρ
2 ) − J2(

ω ρ
2 ) + α Y0(

ω ρ
2 ) − α Y2(

ω ρ
2 )

)

− 2 cos(φ)

ω ρ
cos(ω t + φ)

(
J1(

ω ρ
2 ) + α Y1(

ω ρ
2 )

)
,

H+
y (ρ, φ, t) = 1

2
sin(ω t + φ) cos(φ)

(
J0(

ω ρ
2 ) − J2(

ω ρ
2 ) + α Y0(

ω ρ
2 ) − α Y2(

ω ρ
2 )

)

− 2 sin(φ)

ω ρ
cos(ω t + φ)

(
J1(

ω ρ
2 ) + α Y1(

ω ρ
2 )

)
,

E+
z (ρ, φ, t) = cos(ω t + φ)

(
J1(

ω ρ
2 ) + α Y1(

ω ρ
2 )

)
,

where α ≈ 1.76368380110927, ω ≈ 9.813695999428405, and Ji and Yi are the i-order
Bessel function of respectively first and second kind [8]. Convergence plots are illustrated
in Fig. 9 for both proposed CFM-FDTD schemes. As expected, we observe a second and
third order convergence for respectively the CFM-Yee scheme and the CFM-4th scheme in
L2-norm.

6.3 Problems with aManufactured Solution

Let us now consider more complex embedded boundaries. To our knowledge, there is no ana-
lytical solution for Maxwell’s equations with arbitrary embedded boundaries. We therefore
consider that embedded boundary conditions are given by

n̂ × E+ = a(x, t) on Γ × I ,

n̂ · (μ H+) = b(x, t) on Γ × I ,
(19)
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(a) (b)

(c)

Fig. 10 Different geometries of an embedded PEC

where a(x, t) and b(x, t) are known functions. The physical parameters are ε = 1 andμ = 2.
The time-step size is Δt = h

2 for both CFM-FDTD schemes. We also consider the 3-star,
4-star and 5-star embedded boundaries illustrated in Fig. 10. The solutions are

H+
x = 0.5 sin(2π x) sin(2π y) sin(2π t),

H+
y = 0.5 cos(2π x) cos(2π y) sin(2π t),

E+
z = sin(2π x) cos(2π y) cos(2π t)

inΩ+ while H−
x = H−

y = 0 and E−
z = 0 inΩ−. Since functions a and b depend on x and t ,

boundary conditions (19) will differ depending on the geometry of the embedded boundary. It
is worth noting that manufactured solutions are at divergence-free in each subdomain, but not
in thewhole domain because of embedded boundary conditions thatwe impose.Nevertheless,
this allows us to assess the performance of the proposed CFM-FDTD schemes in a more
general framework. The time interval is I = [0, 1]. We set �h = 6 h for the 4-star embedded
boundarywhile �h = 7 h for the 3-star and 5-star embedded boundaries. The other parameters
are the same as problems with analytical solutions in Sect. 6.2. Convergence plots for each
geometry of the embedded boundary are illustrated in Fig. 11 using both proposed CFM-
FDTD schemes. For all embedded boundaries, we observe a clear second-order convergence
for the CFM-Yee scheme. As for the CFM-4th scheme, we observe a third-order convergence
for the 3-star boundary while a fourth-order convergence is obtained for the 4-star and 5-star
boundaries.
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(a)

(b) (c)

Fig. 11 Convergence plots in L2-norm for TMz mode problems with a manufactured solution using the
proposed CFM-FDTD schemes and different geometries of the embedded boundary

6.4 Scattering Problems

Let us now consider scattering problems involving various geometries of a PEC. To our
knowledge, there is no analytic solution for these problems with arbitrary geometries of the
embedded boundary. Hence, we estimate errors using approximate solutions coming from a
very fine mesh grid. The reference solutionU� is computed using h = 1

1620 and the CFM-4th

scheme. All nodes used for H and E in coarser grids with h ∈ { 1
20 ,

1
60 ,

1
180 ,

1
540 } are also

part of the finest grid. The domain is Ω = [−1, 1.5] × [−0.75, 1.75] and the time interval
is I = [0, 1.5]. Periodic conditions are used on all ∂Ω . We consider the 3-star and 5-star
embedded boundaries, and a circular PEC centered at (0.5, 0.5) with a radius of r = 0.25.
The physical parameters are ε = 1 and μ = 1. The mesh grid size is h = Δx = Δy. The
time-step size is Δt = h

2 . The length of local patches is �h = 6 h for the circular PEC, and
�h = 7 h for the 5-star PEC and 3-star PEC. The other parameters are the same as problems
with analytical solutions in Sect. 6.2.
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Let us consider a pulsed wave propagating in the positive x-direction, given by

Hxp (x, t) = 0,

Hyp (x, t) = − 2

σ 2 (x − γ − t) e−
(
x−γ−t

σ

)2
,

Ezp (x, t) = 2

σ 2 (x − γ − t) e−
(
x−γ−t

σ

)2
,

(20)

where σ = 0.1 and γ = −0.3. It is worth mentioning that we use electromagnetic fields
given in (20) to compute all previous solutions needed to initialize the time-stepping method
presented in Sect. 5. It is recalled that we set H−

x = H−
y = 0 and E−

z = 0 in the PEC
subdomain, that is Ω−. Figure 12 illustrates convergence plots for each geometry of the
embedded PEC using both CFM-FDTD schemes. We observe a second and fourth order
convergence for respectively the CFM-Yee scheme and the CFM-4th scheme. Figures 13, 14
and 15 illustrate the evolution of the magnitude of each component of electromagnetic fields.
The numerical approach can handle various geometries of the embedded boundary without
significantly increasing the complexity of the method.

7 A Remark on the Transverse Electric Mode

For the transverse electric (TEz) mode, the unknowns are Ex (x, y, t), Ey(x, y, t) and
Hz(x, y, t), and the system of equations are given by

μ∂t Hz − ∂y Ex + ∂x Ey = 0 in Ω × I ,

ε ∂t Ex − ∂y Hz = 0 in Ω × I ,

ε ∂t Ey + ∂x Hz = 0 in Ω × I ,

∂x Ex + ∂y Ey = 0 in Ω × I

(21)

with the associated boundary, initial conditions and

n̂x E
+
y − n̂ y E

+
x = 0 on Γ × I (22)

as the embedded boundary condition for Ω+. From a CFM point of view, TEz problem (21)
is more challenging than TMz problem (17) because there is no condition on the embedded
boundary for the magnetic field component Hz . We therefore must heavily rely on fictitious
interfaces to estimate the correction function of Hz and choose c f large enough. On the other
hand, as discussed in Sect. 3.1 and shown in Sect. 6.2.1, c f must be chosen small enough to
avoid stability problems. Hence, CFM-FDTD schemes for TEz problem (21) with embedded
boundary condition (22) may exhibit stability issues, particularly for long time simulations
and very refined mesh grids. Nevertheless, we provide some numerical results for a circular
cavity problem and a scattering problem in the following.

For theTEz modeand themeshgrid presented inSect. 6.1, the z-component of themagnetic
field is approximated at the center of the cell while the x-component and y-component of the
electric field are approximated respectively at (xi , y j+1/2) and (xi+1/2, y j ).We consider both
the CFM-Yee and CFM-4th schemes. The error of U = [Ex , Ey, Hz]T at tn is computed
using approximations and analytic solutions of the magnetic field and the electric field at
respectively tn − Δt

2 and tn because of the staggered grid in time.
Let us first begin with a circular cavity problem. The domain of this problem is the same

as in the TMz mode circular cavity problem. In subdomain Ω+, the solution in cylindrical

123



Journal of Scientific Computing (2021) 88 :72 Page 23 of 28 72

(b)

(c)

(a)

Fig. 12 Convergence plots in L2-norm for TMz scattering problems using the proposed CFM-FDTD schemes
and different geometries of the embedded PEC

coordinates is given by

E+
ρ (ρ, φ, t) = i

αi, j ρ
Ji (αi, j ρ) sin(i φ) sin(αi, j t),

E+
φ (ρ, φ, t) = 1

2

(
Ji−1(αi, j ρ) − Ji+1(αi, j ρ)

)
cos(i φ) sin(αi, j t),

H+
z (ρ, φ, t) = −Ji (αi, j ρ) cos(i φ) cos(αi, j t),

where αi, j is the j-th positive real root of the first derivative of the i-order Bessel function of
first kind ∂ρ Ji . In this numerical example, we choose i = 6 and j = 2. The time interval is
I = [0, 3] in which five and a half periods are included. The other parameters are the same
as in Sect. 6.2.1. Convergence plots, illustrated in Fig. 16a, shows a second and third order
convergence for respectively the CFM-Yee scheme and the CFM-4th scheme in L2-norm.
Let us now consider a scattering problem involving the 4-star PEC.We compute the reference
solution U� using h = 1

540 and the CFM-4th scheme. The length in space of local patches is
�h = 6 h. The other parameters are the same as in Sect. 6.4. The pulsed wave propagating in
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Fig. 13 The evolution of the magnitude of components Hx , Hy and Ez with h = 1
100 and Δt = h

2 using the

CFM-4th scheme and the circular embedded PEC. From left to right, we show the computed electric field and
magnetic field at respectively t ∈ {0.4, 0.9, 1.4} and t − Δt

2 . The embedded boundary is represented by the
white line

the positive x-direction is given by

Exp (x, t) = 0,

Eyp (x, t) = 2

σ 2 (x − γ − t) e−
(
x−γ−t

σ

)2
,

Hzp (x, t) = 2

σ 2 (x − γ − t) e−
(
x−γ−t

σ

)2
,

where σ = 0.1 and γ = −0.3. Figure 16b shows convergence plots for both CFM-FDTD
schemes. We observe a second and third order convergence for respectively the CFM-Yee
scheme and the CFM-4th scheme. Numerical results are in agreement with the theory.
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Fig. 14 The evolution of the magnitude of components Hx , Hy and Ez with h = 1
100 and Δt = h

2 using the

CFM-4th scheme and the 5-star embedded PEC. From left to right, we show the computed electric field and
magnetic field at respectively t ∈ {0.4, 0.9, 1.4} and t − Δt

2 . The embedded boundary is represented by the
white line

8 Conclusions

This work proposes FDTD schemes based on the Correction FunctionMethod for Maxwell’s
equations with embedded PEC boundary conditions. The associated minimization problems
are well-posed for an appropriate representation of the embedded boundary within the local
patch, and an appropriate choice of penalization coefficients and fictitious interfaces. How-
ever, fictitious interfaces impact the stability of a CFM-FDTD scheme, which is particularly
noticeable when the TEz mode is used. For the TMz mode, the penalization coefficient asso-
ciated with fictitious interfaces can be chosen small enough to avoid stability problems. We
have applied the CFM to the well-known Yee scheme and a fourth-order staggered FDTD
scheme. It is worth mentioning that the proposed numerical strategy can be implemented as
a black-box to existing softwares. Based on numerical examples, it has been shown that the
proposedCFM-FDTD schemes can handle embedded PECproblemswith various geometries
of the boundary while retaining high-order convergence and without significantly increasing
the complexity of the proposed numerical approach. Future work will further investigate the
stability of CFM-FDTD schemes and extend the proposed schemes in 3-D.
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Fig. 15 The evolution of the magnitude of components Hx , Hy and Ez with h = 1
100 and Δt = h

2 using the

CFM-4th scheme and the 3-star embedded PEC. From left to right, we show the computed electric field and
magnetic field at respectively t ∈ {0.4, 0.9, 1.4} and t − Δt

2 . The embedded boundary is represented by the
white line

(b)(a)

Fig. 16 Convergence plots in L2-norm for a circular cavity problem and the scattering of a 4-star PEC problem
using the TEz mode and the proposed CFM-FDTD schemes
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A Truncation Error Analysis

Asshown in [19], theCFMcan reduce the order in space of anoriginal FDscheme for unsteady
problems. Proposition 3 provides a general result on the order in space of a corrected FD
scheme.

Proposition 3 Let us consider a domain Ω , a time interval I and an interface Γ ⊂ Ω on
which there are interface jump conditions. Assume that the correction function coming from
the CFM is smooth enough and is such that

∂t Û + L (Û + A D̂) = F, (23)

where Û is the vector of true solution values, A is a rectangular matrix with either 0 or
±1 as components, D̂ is the vector of true correction function values, L is a spatial finite
difference operator of order n that approximates q-order derivatives and F is a source term.
A (k + 1)-order approximation of the correction function leads to a corrected FD scheme of
order min{n, k − q + 1} in space.

Proof A (k + 1)-order approximation of D̂ leads to

D = D̂ + O(�k+1
h ),

where �h = β h is the length of the space–time patch,β is a positive constant and h is themesh
grid size. Thediscrete operator L , that approximatesq-order derivatives, involves components
scaled by a factor 1

hq . Hence, L A D = L A D̂ + O(�k+1
h h−q) = L A D̂ + O(hk−q+1). 
�

For problems that do not involve transient derivatives, we have

Û = L−1 F − A D̂

and the order of the corrected FD scheme is then min{n, k + 1}.
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