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Abstract
We propose high-order FDTD schemes based on the Correction Function Method (CFM)
(Marques et al. in J Comput Phys 230:7567–7597, 2011) for Maxwell’s interface problems
with discontinuous coefficients and complex interfaces. The key idea of the CFM is to model
the correction function near an interface to retain the order of a finite difference approxima-
tion. To do so, we solve a system of PDEs based on the original problem by minimizing an
energy functional. The CFM is applied to the standard Yee scheme and a fourth-order FDTD
scheme. The proposed CFM-FDTD schemes are verified in 2-D using the transverse mag-
netic (TMz) mode. Numerical examples include scattering of magnetic and non-magnetic
dielectrics, and problems with manufactured solutions using various complex interfaces and
discontinuous piecewise varying coefficients. Long-time simulations are also performed to
investigate the stability of CFM-FDTD schemes. The proposedCFM-FDTD schemes achieve
up to fourth-order convergence in L2-norm and provide approximations devoid of spurious
oscillations.

Keywords Interface conditions · Maxwell’s equations · Correction function method ·
Finite-difference time-domain · High order

Mathematics Subject Classification 35Q61 · 65M06 · 78M20 · 78A45

1 Introduction

In computational electromagnetics, the development of finite difference (FD) strategies to
tackle Maxwell’s interface problems remains a challenge [27]. Indeed, one should expect
from a numerical approach to treat arbitrary complex geometries of the interface without
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increasing the complexity of the method, achieve high-order convergence to diminish the
phase error for long-time simulations [12], and handle discontinuous coefficients and dis-
continuous solutions, to name a few. The potential lack of regularity of the solution of such
problems is a well-known challenge [10, 16, 18]. Moreover, FD schemes often use simple
Cartesian mesh grids, and therefore the representation of the interface and the enforcement
of interface conditions, fundamental to obtain accurate results, are far from trivial. Hence, a
first approach that consists of a staircased approximation of the interface and the use of the
well-knownYee scheme [25], which is a second-order finite-difference time-domain (FDTD)
scheme, yields a first-order scheme at best and non-convergent approximations in some cases
[8].

Several numerical strategies have been proposed to overcome these issues. A staircase-
free second-order FDTD scheme, which explicitly enforces interface conditions, is proposed
in [8]. This numerical strategy has been verified for non-magnetic dielectric and perfect
electric conductor (PEC) problems using a 2-D transverse magnetic (TM) form ofMaxwell’s
equations [8, 9]. Inspired by the Immersed Interface Method (IIM) [16], an Upwinding
Embedded Boundary (UEB) method has also been developed to obtain a global second-
order scheme to treat magnetic and non-magnetic dielectric problems using a TM form of
Maxwell’s equations [5]. In the same vein, high-order FDTD schemes based on the Matched
Interface and Boundary (MIB) method have been proposed in [28]. These strategies derive
and use jump conditions to correct a finite difference approximation in the vicinity of the
interface. MIB-based strategies were originally limited to non-magnetic dielectrics [21, 28]
but later generalized to consider a discontinuous electromagnetic field at the interface [22,
27] for 2-D forms of Maxwell’s equations. However, the use of complex interfaces and high-
order partial derivatives in jump conditions increase the complexity of a MIB strategy as its
order increases [26, 28]. It is also worth mentioning that high-order FDTD conforming body
approaches have been developed to treat interface conditions for general linear non-magnetic
dispersive media in 2-D and 3-D [3]. These approaches could achieve up to fourth-order
convergence but they use overlapping grids and therefore a more complex mesh grid.

Another avenue consists of FDTD schemes based on the Correction Function Method
(CFM) [18]. Assuming that jumps on the interface can be smoothly extended in its vicin-
ity, the CFM models corrections that are needed to retain the order of a finite difference
approximation close to the interface by a system of PDEs based on the original problem. The
solution of this system of PDEs is referred as the correction function. Approximations of the
correction function are then computed, where it is needed, by minimizing a functional which
is a square measure of the error associated with the correction function’s system of PDEs.
Hence, high-order FDTD schemes can be generated for complex interfaces without signifi-
cantly increasing the complexity of the proposed numerical strategy. The computational cost
increases when compared with the original (i.e.without correction) FD scheme. However, a
parallel implementation of the CFM can be easily performed since minimization problems
needed for the CFM are independent for a given time step [1]. High-order FD schemes based
on the CFM have been originally developed for 2-D Poisson’s equation with piecewise con-
stant coefficients [17–19] as well as 3-D Poisson problems with interface jump conditions
[20]. In computational electromagnetics, the CFM has been extended to the wave equation
[2] and Maxwell’s equations [20] with constant coefficients. It is also worth mentioning that
high-order CFM-FDTD schemes have been proposed to handle embedded PEC problems
[15].

The work presented here generalizes CFM-FDTD approaches to Maxwell’s interface
problems with discontinuous coefficients. We consider two FDTD schemes, namely the Yee
scheme and a fourth-order staggeredFDTDscheme, and correct them following the procedure
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Fig. 1 Geometry of a domain �

with an interface � Γ

n̂
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described in [15]. In addition to scattering of a dielectric problems, we also use problems
with a manufactured solution for which complete discontinuous electromagnetic fields are
considered to demonstrate the robustness and accuracy of the proposed numerical strategy.
Finally, we provide numerical evidences that the correction function implicitly satisfies the
appropriate high-order jump conditions. Consequently, high-order explicit jump conditions
[27, 28] are not required for the presented method.

The paper is organized as follows. In Sect. 2, we introduce aMaxwell’s interface problem.
The Correction Function Method is described in Sect. 3. In this same section, we introduce
the functional to be minimized based on Maxwell’s equations with interface conditions. The
implementation details of the CFM are discussed in Sect. 4. Then, numerical examples are
performed in Sect. 5 to verify properties of the proposed CFM-FDTD schemes. Finally, we
provide conclusion and outlook in Sect. 6.

2 Definition of the Problem

Assume a domain in space � subdivided into two subdomains �+ and �−, and a time
interval I = [0, T ]. The interface � between subdomains is independent of time and allows
the solutions to be discontinuous. Figure 1 illustrates a typical geometry of a domain �.

For a given variable A, we define A+ and A− as respectively the solutions in�+ and�−.
A jump of A on the interface � is denoted as �A� = A+ − A−. Assuming linear media, we
consider Maxwell’s equations with interface conditions that are given by

μ(x) ∂tH + ∇ × E = 0 in � × I , (1a)

ε(x) ∂t E − ∇ × H = 0 in � × I , (1b)

∇ · (ε(x) E) = 0 in � × I , (1c)

∇ · (μ(x) H) = 0 in � × I , (1d)

n̂ × �E� = 0 on � × I , (1e)

n̂ × �H� = 0 on � × I , (1f)

n̂ · �ε(x) E� = 0 on � × I , (1g)

n̂ · �μ(x) H� = 0 on � × I , (1h)

n × H = g1(x, t) on ∂� × I , (1i)

n × E = g2(x, t) on ∂� × I , (1j)

H(x, 0) = H0(x) in �, (1k)

E(x, 0) = E0(x) in �, (1l)
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where H is the magnetic field, E is the electric field, μ(x) > 0 is the magnetic permeability,
ε(x) > 0 is the electric permittivity, n is the unit outward normal to ∂� and n̂ is the unit
normal to the interface � pointing toward �+. Interface conditions are given by Eqs. (1e) to
(1h) while boundary and initial conditions are given by Eqs. (1i) to (1l). Physical parameters,
that is μ and ε, can be discontinuous on the interface. Without loss of generality, we assume
that electromagnetic fields are at divergence-free in �.

3 Correction FunctionMethod

The Correction Function Method (CFM) allows one to find a correction for a given FD
approximation involving nodes that belong to different subdomains in order to retain its
order. For this purpose, the CFM assumes that solutions in each subdomain can be extended
across the interface � in a small domain �� × I , that is such that �� ⊂ � encloses �. A
system of PDEs based on the original problem, namely Maxwell’s interface problem (1) in
our case, models the extension of each variable around the interface. The solution of this
system of PDEs is referred as the correction function. Afterward, we define a functional
that is a square measure of the error associated with the correction function’s system of
PDEs. Approximations of the correction function are then computed, where it is needed,
using a minimization procedure. In practice, the interface is discretized and a local patch
�h

� × I h� ⊂ �� × I is defined for each node of its discretization. Moreover, the size of local
patches depends on the considered FD scheme and should diminish as the mesh grid size
diminishes.

In the following, we derive the system of PDEs that models the smooth extension of each
variable and therefore the correction function. The minimization problem based on an energy
functional is also presented. The details on the implementation of the CFM presented here
are provided in Sect. 4.

Let us first introduce some notations. The inner product in L2
(
�h

� × I h�
)
is defined by

〈v,w〉 =
∫

I h�

∫

�h
�

v · w dV dt

with ‖v‖ = 〈v, v〉, and we also use the notation

〈v,w〉� =
∫

I h�

∫

�∩�h
�

v · w dS dt

with ‖v‖� = 〈v, v〉� for legibility. Unlike previous CFM-FDTD schemes, we cannot explic-
itly model jumps DH = �H� and DE = �E� because of discontinuous coefficients. Hence,
we first need to estimate H+, E+, H− and E− in the whole patch, and afterward compute
an approximation of DH and DE . The system of PDEs for correction functions is then given
by

μ+(x) ∂tH+ + ∇ × E+ = 0 in �h
� × I h�,

ε+(x) ∂t E+ − ∇ × H+ = 0 in �h
� × I h�,

∇ · (ε+(x) E+) = 0 in �h
� × I h�,

∇ · (μ+(x) H+) = 0 in �h
� × I h�,

μ−(x) ∂tH− + ∇ × E− = 0 in �h
� × I h�,
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ε−(x) ∂t E− − ∇ × H− = 0 in �h
� × I h�,

∇ · (ε−(x) E−) = 0 in �h
� × I h�,

∇ · (μ−(x) H−) = 0 in �h
� × I h�,

n̂ × �E� = 0 on � ∩ �h
� × I h�,

n̂ × �H� = 0 on � ∩ �h
� × I h�,

n̂ · �ε(x) E� = 0 on � ∩ �h
� × I h�,

n̂ · �μ(x) H� = 0 on � ∩ �h
� × I h�, (2)

Following the procedure described in [14] to construct a functional that is a square measure
of the error associated with system (2) leads to an ill-posed minimization problem. As in
CFM-FDTD strategies for embedded perfect electric conductors [15], we can take advantage
of FD approximations at previous time steps using fictitious interface conditions to retrieve
a well-posed minimization problem. Fictitious interface conditions are given by

n̂◦
1,i × (E◦ − E◦,∗) = 0 on �◦

1,i × I h� for i = 1, . . . , N ◦
1 ,

n̂◦
2,i × (H◦ − H◦,∗) = 0 on �◦

2,i × I h� for i = 1, . . . , N ◦
2 ,

n̂◦
3,i · (E◦ − E◦,∗) = 0 on �◦

3,i × I h� for i = 1, . . . , N ◦
3 ,

n̂◦
4,i · (H◦ − H◦,∗) = 0 on �◦

4,i × I h� for i = 1, . . . , N ◦
4 ,

(3)

where ◦ is either + or − depending in which subdomain the fictitious interface �◦
k,i belongs,

n̂◦
k,i is the normal associated with �◦

k,i , N
◦
k is the number of fictitious interfaces, and H◦,∗

and E◦,∗ are approximations of the magnetic field and the electric field that come from a FD
scheme.

The quadratic functional to minimize is therefore given by

J (H+, E+, H−, E−) = �h

2

∥∥μ+ ∂tH+ + ∇ × E+∥∥ + �h

2

∥∥ε+ ∂t E+ − ∇ × H+∥∥

+ �h

2

∥
∥∇ · (ε+ E+)

∥
∥ + �h

2

∥
∥∇ · (μ+ H+)

∥
∥ + �h

2

∥
∥μ− ∂tH− + ∇ × E−∥

∥

+ �h

2

∥∥ε− ∂t E− − ∇ × H−∥∥ + �h

2

∥∥∇ · (ε− E−)
∥∥ + �h

2

∥∥∇ · (μ− H−)
∥∥

+ cp
2

∥∥n̂ × (E+ − E−)
∥∥
�

+ cp
2

∥∥n̂ × (H+ − H−)
∥∥
�

+ cp
2

∥
∥n̂ · (ε+ E+ − ε− E−)

∥
∥
�

+ cp
2

∥
∥n̂ · (μ+ H+ − μ− H−)

∥
∥
�

+ c f
2 NE+

N+
1∑

i=1

∥
∥n̂+

1,i × (E+ − E+,∗)
∥
∥
�+
1,i

+ c f
2 NH+

N+
2∑

i=1

∥∥n̂+
2,i × (H+ − H+,∗)

∥∥
�+
2,i

+ c f
2 NE+

N+
3∑

i=1

∥∥n̂+
3,i · (E+ − E+,∗)

∥∥
�+
3,i

+ c f
2 NH+

N+
4∑

i=1

∥
∥n̂+

4,i · (H+ − H+,∗)
∥
∥
�+
4,i
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+ c f
2 NE−

N−
1∑

i=1

∥∥n̂−
1,i × (E− − E−,∗)

∥∥
�−
1,i

+ c f
2 NH−

N−
2∑

i=1

∥
∥n̂−

2,i × (H− − H−,∗)
∥
∥
�−
2,i

+ c f
2 NE−

N−
3∑

i=1

∥∥n̂−
3,i · (E− − E−,∗)

∥∥
�−
3,i

+ c f
2 NH−

N−
4∑

i=1

∥∥n̂−
4,i · (H− − H−,∗)

∥∥
�−
4,i

,

where cp > 0 and c f > 0 are penalization coefficients, �h is the characteristic length in
space of the patch, NE◦ = N ◦

1 + N ◦
3 and NH◦ = N ◦

2 + N ◦
4 . Integrals over the domain are

scaled by �h to guarantee that all terms in the functional J behave in a similar way when the
computational grid is refined [14]. The problem statement is then

Find (H+, E+, H−, E−) ∈ V × W × V × W such that

(H+, E+, H−, E−) ∈ argmin
v+,v−∈V
w+,w−∈W

J (v+,w+, v−,w−), (4)

where W = V . Let us recall that we assume divergence-free electromagnetic fields in �.
We therefore minimize the functional J in a divergence-free space-time polynomial space,
namely

V = {
v ∈ [

Pk(�h
� × I h�

)]3 : ∇ · v = 0
}
,

where Pk denotes the space of polynomials of degree k. It is worth mentioning that basis
functions of V are based on Legendre polynomials and high-degree divergence-free basis
functions proposed in [7].

Remark 1 Using a truncation error analysis, one can show that the order of a CFM-FDTD
scheme for Maxwell’s equations (1) is min{n, k} where n is the order of the considered FD
scheme and k is the degree of the space-time polynomial space used in minimization problem
(4) [15].

Remark 2 The correction function’s system of PDEs on which functional J is based models
the extension of each electromagnetic field in the vicinity of the interface while satisfying
interface conditions. Hence, by construction and consistency, explicit jump conditions on
the interface used for Matched Interface and Boundary based strategies [27, 28] should be
implicitly satisfied. Since jump conditions are linear combinations of partial derivatives of
correction functions, one should expect a (k + 1 − q) order of convergence for a q-order
jump condition, that is a jump condition involving derivatives of order q , when k degree
polynomial approximations of correction functions are used. This claim is supported by
numerical evidences presented in Sect. 5.1.

Remark 3 It is recalled that fictitious interface conditions are used to retrieve a well-posed
minimization problem. Regarding the value of c f , the priority should be given to interface
conditions and therefore cp > c f > 0. Moreover, c f should also diminish as the mesh grid
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size diminishes to enforce again interface conditions. It is worth mentioning that fictitious
interfaces impact the stability of a FDTD scheme when the CFM is applied. As mentioned in
[15], the stability analysis of a CFM-FDTD scheme that uses fictitious interface conditions
(3) is not trivial. Despite the lack of a rigorous proof, a sufficient small value of c f seems to
avoid any stability issues that would stem from the CFM. However, one should be aware that
a too small value of c f could lead to poorly conditioned matrices coming from minimization
problem (4). We also assume that the stability condition of a CFM-FDTD scheme should be
close to the one associated with the original (i.e.without correction) FDTD scheme.

4 Implementation of the CFM

In this section, we provide some technical details on the implementation of the CFM.We first
begin by a description of the computation of fictitious interface conditions and local patches.
Afterward, the implementation of the minimization procedure is discussed.

4.1 Computation of Fictitious Interface Conditions

Fictitious interface conditions (3), which are needed to retrieve a well-posed minimization
problem, use fictitious interfaces �k,i on which previous computed FD approximations, that
is H∗ and E∗, are available. In the following, we provide the main steps of the computation
of fictitious interface conditions.

We first generate the fictitious interfaces in such a way that they are aligned with the
mesh grid and that their endpoints coincide with mesh grid nodes. Hence, the normal n̂k,i
associated with these fictitious interfaces is an element of the standard basis in R

3. This
also provides us the interval of integration in space associated with each fictitious interface
and facilitates the computation of space-time interpolants that are needed to compute the
associated integrals in minimization problem (4). Figure 2 illustrates an example of fictitious
interfaces in subdomain �+ that could be generated in a 2-D local patch when a staggered
grid is used. Regarding the interval of integration in time, this strongly depends on the chosen
time-stepping method and can be defined beforehand. As an example, we refer the reader to
Sections 4 and 5 of [15] where the CFM is applied on the Yee scheme and a fourth-order
staggered FDTD scheme. Once fictitious interfaces are generated, we can identify the mesh
grid nodes that coincide with them and therefore their associated FD approximations. This
allows us to directly construct space-time Lagrange polynomials using FD approximations
of previous time steps and use them to compute space-time integrals involving fictitious
interface conditions in the minimization problem.

Remark 4 The initialization of CFM-FDTD schemes can be difficult because of time integrals
involving H∗ and E∗. An initialization strategy has been proposed in [15] for the Yee scheme
and a fourth-order FDTD scheme based on a multistep method. It is worth mentioning that
this initialization strategy is also used in this work. Another approach, which is specific to
some applications, consists to assume that electromagnetic fields close to the interface remain
unchanged for t ≤ t0.
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Γ

Ωh
Γ

Ω−

Ω+

(a) Fictitious interfaces for Hx

Γ

Ωh
Γ

Ω−

Ω+

(b) Fictitious interfaces for Hy

Γ

Ωh
Γ

Ω−

Ω+

(c) Fictitious interfaces for Ez

Fig. 2 An example of a local patch�h
� with fictitious interfaces in subdomain�+. The x-component and the y-

component of the magnetic field are respectively represented by ◦ and�while the z-component of the electric
field is represented by •. Fictitious interfaces associated with n1 = (1, 0) and n2 = (0, 1) are respectively
represented by and . Reprinted by permission from Springer Nature Customer Service Centre GmbH:
Springer Nature, Journal of Scientific Computing, FDTD Schemes for Maxwell’s equations with Embedded
Perfect Electric Conductors Based on the Correction Function Method, Y.-M. Law and J.-C. Nave, Copyright
2021 (Color figure online)

4.2 Computation of Local Patches

The accuracy of approximations of correction functions depends strongly on local patches
used in the minimization procedure. Indeed, the interface � must be well-represented within
the patch since the information used to estimate correction functions, that is interface con-
ditions (1e) to (1h), stem from it. To achieve this, we directly discretize the interface as it
is done for immersed boundary methods [13, 15, 23]. Let us assume a 2-D domain and a
parametrization of the interface � with respect to s ∈ [sa, sb]. The number of local patches
is given by

Ns ≈ L�

α h
+ 1

where α is a positive constant, h is the mesh grid size and L� is the estimated arc length of
the interface. Thus, the coordinates of the centre point of local patches are

xc,i = (x(si ), y(si ))

for i = 0, . . . , Ns − 1, where si = sa + i �s and �s = sb−sa
Ns−1 .
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Once these centre points are determined, the domain �h
� × I h� of local patches is com-

puted. The size in space of local patches �h should depend on the mesh grid size, that is
�h = β max{�x,�y,�z}, where β is a positive constant. The choice of β depends on the
considered FD scheme and must allow the construction of enough fictitious interfaces within
the local patch. To ease the implementation, local patches are taken aligned with the mesh
grid and square in space. The time domain I h� depends on the chosen time-stepping method
and we refer to [15] for some examples involving staggered grids in time. Afterward, each
node to be corrected is associatedwith its closest xc,i and therefore with a local patch. Finally,
it is worth noting that the node to be corrected must also be included in its local patch.

4.3 Minimization Problems

Theminimization procedure is of foremost importance for the CFM since thismethod heavily
relies on it to compute estimations of correction functions that are used to retain the order
of a given FD scheme. Moreover, minimization problems could increase dramatically the
computational cost of a CFM-FDTD scheme if the minimization procedure is not properly
implemented. In the following, we describe the minimization procedure and provide some
details on its implementation.

Computing Gateaux derivatives of functional J and using a necessary condition to obtain
a minimum, we obtain a linear system of the form

M c = c f b f + cp b� (5)

where c is a vector containing the coefficients of polynomial approximations of correction
functions, and b� and b f are associatedwith terms involving respectively interface conditions
and fictitious interface conditions. It is worth mentioning that b� = 0 forMaxwell’s interface
problem (1). The computation of the vector b f involves the space-time integration of H∗
and E∗, which come from previous computed FD approximations and are therefore known.

Since the time domain I h� of local patches translates as the time increases, we only need
to compute one matrix M for each space domain �h

� . Let us assume a single interface, we
therefore have a total of Ns different matrices M to compute. One should compute these
matrices, their scaling and LU factorizations beforehand. Otherwise, the computational time
of a CFM-FDTD scheme will be much greater than the one of its original FDTD scheme.
Once this is done, we therefore need to compute the right-hand side of system (5), perform a
forward substitution and a back substitution to obtain c, and estimate correction functions at
the appropriate nodes for each local patch and at each time step. It is worth mentioning that
the computational cost of a single minimization problem does not increase as the mesh grid
size diminishes. However, the number of local patches Ns , which scales as 1

h , increases as h
diminishes. In general, the computational cost of the CFM scales as Nd−1 for a uniformmesh
grid of Nd nodes, where d is the dimension and N is the number of nodes in each dimension
[17]. Hence, the computational cost of the CFM becomes less significant for large problems.
Although it is not used in this work, it is worth mentioning that a parallel implementation
of the CFM can be easily performed since minimization problems needed for the CFM are
independent at each time step [1]. This could therefore further reduce the cost of the CFM.

Remark 5 For schemes that use staggeredgrids in time, one should be carefulwhen computing
minimization problems. Let us consider the Yee scheme as an example. For this scheme, we
need two sets of minimization problems. A set for the update of the magnetic field at tn+1/2

and another one for the update of the electric field at tn+1.
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5 Numerical Examples

In this section, we perform convergence analysis and long-time simulations in 2-D to verify
the proposed numerical strategy. We consider the transverse magnetic (TMz) mode. Hence,
for a domain � ⊂ R

2, Maxwell’s equations are simplified to

μ(x, y) ∂t Hx + ∂y Ez = 0 in � × I ,

μ(x, y) ∂t Hy − ∂x Ez = 0 in � × I ,

ε(x, y) ∂t Ez − ∂x Hy + ∂y Hx = 0 in � × I ,

∂x (μ(x, y) Hx ) + ∂y(μ(x, y) Hy) = 0 in � × I ,

(6)

with the associated interface, boundary and initial conditions. In this 2-D simplification of
Maxwell’s equations, electromagnetic fields are continuous across the interface between the
vacuum and a non-magnetic dielectric material. However, for a magnetic dielectric material,
the electric field is still continuous across the interface while the magnetic field could be
discontinuous.

We consider two different FDTD schemes, namely the Yee scheme and a fourth-order
FDTD scheme, which is referred as the FD-4th scheme in this work. The latter FDTD scheme
also uses staggered grids in both space and time. More specifically, space derivatives are
estimated with the fourth-order centered FD approximation for staggered grids while time
derivatives are estimated using a fourth-order staggered free-parameter multistep method
[11]. Considering ∂tH = f H (E) and ∂t E = f E (H), the considered fourth-order time-
stepping method is given by

Hn+1/2 = − α3 Hn−1/2 − α2 Hn−3/2 − α1 Hn−5/2 − α0 Hn−7/2+
�t

(
β3 f H (En) + β2 f H (En−1) + β1 f H (En−2)

)
,

En+1 = − α3 En − α2 En−1 − α1 En−2 − α0 En−3+
�t

(
β3 f E (Hn+1/2) + β2 f E (Hn−1/2) + β1 f E (Hn−3/2)

)
,

where β1 = t , β2 = s, β3 = 1
22 s + 12

11 ,

α0 = − 1

22
− 1

528
s + 1

24
t,

α1 = 5

22
+ 9

176
s − 9

8
t,

α2 = − 9

22
− 201

176
s + 9

8
t,

α3 = − 17

22
+ 577

528
s − 1

24
t

with s = −1 and t = 1.045.
The associated CFM-FDTD schemes are then the CFM-Yee scheme and the CFM-4th

scheme. We refer to [15] for more details on the application of the CFM on these two FDTD
schemes. Since a staggered grid in time is used, the error of U = [Hx , Hy, Ez]T at a given
time t is computed using approximations and exact solutions of the magnetic field and the
electric field at respectively t − �t

2 and t .
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5.1 Scattering of a Dielectric Cylinder Problems

Let us consider a dielectric cylinder in free-space exposed to a TMz excitation wave. The
interface is a circle of radius r0 = 0.6 centered at (0, 0). The exact solution in cylindrical
coordinates is given by the real part of

Hθ (r , θ, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− i k−
ω μ−

∞∑

n=−∞
C tot
n J ′

n(k− r) ei (n θ+ω t), if r ≤ r0,

− i k+
ω μ+

∞∑

n=−∞
(i−n J ′

n(k+ r) + Cscat
n H (2)′

n (k+ r)) ei (n θ+ω t), if r > r0,

Hr (r , θ, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− 1
ω μ− r

∞∑

n=−∞
n C tot

n Jn(k− r) ei (n θ+ω t), if r ≤ r0,

− 1
ω μ+ r

∞∑

n=−∞
n (i−n Jn(k+ r) + Cscat

n H (2)
n (k+ r)) ei (n θ+ω t), if r > r0,

Ez(r , θ, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

n=−∞
C tot
n Jn(k− r) ei (n θ+ω t), if r ≤ r0,

∞∑

n=−∞
(i−n Jn(k+ r) + Cscat

n H (2)
n (k+ r)) ei (n θ+ω t), if r > r0,

with

C tot
n = i−n

k+
μ+ (J ′

n(k
+ r0) H

(2)
n (k+ r0) − H (2)′

n (k+ r0) Jn(k+ r0))

k−
μ− J ′

n(k
− r0) H

(2)
n (k+ r0) − k+

μ+ H (2)′
n (k+ r0) Jn(k− r0)

,

Cscat
n = i−n

k+
μ+ J ′

n(k
+ r0) Jn(k− r0) − k−

μ− J ′
n(k

− r0) Jn(k+ r0)

k−
μ− J ′

n(k
− r0) H

(2)
n (k+ r0) − k+

μ+ H (2)′
n (k+ r0) Jn(k− r0)

,

where i is the imaginary number, k◦ = ω
√

μ◦ ε◦, ω = 2π , Jn is the n-order Bessel function
of first kind and H (2)

n is the n-order Hankel function of second kind [5, 24].
Since this work focuses on the treatment of interface conditions, we therefore enforce the

exact solution on the boundary ∂� of the domain � = [−1, 1] × [−1, 1] instead of using
absorbing boundary conditions. For the Yee and CFM-Yee schemes, we impose Dirichlet
boundary conditions on all ∂�. As for the FD-4th and CFM-4th schemes, we directly enforce
the exact solution on nodes that are close to the boundary ∂� and on which the fourth-order
centered FD scheme cannot be used.

The time interval is I = [0, 1]. The mesh grid size is h = �x = �y with h ∈{ 1
20 ,

1
28 ,

1
40 ,

1
52 ,

1
72 ,

1
96 ,

1
132 ,

1
180 ,

1
244 ,

1
336

}
and the time-step size is�t = h

2 . For both CFM-
FDTD schemes, we choose α = 6 and �h = 7 h to construct local patches, and we use at least
a second degree interpolating polynomial in space to construct H∗ and E∗ that are needed
for fictitious interface conditions (3). We set c f = �t and c f = �t

4 for respectively the
CFM-Yee and CFM-4th schemes while cp = 1 for both schemes. Second and third degree
polynomial approximations of correction functions are chosen for respectively the CFM-Yee
and CFM-4th schemes.

Let us first consider μ+ = μ− = 1, ε+ = 1 and ε− = 2.25. This corresponds to a
non-magnetic dielectric material, and therefore Hx , Hy and Ez are continuous across the
interface. Figure 7a illustrates the convergence plot of U = [Hx , Hy, Ez]T for both CFM-
FDTD schemes and their original FDTD schemes, that is without correction. We observe a
rough second-order convergence in L2-norm for the Yee scheme while a clear second-order
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Fig. 3 Convergence plots for scattering of a dielectric cylinder problems withμ+ = 1, ε+ = 1 and ε− = 2.25
using the proposed CFM-FDTD schemes and their associated original FDTD schemes. It is recalled that
U = [Hx , Hy , Ez ]T

Hx Hy Ez

(a) non-magnetic dielectric material (μ+ = μ− = 1, ε+ = 1 and ε− = 2.25)

Hx Hy Ez

(b) magnetic dielectric material (μ+ = 1, μ− = 2, ε+ = 1 and ε− = 2.25)

Fig. 4 The components Hx , Hy and Ez with h = 1
244 for scattering of a dielectric cylinder problems using

the CFM-4th scheme. The approximate electric field and magnetic field are shown respectively at t = 1 and
t − �t

2 . The interface is represented by the black line (Color figure online)

convergence is obtained for the CFM-Yee scheme. A rough second-order convergence is also
observed for the FD-4th scheme, which is suboptimal. This could be explained by the use of
a staircased approximation of the interface, which leads to a first-order approximation of the
geometry of the problem, and by the fact that interface conditions are not explicitly enforced
[8]. For the CFM-4th scheme, a fourth-order convergence is retrieved, which is better than
expected (see Remark 1). Numerical solutions computed with the CFM-4th scheme at t = 1
are illustrated in Fig. 4a.
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Fig. 5 The CPU time of time iterations in function of the mesh grid size for scattering of a dielectric cylinder
problems withμ+ = 1, ε+ = 1 and ε− = 2.25 using the proposed CFM-FDTD schemes and their associated
original FDTD schemes
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Fig. 6 The error in L2-norm in function of the CPU time of time iterations for scattering of a dielectric cylinder
problems withμ+ = 1, ε+ = 1 and ε− = 2.25 using the proposed CFM-FDTD schemes and their associated
original FDTD schemes. It is recalled that U = [Hx , Hy , Ez ]T
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Fig. 7 The detailed CPU time in function of the mesh grid size for scattering of a dielectric cylinder problems
with μ+ = 1, ε+ = 1 and ε− = 2.25 using the CFM-4th scheme
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Let us now consider a magnetic dielectric material. We choose μ+ = 1, μ− = 2, ε+ = 1
and ε− = 2.25. In this case, the components of the magnetic field are discontinuous while the
z-component of the electric field is still continuous across the interface. Figure 7b illustrates
the convergence plot of electromagnetic fields for all considered FDTD schemes. Both the
Yee andFD-4th schemes have a convergence order lower than one,which is expected since the
magnetic field is discontinuous across the interface. A second and fourth order convergence in
L2-norm are observed for respectively the CFM-Yee and CFM-4th schemes. Thus, the CFM
allows one to retain the order of a given FDTD scheme while enforcing interface conditions.
These results are in agreement with the theory. Figure 4b illustrates the approximation of
Hx , Hy and Ez at t = 1 using the CFM-4th scheme.

5.1.1 Computational Time of the CFM

Let us now assess the extra computational time associated with the CFM by computing CPU
times of all FDTD schemes in both magnetic and non-magnetic cases. The computational
time is computed using the BenchmarkTools package [6] available in the Julia programming
language [4]. Figures 5 and 6 show respectively the CPU time of time iterations in function
of the mesh grid size and the error in L2-norm in function of the CPU time of time iterations
for all FDTD schemes and both cases. As shown in Fig. 5, a CFM-FDTD scheme takes
more computational time than its original FDTD scheme for a given mesh grid size. As
expected, we also observe that the computational time of the CFM increases with the degree
of the polynomial space of correction functions’ approximations or when the number of
local patches increases, that is when the mesh grid size diminishes. However, since the CFM
retains the order of a given FDTD scheme, FDTD schemes based on the CFM take much
less time than their original FDTD schemes to reach a given error, as illustrated in Fig. 6.
This is particularly noticeable for the magnetic case and for the CFM-4th scheme. Figure 7
shows the total CPU time, and those for the overhead treatment needed for the CFM, that
is the computation of local patches and the construction of the matrices M (see Sect. 4.3),
and time iterations in function of the mesh grid size when the CFM-4th scheme is used. As
the mesh grid size diminishes, the cost of the overhead part of the CFM becomes negligible
when compared with the CPU time of time iterations.

5.1.2 Verification of the Accuracy of Correction Functions

In this subsection, we assess the accuracy of the estimated correction functions coming from
minimization problem (4) using high-order explicit jump conditions [27, 28]. Matched Inter-
face andBoundary (MIB) based strategies use these conditions to construct high-order FDTD
schemes. As mentioned in Remark 2, the correction function’s system of PDEs implicitly
considers jump conditions coming from Maxwell’s equations (1). To provide numerical evi-
dences of this claim, we compute the error on these jump conditions on all local patches
using

( ∫

�∩�h
�

�u(x, T )�2 dS
)1/2

,

where �u(x, T )� is a given jump condition evaluated with approximate solutions of prob-
lem (4) at the final time T = 1. Afterward, the maximum error value on all local patches for a
given order of jump conditions is taken and is denoted by Eq for the q-order jump condition.
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Fig. 8 Convergence plots of jump conditions for a scattering of a non-magnetic dielectric cylinder problem
(μ+ = μ− = 1) using the proposed CFM-FDTD schemes. The red lines represent the observed convergence
reference curves (Color figure online)

For a non-magnetic dielectric material, high-order jump conditions can be derived by
using the continuity of time derivatives of electromagnetic fields on the interface [28] and
are given by:

zeroth-order

⎧
⎨

⎩

�Hx � = 0,
�Hy� = 0,
�Ez� = 0,

first-order

⎧
⎨

⎩

�∂y Ez� = 0,
�∂x Ez� = 0,
� 1

ε
(∂x Hy − ∂y Hx )� = 0,

second-order

⎧
⎨

⎩

� 1
ε

(∂2x Ez − ∂2y Ez)� = 0,
� 1

ε
(∂2y Hx − ∂2xy Hy)� = 0,

� 1
ε

(∂2x Hy − ∂2xy Hx )� = 0,

third-order

⎧
⎪⎨

⎪⎩

� 1
ε

(∂3xxy Ez + ∂3y Ez)� = 0,
� 1

ε
(∂3x Ez + ∂3xyy Ez)� = 0,

� 1
ε2

(∂3x Hy + ∂3xyy Hy − ∂3y Hx − ∂3xxy Hx )� = 0.

Figure 8 illustrates convergence plots of those jump conditions at T = 1 for both CFM-
FDTD schemes. We observe that the convergence order for all jump conditions is better than
expected (see Remark 2).
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(a) zeroth-order jump conditions
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Fig. 9 Convergence plots of jump conditions for a scattering of a magnetic dielectric cylinder problem with
μ+ = 1 and μ− = 2 using the proposed CFM-FDTD schemes. The red lines represent the observed conver-
gence reference curves (Color figure online)

Let us now consider a magnetic dielectric material. Considering a point p = (xp, yp)
on the interface �, one can define a local coordinate system based on the normal n and the
tangent τ to the interface at p, and derive explicit jump conditions coming from Maxwell’s
equations (1) [27]. In this local coordinate system, zeroth and first order jump conditions are
given by

zeroth-order

⎧
⎨

⎩

�Hτ � = 0,
�μ Hn� = 0,
�Ez� = 0,

first-order

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�∂τ Ez� = 0,
� 1

μ
∂n Ez� = 0,

�∂n(μ Hn) + ∂τ (μ Hτ )� = 0,

�∂n(μ Hτ ) − ∂τ (μ Hn) − ∂t (μ ε Ez)� = 0.

(7)

Convergence plots of zeroth and first order jump conditions at T = 1 are shown in Fig. 9
for both CFM-FDTD schemes. A third-order convergence is observed for zeroth and first
order jump conditions when the CFM-Yee scheme is used. As for the CFM-4th scheme, a
fourth-order convergence is obtained for zeroth-order jump conditions while a three and a
half order convergence is observed for first-order jump conditions. According to numerical
results, approximations of correction functions coming from minimization problem (4) are
consistent with high-order explicit jump conditions coming from Maxwell’s equations (1)
and therefore are appropriate to correct FD approximations in the vicinity of the interface.

5.2 Problems with aManufactured Solution

To our knowledge, there is no analytic solution for Maxwell’s interface problems with an
arbitrary geometry of the interface. In order to verify the proposed numerical strategy, general
interface conditions, given by

n̂ × �E� = a(x, t) on � × I , (8a)

n̂ × �H� = b(x, t) on � × I , (8b)
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Fig. 10 Different geometries of the interface

n̂ · �ε(x) E� = c(x, t) on � × I , (8c)

n̂ · �μ(x) H� = d(x, t) on � × I , (8d)

are considered. Hence, both tangential and normal components of electromagnetic fields can
be discontinuous on the interface. Moreover, electromagnetic fields are at divergence-free
in each subdomain, but not necessarily in the whole domain because of interface conditions
(8c) and (8d). Source terms in each subdomain are given by f+

1 (x, t) and f−
1 (x, t) for

Faraday’s law (1a), and by f+
2 (x, t) and f−

2 (x, t) for Ampère-Maxwell’s law (1b). It is
worth mentioning that these source terms and interface conditions are not substantiated by
physics. Nevertheless, they can be used to construct manufactured solutions that are needed
to verify the proposed numerical strategy for arbitrary complex interfaces.

The domain is � = [0, 1] × [0, 1] and the time interval is I = [0, 1]. The physical
parameters are given by μ+ = 2, ε+ = 1, μ− = sin(5π x y) + 2 and ε− = 2 ex y .
The magnetic permeability and electric permittivity have been chosen in such a way that
electromagnetic fields are at divergence-free in each subdomain. The manufactured solutions
are:

H+
x = 0.5 sin(2π x) sin(2π y) sin(2π t),

H+
y = 0.5 cos(2π x) cos(2π y) sin(2π t),

E+
z = sin(2π x) cos(2π y) cos(2π t)

in �+, and

H−
x = − x e−x y sin(2π t),

H−
y = y e−x y sin(2π t),

E−
z = sin(2π x y) cos(2π t)

in �−. The associated source terms are f+
1 = 0, f +

2 = 0,

f −
1,x = 2π x

(
cos(2π x y) − (sin(5π x y) + 2) e−x y) cos(2π t),

f −
1,y = 2π y

(
(sin(5π x y) + 2) e−x y − cos(2π x y)

)
cos(2π t),

f −
2 = (

(x2 + y2) e−x y − 4π ex y sin(2π x y)
)
sin(2π t).

We consider geometries of the interface that are illustrated in Fig. 10. Periodic
boundary conditions are imposed on all ∂� for both CFM-FDTD schemes. The mesh
grid size is h = �x = �y and the time-step size is �t = h

2 with h ∈{ 1
20 ,

1
28 ,

1
40 ,

1
52 ,

1
72 ,

1
96 ,

1
132 ,

1
180 ,

1
244 ,

1
336 ,

1
460

}
. All other parameters are the same as in

Sect. 5.1. Figure 11 shows convergence plots ofU = [Hx , Hy, Ez]T for all geometries of the
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Fig. 11 Convergenceplots for problemswith amanufactured solutionusing the proposedCFM-FDTDschemes
and various geometries of the interface. It is recalled that U = [Hx , Hy , Ez ]T

interface. We observe a second-order convergence in L2-norm for the CFM-Yee scheme. As
for the CFM-4th scheme, a global fourth-order convergence is observed using the L2-norm
for all interfaces. These results are in agreement with the theory. Figure 12 illustrates the
approximate solutions for different geometries of the interface. One can observe that there is
no spurious oscillation in the vicinity of the interface.

5.3 Stability Investigation: Long-Time Simulations

As mentioned in Remark 3, a rigorous stability analysis of CFM-FDTD schemes is out of
reach for the moment. In this short subsection, we therefore investigate the stability of CFM-
FDTD schemes using long-time simulations. We consider a problem with a manufactured
solution and a 3-star interface presented in Sect. 5.2. We use the CFM-Yee and CFM-4th
schemes. We consider a larger time interval, given by I = [0, 300], and different values
of the penalization coefficient c f associated with fictitious interface conditions. All other
parameters remain the same as previously described.

Figure 13(a) illustrates the evolution of the error in L2-norm of electromagnetic fields
using the CFM-Yee scheme, h = 1

80 and different values of the penalization coefficient
c f . The CFM-Yee scheme seems to be stable for a sufficient low value of c f , that is �t2

in this case. We also observe that the error increases as c f diminishes. Figure 13(b) shows
the evolution of the error for various mesh grid sizes using c f = �t2. For all mesh grids,
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Fig. 12 The components Hx , Hy and Ez with h = 1
336 for problems with a manufactured solution using the

CFM-Yee scheme and various geometries of the interface. The approximate electric field and magnetic field
are shown respectively at t = 0.625 and t − �t

2

numerical results suggest that the CFM-Yee scheme is stable for the considered value of c f .
Figure 14(a) illustrates the evolution of the error in L2-norm using the CFM-4th scheme,
h = 1

80 and various values of c f . In contrast to the CFM-Yee scheme, an error growth appears
after t = 65 even for the smallest considered penalization coefficient, that is c f = �t3.
Figure 14(b) shows the evolution of the error for various mesh grid sizes using c f = �t3.
As the mesh grid size diminishes, the error growth seems to occur at a larger time.

As mentioned in Remark 3, a sufficient small value of c f should avoid any stability
issues that would stem from the CFM. To provide numerical evidences of this claim, we
perform long-time simulations using the Yee and FD-4th schemes with the same settings
as their associated CFM-FDTD schemes. Figure 15 illustrates the evolution of the error in
L2-norm for various mesh grid sizes using both schemes. Although these schemes provide
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Fig. 13 Evolution of the error in L2-norm ofU = [Hx , Hy , Ez ]T for a problem with a manufactured solution
using a 3-star interface, the CFM-Yee scheme, and different mesh grid sizes and values of c f
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Fig. 14 Evolution of the error in L2-norm ofU = [Hx , Hy , Ez ]T for a problem with a manufactured solution
using a 3-star interface, the CFM-4th scheme, and different mesh grid sizes and values of c f

non-convergent approximations, we can observe that the Yee scheme is stable while there
are error growths when we use the FD-4th scheme. It worth noting that these error growths
occur around the same time as when we consider its associated CFM-FDTD scheme. Thus, a
CFM-FDTD scheme inherits the stability properties of the associated original FDTD scheme
for a sufficient small c f while retaining its order.

5.4 Scattering of a Magnetic Dielectric Problems

Let us consider scattering problems involving various geometries, which are illustrated in
Fig. 10, of a magnetic dielectric material in free-space. We assume the subdomain �− to
be a magnetic dielectric material and therefore this subdomain is enclosed by the interface
�. The domain is � = [−1, 1.5] × [−0.75, 1.75] and the time interval is I = [0, 1.5].
We set μ+ = 1, μ− = 2, ε+ = 1 and ε− = 2.5. The components of the magnetic field
could therefore be discontinuous across the interface �. Periodic boundary conditions are
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Fig. 15 Evolution of the error in L2-norm ofU = [Hx , Hy , Ez ]T for a problem with a manufactured solution
using a 3-star interface with either the Yee scheme or the FD-4th scheme. We consider different mesh grid
sizes, that is h ∈ { 1
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Fig. 16 Convergence plots for scattering of a magnetic dielectric problems using the proposed CFM-FDTD
schemes and various geometries of the interface. It is recalled that U = [Hx , Hy , Ez ]T
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Fig. 17 Convergence plots of the zeroth and first order jump conditions for scattering of a magnetic dielectric
problems using the CFM-4th scheme and various geometries of the interface. The red lines represent the
observed convergence reference curves (Color figure online)
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Fig. 18 The electromagnetic fields along the x-axis at y ≈ 0.3253 for Hx , and y = 0.3250 for Hy and Ez

for the scattering of a circular magnetic dielectric problem using the CFM-4th scheme and h = 1
1620 . The

computed electric field and magnetic field are shown respectively at t = 1.5 and t − �t
2 . The approximate

solutions in �+ and �− correspond to respectively the black line and dotted blue line (Color figure online)
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Fig. 19 The electromagnetic fields along the x-axis at y ≈ 0.2512 for Hx , and y ≈ 0.2509 for Hy and Ez for

the scattering of a 5-star magnetic dielectric problem using the CFM-4th scheme and h = 1
1620 . The computed

electric field and magnetic field are shown respectively at t = 1.5 and t − �t
2 . The approximate solutions in

�+ and �− correspond to respectively the black line and dotted blue line (Color figure online)
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Fig. 20 The electromagnetic fields along the x-axis at y ≈ 0.5056 for Hx , and y ≈ 0.5052 for Hy and Ez for

the scattering of a 3-star magnetic dielectric problem using the CFM-4th scheme and h = 1
1620 . The computed

electric field and magnetic field are shown respectively at t = 1.5 and t − �t
2 . The approximate solutions in

�+ and �− correspond to respectively the black line and dotted blue line (Color figure online)

considered on all ∂�. The incoming pulsed electromagnetic wave is described by

Hxp (x, t) = 0,

Hyp (x, t) = − 2

σ 2 (x − γ − t) e−
(
x−γ−t

σ

)2
,

Ezp (x, t) = 2

σ 2 (x − γ − t) e−
(
x−γ−t

σ

)2
,

(9)

where γ = −0.3 and σ = 0.1. The electromagnetic fields given in (9) are also used to ini-
tialize the considered time-stepping methods. As mentioned before, to our knowledge, there
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is no analytic solution for arbitrary geometries of the interface. Hence, we use approximate
solutions coming from a very finemesh grid as the reference solution, denotedU�, to estimate
errors.

The mesh grid size is h = �x = �y with h ∈ { 1
20 ,

1
60 ,

1
180 ,

1
540

}
and the time-step

size is �t = h
2 . We use h = 1

1620 for the reference solution and therefore all nodes used in
coarser mesh grids are also part of the finest mesh grid. All other parameters are the same
as in Sect. 5.1. Figure 16 illustrates convergence plots for both CFM-FDTD schemes and all
interfaces. As expected, a second-order convergence in L2-norm is obtained for the CFM-Yee
scheme. As for the CFM-4th scheme, we observe a fourth-order convergence for the circular
dielectric material, while a three and a half order convergence is observed for the 3-star
and 5-star dielectric materials. Convergence plots for the zeroth (E0) and first (E1) order
jump conditions, given in (7), for the CFM-4th scheme are illustrated in Fig. 17. It is worth
mentioning that errors on jump conditions can also be computed on the reference solution.
As expected, we obtain a fourth and third order convergence for respectively the zeroth
and first order jump conditions. This suggests that finer mesh grids are required to clearly
obtain a fourth-order convergence for U using the 3-star and 5-star interfaces. The results
are in agreement with the theory. Figures 18, 19 and 20 show approximate electromagnetic
fields along the x-axis for the considered interfaces. The discontinuities within approximate
solutions are captured without spurious oscillation.

6 Conclusions

In this work, we presented high-order FDTD schemes based on the Correction Function
Method to handle Maxwell’s interface problems. The system of PDEs needed for the CFM
was derived using Maxwell’s equations with interface conditions. The minimization prob-
lem based on a functional that is a square measure of the error associated with the correction
function’s system of PDEs was also presented. Numerical examples showed that numeri-
cal solutions coming from CFM-FDTD schemes were captured without spurious oscillation
while exhibiting high-order convergence. It has also been shown that FDTD schemes based
on the CFM take much less computational time than their original FDTD schemes to reach
a given error. Moreover, the accuracy of correction functions has been verified using high-
order explicit jump conditions. This showed that high-order jump conditions are implicitly
enforced in the functional to minimize and therefore need not be provided explicitly. Scatter-
ing of a dielectric problems and problems with a manufactured solution have shown that the
proposed numerical strategy can handle various geometries of the interface without signifi-
cantly increasing the complexity of the method. Since fictitious interface conditions impact
the stability of a CFM-FDTD scheme, long-time simulations have been performed. Numer-
ical evidences support our claim that a CFM-FDTD scheme inherits the stability properties
of the associated original FDTD scheme, that is without correction, for a sufficient small c f

while retaining its order. Future work will focus on the theoretical aspect of the CFM as well
as an extension of this strategy to 3-D problems.
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