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a b s t r a c t

In this paper we present a novel framework for obtaining high-order numerical methods
for scalar conservation laws in one-space dimension for both the homogeneous and non-
homogeneous cases (or balance laws). The numerical schemes for these two settings
are somewhat different in the presence of shocks, however at their core they both
rely heavily on the solution curve being represented parametrically. By utilizing high-
order parametric interpolation techniques we succeed to obtain fifth order accuracy (in
space) everywhere in the computation domain, including the shock location itself. In
the presence of source terms a slight modification is required, yet the spatial order
is maintained but with an additional temporal error appearing. We provide a detailed
discussion of a sample scheme for non-homogeneous problems which obtains fifth order
in space and fourth order in time even in the presence of shocks.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the 1-D scalar conservation law,

{
ut + (F (u))x = Q (u, x, t)
u(x, 0) = g(x),

(1.1)

here g is piecewise smooth and both F and Q are smooth functions in their respective domains. Here, we focus on the
ase where F is uniformly convex.
The Cauchy problem (1.1) has been studied from a numerical perspective for over 50 years. As discussed in more

etail below, many numerical methods have been developed capable of solving (1.1), each equipped with their own
et of properties desirable in certain situations. Of particular relevance to the work presented here are moving-mesh
ront-tracking methods utilizing the method of characteristics. Methods of this type have been studied extensively by
afermos [1], Lucier [2], Whitham [3], Brenier [4], and many more. Since these classical works however, the focus has
hifted to higher dimensions and systems of equations. This brings us to the goal of the present work, we seek to develop
framework which builds upon the moving-mesh literature to obtain high-order numerical methods also capable of

∗ Correspondence to: 805 Sherbrooke St W, Montreal, QC H3A 0B9, Canada.
E-mail addresses: Geoffrey.McGregor@mcgill.ca (G. McGregor), jcnave@math.mcgill.ca (J.-C. Nave).

1 The research of GMc was supported in part by the Schulich Scholarship, Canada and the Murata Fellowship at McGill University, Canada.
2 The research of JCN was supported in part by the NSERC Canada Discovery Grants Program. Additionally, JCN would like to thank the Shanghai

Jiaotong University Institute of Natural Sciences for hosting him while completing this work.
https://doi.org/10.1016/j.cam.2021.113891
0377-0427/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cam.2021.113891
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2021.113891&domain=pdf
mailto:Geoffrey.McGregor@mcgill.ca
mailto:jcnave@math.mcgill.ca
https://doi.org/10.1016/j.cam.2021.113891


G. McGregor and J.-C. Nave Journal of Computational and Applied Mathematics 404 (2022) 113891

o
c
d
t
E
h
a
v
t
n
s
t
w
o
c
h
h
w
w
w
V
s
f
a
w
i
b
c
s
h
m
u
p
t
o

t
r
i
i
c
m
v
p
w
w
p

w

tracking shock locations to high-order in both the homogeneous and non-homogeneous cases, also known as balance
laws.

Numerical methods for solving conservation laws typically focus on obtaining high-order accuracy in smooth regions
f the solution while preserving desirable properties, such as boundedness and sharp features, near discontinuities. One
ommon approach to this, as discussed in [5,6], is to allow the numerical technique used to vary within the computation
omain depending on some numerically approximated smoothness. Finite difference methods can utilize slope-limiters
o switch between a high-accuracy scheme in smooth regions and a stable scheme near shocks. Other methods, such as
NO [7] and WENO [8] schemes, construct a local stencil or weights based on the local data. The resulting schemes are
igh-order in smooth regions of the solution and avoid spurious oscillations near discontinuities. These schemes form
n important part of the current research within numerical conservation laws, for example see [9–16]. Similarly, finite
olume methods, which have the added feature of being exactly conservative, utilize flux-limiters, for example see [6,17],
o switch between a high-accuracy numerical flux, and a stable numerical flux with lesser accuracy. Overall the focus
ear shocks is to keep the numerical solution stable, or bound the total variation, to obtain a convergent numerical
cheme, for example see [18–21]. These methods discussed so far accomplish their goal, and in general are applicable
o systems of hyperbolic conservation laws and higher dimensions, although they have difficulty tracking shock position
ith high-order accuracy. This is a direct result of requiring low-order schemes at the shock location to prevent spurious
scillations and other instabilities. Front tracking [22] and Godunov methods [23] explicitly use the Rankine–Hugoniot
ondition to obtain the correct shock speed, however, generalizations of these methods for predicting shock position to
igh-order prove to be difficult. One advantage of these methods is their applicability to systems of conservations laws,
owever, Godunov type methods can be computationally expensive when resolving Riemann problems with complex
ave structure. To overcome this, approximate Riemann solvers such as the HLL method [24] and HLLC method [25]
ere developed to address the computational complexity issue. These methods are particularly useful for solving real-
orld problems in hyperbolic conservation laws, for example see [26–28]. Another approach, first described in [29] by
onNeumann and Richtmyer in the 50s, introduces artificial viscosity in the neighbourhood of shocks to keep solutions
mooth. This approach enables the use of high-order schemes everywhere in the computation domain distinguishing it
rom flux-limiter methods in this sense. However, similar to how flux-limiter methods require switching between high
nd low-order schemes, artificial viscosity methods require sensors to determine where viscosity should be present and
here it should be excluded. A significant amount of work has been put into ensuring the artificial viscosity remains

n a small neighbourhood around shocks, requiring drastic improvements in shock sensing and smoothing the transition
etween the viscous and non-viscous regimes, for example see [30–33]. Thus far we have focused on the homogeneous
ase of (1.1). The addition of source terms adds a considerable challenge from a numerical perspective and the resulting
chemes are often quite different from their homogeneous counterpart. For some examples, see [34–37]. One way to
andle source terms is to perform a splitting of the horizontal motion, determined by the flux function F , and vertical
otion, given by the source term Q . For example in [38], the authors solve the homogeneous problem by flowing particles
nder the method of characteristics and utilizing an area-preserving linear interpolation when merging particles. In the
resence of source terms, the characteristic flow and interpolation step ignore the source term, and then once completed
he particles are moved vertically according to the source term. The resulting method predicts the shock position to first
rder in time.
In the present paper we are concerned with finding a numerical framework for solving (1.1) to high spatial and

emporal order while guaranteeing the shock position is determined to high-order as well. While the majority of current
esearch is focused on systems and higher dimensions, methods able to track shock location to high-order are lacking, even
n the 1-D scalar case. We therefore focus our efforts on the scalar case first to lay the groundwork for future research
n high-order shock location methods for systems and higher dimensions. To achieve our goal, we rely heavily on the
haracteristic curves associated with (1.1). Working with the characteristic curves directly can be difficult as they become
ulti-valued in the presence of shocks. Therefore, if a numerical method requires a high-order approximation of the multi-
alued portion of the curve, then traditional polynomial interpolation techniques are not applicable. We choose to utilize
arametric interpolation techniques to overcome this issue. Before getting into the specifics of parametric interpolation,
e first discuss how a parametric representation of the characteristic curves may be used to obtain physically relevant
eak solutions of (1.1). Throughout this manuscript we will utilize the notation ⟨x(s), u(s)⟩ to represent a parametric curve
arametrized by s, this should not be confused with an inner product.
The method of characteristics yields the characteristic equations

ẋ = F ′(u) (1.2)
u̇ = Q (u, x, t),

hich has solution parametrized by x0 given by ⟨x(x0, t) , u(x0, t)⟩, where

⟨x(x0, 0) , u(x0, 0)⟩ = ⟨x0 , g(x0)⟩, and,
∂

∂t
⟨x(x0, t) , u(x0, t)⟩ = ⟨F ′(u),Q (u, x, t)⟩.

The curve ⟨x(x0, t) , u(x0, t)⟩ remains a parametrization of the strong solution to (1.1) up to time t∗, provided ∂
∂x0

x(x0, t) >

0 for all x in the computation domain and 0 ≤ t < t∗. If at some point x∗ we have ∂ x(x∗, t) < 0, for t > 0, then the
0 0 ∂x0 0
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Fig. 1. An illustration of the equal-area projection..

parametric curve becomes multi-valued and a projection is required to recover the appropriate weak solution to (1.1).
In the homogeneous setting it is common to employ an equal-area projection (also known as the equal-area principle),
see [5,6] and Fig. 1 for an illustration. In the non-homogeneous case however, it is unclear which projection yields the
desired weak solution. In the present work, we construct a method able to capture the shock location, as given by a
temporal integration of the Rankine–Hugoniot condition [39,40], to high-order, even in the non-homogeneous case. Most
importantly, since the curves to the left and right of the shock are obtained through the parametric interpolation of (1.2)
to high temporal and spatial order, we are therefore able to show that the weak solution is obtained to high-order as
well.

At the core our approach is a parametric representation of the solution. The literature on parametric interpolation
is extensive, however it is rarely utilized as a tool in numerical methods for differential equations. Given that we are
concerned with high accuracy and smoothness of the solution curve, as opposed to the smoothness of the parametrization
itself, we seek interpolation methods with high geometric continuity. Geometric continuity was first introduced in [41],
where the authors matched function values, tangents and curvature at endpoints to obtain up to sixth order accuracy. Nu-
merous other interpolation techniques can be employed to achieved desired characteristics, such as matching prescribed
arc length, see [42,43], or minimizing the curvature variation energy in [44], or the strain energy in [45]. Given that we are
interested in obtaining high-order numerical schemes, we focus on parametric interpolation methods which emphasize
accuracy.

In the homogeneous case of (1.1), conservative methods are desirable, therefore we are interested in applying the
area-preserving method developed in [46]. Here the authors construct a family of exactly area-preserving parametric
Hermite polynomials which are fifth order accurate, one order higher than the standard parametric Hermite cubic. The
conservative nature of these interpolants is particularly desirable in the homogeneous setting since the area change can
only occur if there is flux over the boundary of the computation domain.

The paper is organized as follows: In Section 2 we discuss the application of parametric interpolation to homogeneous
1-D scalar conservation laws. Specifically, Section 2.1 presents a brief overview of Bezier cubic interpolation and the
area-preserving interpolation discussed in [46]. In Section 2.2, the equal-area principle is discussed and we show how the
methods from Section 2.1 can be applied to the initial value problem (1.1), with Q = 0. This is followed by Section 2.3
where the application to boundary value problems is discussed. Specifically, we show that the data required to construct
the area-preserving interpolants can be easily obtained in the boundary value problem setting. We conclude Section 2
with a simple initial value problem example showing that sixth order accuracy on shock position is obtained through the
use of the interpolation framework in [46]. Sections 3 and 4 discuss the non-homogeneous problem, in particular these
sections cover a modified equal-area principle and a shock propagation method which allows capturing shock position to
high-order. Finally in Section 5, full numerical results are presented with concluding remarks in Section 6.

2. Parametric interpolation framework for 1-D homogeneous scalar conservation laws

2.1. Area-preserving parametric interpolation

We begin by presenting a brief overview of the area-preserving Bézier interpolation discussed in [46]. The objective
of this paper was as follows: given a planar parametric curve ⟨f (s), g(s)⟩, parametrized by s ∈ [s0, s1], find a cubic Bézier
olynomial defined by

B⃗(t) = ⟨B1(t) , B2(t)⟩ = A⃗(1 − t)3 + 3C⃗1(1 − t)2t + 3C⃗2(1 − t)t2 + D⃗t3, for t ∈ [0, 1], (2.1)

hich satisfies

B⃗(0) = ⟨f (s0) , g(s0)⟩, B⃗(1) = ⟨f (s1) , g(s1)⟩,

B⃗′(0) = r1⟨f ′(s0) , g ′(s0)⟩ = r1α⃗, for some r1 ∈ R

B⃗′(1) = r2⟨f ′(s1) , g ′(s1)⟩ = r2β⃗, for some r2 ∈ R, and finally∫ 1

B2(τ )B′

1(τ )dτ =

∫ s1
g(τ )f ′(τ )dτ .
0 s0

3
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The coefficients A⃗, C⃗1, C⃗2 and D⃗ are extracted from the functions f and g above, however, an additional degree of freedom
emains. After translating the data to the origin (A⃗ = 0), the integral condition above leads to a relation in terms of r1
nd r2, given by

r1r2
60

(α⃗ × β⃗) +
r1
10

(D⃗ × α⃗) +
r2
10

(β⃗ × D⃗) +
D1D2

2
=

∫ s1

s0

g(τ )f ′(τ )dτ − g(s0)(f (s1) − f (s0)), (2.2)

here × denotes the scalar vector product α⃗ × β⃗ = α1β2 − β1α2. The main result in [46] proves that the interpolation is
ifth order accurate in the L∞ norm provided the parameters r1 and r2 satisfy the area condition (2.2) and an appropriate
ecay rate (as ∥D⃗− A⃗∥ → 0), with the interpolation reducing to fourth order if the curvature vanishes somewhere within
he domain of interpolation. It is important to note that this result assumes the portion of the parametric curve being
nterpolated is small enough such that it may be represented by some function ⟨x, f̃ (x)⟩ after an appropriate rotation. The
implest fifth order area-preserving cubic Bézier interpolation of the function ⟨x, f̃ (x)⟩ over the interval x ∈ [0, h] is given
y taking r1 = h and solving for r2 in (2.2). This is a natural choice since the resulting curve can be viewed as a perturbed
ubic Hermite polynomial. Given the data ⟨x, f̃ (x)⟩ for x ∈ [0, h] and taking the non-area preserving choice r1 = r2 = h
ields

B⃗H (t) = ⟨th, f̃ (0) + f̃ ′(0)th +

(
3(f̃ (h) − f̃ (0)) − 2f̃ (0)h − f̃ (h)h

h2

)
(th)2

+

(
2(f̃ (0) − f̃ (h)) + 2f̃ ′(0)h + f̃ (h)h

h3

)
(th)3⟩. (2.3)

Defining x = th, we see that (2.3) is exactly a parametrization of the standard cubic Hermite polynomial. Therefore, as
seen in Theorem 2.7 of [46], when we take r1 = h and let r2 satisfy the area condition (2.2) we obtain r2 = h+O(h3), which
mplies the area-preserving cubic Bézier can be written as B⃗(t) = B⃗H (t) + O(h3), a perturbation from the cubic Hermite
⃗H (t) provided h is small. We note that all of the fifth order area-preserving cubic Bézier’s described in Theorem 2.7 of [46]
an also be viewed as a perturbed cubic Hermite polynomial, the example given here is the simplest. If the provided
urve ⟨x, f̃ (x)⟩ for x ∈ [0, h] is given in terms of a different parametrization with left and right tangents α⃗ = ⟨α1, α2⟩ and
⃗ = ⟨β1, β2⟩ respectively, with α1 > 0 and β1 > 0, then taking r1 =

h
α1

and r2 =
h
β1

yields the same cubic Hermite
urve as (2.3). For more details on area-preserving cubic Bézier interpolation we refer the reader to [46]. Next we provide
etails on how to apply this parametric interpolation framework to homogeneous scalar conservation laws in one space
imension.

.2. Application to 1-D scalar conservation laws

In this section we focus on the homogeneous case of (1.1), specifically{
ut + (F (u))x = 0
u(x, 0) = g(x),

(2.4)

here g is piecewise smooth and F is both smooth and uniformly convex. We note that sufficient smoothness is only a
equirement to obtain high-order convergence of the numerical methods discussed in this section.

Our first objective here is to justify that the parametric curve ⟨x(s, t), u(s, t)⟩ given by solving (1.2) can be used to
btain the correct weak solution. We also must show that we can obtain the required data from (1.2) to construct the
rea-preserving parametric polynomials described in [46].
The Cauchy problem (2.4) yields the characteristic equations

ẋ = F ′(u) (2.5)
u̇ = 0,

hich, unlike the non-homogeneous case, can be solved exactly, with

x(x0, t) = x0 + F ′(g(x0))t

u(x0, t) = g(x0), (2.6)

here g(x) is the given initial condition of (2.4). Written as a planar curve parametrized by x0, we have the solution to
2.5) is given by ⟨x0+F ′(g(x0))t , g(x0)⟩. The method of characteristics, as discussed in [47,48], says that until the formation
f a shock at time t = t∗ the strong solution of (2.4) is given by the curve ⟨x0+F ′(g(x0))t, g(x0)⟩. Additionally, even once a
hock has formed, the portions of the weak solution which are on either side of the shock are also given (2.6). Therefore, if
e are able to obtain the correct location of discontinuities in weak solutions of (2.4), and everywhere else in the solution

s given by the curve (2.6), then we must have the correct weak solution. We begin our discussion of weak solutions by
ddressing shock position and the equal-area principle.
4
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The equal-area principle for scalar 1-D scalar conservation laws with convex flux functions has been utilized to obtain
he location of shocks by many, see [6,49]. However, a proof of its validity for all times t ≥ t∗ is generally neglected.
herefore for completeness we include a proof that the equal-area principle is equivalent to the Rankine–Hugoniot
ondition in this setting, but first we must introduce what we mean by an equal-area curve and include a Lemma on
niqueness.

efinition 2.1. We say ⟨x(s), u(s)⟩ is an equal-area curve from s0 to s1 provided x(s0) = x(s1) and∫ s1

s0

u(s)x′(s)ds = 0.

emark 2.2. Perhaps the easiest way to visualize equal-area curves is to employ integration by parts on the definition.

sing that x(s0) = x(s1), integration by parts yields x(s0)(u(s1) − u(s0)) =

∫ s1

s0

x(s)u′(s)ds, which says that the parametric

rea about the vertical axis between s0 and s1 is equal to the area of the rectangle with width x(s) and height u(s1)−u(s0).

emma 2.3. Consider a Riemann problem at x = x0 with left state given by uL(x, t) and right state given by uR(x, t), with
L(x0, 0) > uR(x0, 0), where the flux function F , as in (2.4), is uniformly convex. Then, provided uL(x, t) and uR(x, t) do not
orm additional shocks, the Riemann problem yields a unique equal-area curve with non-zero height.

roof. We begin by flowing uL(x, t), uR(x, t), and the shock front,
⟨x0 + tF ′(uR(x0, 0)s + uL(x0, 0)(1 − s)) , uR(x0, 0)s + uL(x0, 0)(1 − s)⟩, under the method of characteristics for τ units of

ime. By assumption that uL and uR do not form new shocks, we know that the method of characteristics yields solutions
hich can be represented by the functions uL(x, τ ) and uR(x, τ ) for the left and right states respectively. The method of
haracteristic determines that uL(x, τ ) has the right-most point of x0 + τF ′(uL(x0, 0)) with uR(x, τ ) having the left-most
oint of x0 + τF ′(uR(x0, 0)). The flowed shock front, ⟨x0 + tF ′(uR(x0, 0)s + uL(x0, 0)(1 − s)) , uR(x0, 0)s + uL(x0, 0)(1 − s)⟩,
or s ∈ [0, 1], connects these two endpoints together. By our assumption on F being uniformly convex, we know that
′(x) is an invertible function, therefore we can rewrite the flowed shock front as the function y(x, t) = (F ′)−1( x−x0

τ
),

for τ > 0, defined for x ∈ [x0 + τF ′(uR(x0, 0)), x0 + τF ′(uL(x0, 0))]. If there is an equal-area curve at some point
∗(τ ) ∈ (x0 + τF ′(uR(x0, 0)), x0 + τF ′(uL(x0, 0))) it must connect from uL(x∗, τ ) to uR(x∗, τ ), since the parametric area from
L(x∗, τ ) to y(x∗, t) will be strictly positive and similarly from y(x∗, τ ) to uR(x∗, τ ) will be strictly negative. The parametric
rea about a point x∗ from uL(x∗, τ ) to uR(x∗, τ ) is given by

A(x∗) =

∫ x0+τF ′(uL(x0,0))

x∗
uL(x, τ ) − y(x, τ )dx −

∫ x∗

x0+τF ′(uR(x0,0))
y(x, τ ) − uR(x, τ )dx. (2.7)

e show that there is a unique root of A. At the left endpoint we have

A(x0 + τF ′(uR(x0, 0))) =

∫ x0+τF ′(uL(x0,0))

x0+τF ′(uR(x0,0))
uL(x, τ ) − y(x, τ )dx > 0, (2.8)

ince uL(x, τ ) > y(x, τ ) in this interval. Similarly A(x0+τF ′(uL(x0, 0))) < 0 since y(x, τ ).uR(x, τ ) in the interval. To complete
he proof we show that A′(x∗) < 0 implying that there is a unique equal-area curve.

Rearranging (2.7) we obtain

A(x∗) =

∫ x0+τF ′(uL(x0,0))

x∗
uL(x, τ )dx +

∫ x∗

x0+τF ′(uR(x0,0))
uR(x, τ )dx (2.9)

−

∫ x0+τF ′(uL(x0,0))

x0+τF ′(uR(x0,0))
y(x, τ )dx.

bserving that the third integral does not depend on x∗, we employ the chain rule to obtain

A′(x∗) = uR(x∗, τ ) − uL(x∗, τ ) < 0, (2.10)

hich completes the proof. □

emark 2.4. In the case that the Riemann problem has initial states uL(x0, 0) < uR(x0, 0), then the rarefaction wave
olution is obtained by applying the method of characteristics on all points on the initial shock front. Since our method
oes this by default, rarefaction waves do not require any special consideration.

Using Definition 2.1 we are able to present the following theorem on the equal-area principle.

heorem 2.5. Suppose ⟨x(s, t), u(s)⟩ is a parametrization of (2.6), then ⟨x(s, t), u(s)⟩ is an equal-area curve between s1(t)
nd s (t) for t ∈ [t∗, T ] if and only if d x(s (t), t) =

d x(s (t), t) =
F (u(s1(t)))−F (u(s2(t))) for t ∈ [t∗, T ].
2 dt 1 dt 2 u(s1(t))−u(s2(t))

5
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Proof. Suppose ⟨x(s, t), u(s)⟩ = ⟨s+F ′(g(s))t, g(s)⟩ solves the system of characteristic equations (2.5) and is an equal-area
curve between s1(t) and s2(t) on t ∈ [t∗, T ]. This implies

d
dt

∫ s2(t)

s1(t)
u(s)xs(s, t)ds = 0, (2.11)

on t ∈ [t∗, T ]. Expanding the above integral leads to

u(s2(t))xs(s2(t), t)s′2(t) − u(s1(t))xs(s1(t), t)s′1(t) +

∫ s2(t)

s1(t)
u(s)xst (s, t)ds = 0.

he chain rule yields d
dt x(s(t)(t), t) = xs(s(t), t)s′(t) + xt (s(t), t) and using equal-area curve property that d

dt x(s1(t), t) =
d
dt x(s2(t), t), the above equation can be rewritten as

d
dt

x(s1(t), t) (u(s2(t)) − u(s1(t))) + u(s1(t))xt (s1(t), t) − u(s2(t))xt (s2(t), t)

+

∫ s2(t)

s1(t)
u(s)xst (s, t)ds = 0. (2.12)

Using ⟨x(s, t), u(s)⟩ = ⟨s + F ′(g(s))t, g(s)⟩ allows us to compute the integral term contained in (2.12). A substitution
and integration by parts yields∫ s2(t)

s1(t)
u(s)xst (s, t)ds =

∫ s2(t)

s1(t)
g(s)F ′′(g(s))g ′(s)ds

=
(
u(s)F ′(u(s)) − F (u(s))

) ⏐⏐⏐⏐s2(t)
s=s1(t)

. (2.13)

Subbing this into (2.12) and replacing xt (s(t), t) = F ′(u(s(t))) yields
d
dt

x(s1(t), t) (u(s2(t)) − u(s1(t))) + F (u(s1(t))) − F (u(s2(t))) = 0,

which implies that the position of the equal-area curve moves at the correct Rankine–Hugoniot speed.
To prove the converse we start by assuming we have an isolated shock formed at time t = t∗ and position x(s1(t∗), t∗) =

x(s2(t∗), t∗) and d
dt x(s1(t), t) =

d
dt x(s2(t), t) =

F (u(s1(t)))−F (u(s2(t)))
u(s1(t))−u(s2(t))

for t ∈ [t∗, T ]. Repeating the above calculations we obtain
hat

d
dt

∫ s2(t)

s1(t)
u(s)xs(s, t)ds = 0. (2.14)

To show that this is an equal-area curve we must prove that
∫ s2(t)

s1(t)
u(s)xs(s, t)ds = 0. At t = t∗ there are two possibilities,

irst we could have that s1(t∗) = s2(t∗), which would prove the desired result. The other possibility is that s1(t∗) < s2(t∗). If
+F ′′(g(s))g ′(s)t∗ = 0 everywhere in the interval [s1(t∗), s2(t∗)] then we also have an equal-area curve. The only possibility
or us to not have an equal-area curve is if 1 + F ′′(g(s))g ′(s)t ̸= 0 ⇒ xs(s, t∗) ̸= 0 somewhere in s ∈ [s1(t∗), s2(t∗)]. Since
(s1(t∗)) = x(s2(t∗)) this would imply xs(s, t∗) > 0 somewhere in the interval and xs(s, t∗) < 0 somewhere in the interval,
hich implies that a shock must have emerged at an earlier time, which contradicts the definition of t∗. This completes
he proof. □

emark 2.6. Combining Lemma 2.3 and Theorem 2.5 tells us equal-area curves move at the Rankine–Hugoniot speed,
mplying that the resulting solutions are entropy admissible (see [48]), and that provided the shocks have not interacted
ith any other shocks, the equal-area projection is unique. It is possible, however, for a situation to arise when two shocks
re approaching each other for the overturned regions overlap with one another. In this case an additional equal-area
urve may appear between the two shocks. This issue can be somewhat avoided by not letting the curve overturn too
uch through projecting onto the equal-area line and resuming from a fresh Riemann problem. A more precise way of
andling these situations is through the generalized equal-area principle, discussed in [50], which will select the unique
qual-area solution which is entropy admissible.

We have now shown that the parametric curve given by (2.6) can be used to construct the correct weak solution
f (2.4) provided an appropriate projection is used. Next we show how to extract the data from (2.6) to construct the
rea-preserving parametric interpolation of [46].
Consider the parametric curve parametrized by x0 given by ⟨x(x0, t), u(x0)⟩ = ⟨x0+F ′(g(x0))t, g(x0)⟩. Recall that utilizing

the fifth order interpolation method of [46] requires endpoint values, tangents directions and the parametric area for each
interpolant. As we will be performing a piecewise interpolation of this curve we partition computation domain for x into
0

6
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n subintervals [xi, xi+1], for i = 1, . . . , n. In the ith subinterval at time t = τ we construct the ith interpolant ⟨xi(s), yi(s)⟩
atisfying

⟨xi(0), yi(0)⟩ = ⟨xi + F ′(g(xi))τ , g(xi)⟩,
⟨xi(1), yi(1)⟩ = ⟨xi+1 + F ′(g(xi+1))τ , g(xi+1)⟩,
⟨x′

i(0), y
′

i(0)⟩ = r1i⟨1 + F ′′(g(xi))g ′(xi)τ , g ′(xi)⟩ = r1i α⃗i, for some r1i ∈ R

⟨x′

i(1), y
′

i(1)⟩ = r2i⟨1 + F ′′(g(xi+1))g ′(xi+1)τ , g ′(xi+1)⟩ = r2i β⃗i, for some r2i ∈ R,∫ 1

0
y(s)x′(s)ds =

∫ xi+1

xi

g(s)(1 + F ′′(g(s))g ′(s)τ )ds.

From the above equations it is clear that accessing the endpoint values and tangents simply requires the evaluation of
known functions given in (2.4). We note that the final integral condition can be greatly simplified through a substitution
and integration by parts to obtain∫ 1

0
y(s)x′(s)ds =

∫ xi+1

xi

g(s)ds

+ τ
(
F ′(g(xi+1))g(xi+1) − F ′(g(xi))g(xi) + F (g(xi)) − F (g(xi+1))

)
.

Therefore updating the integral data from time t to t + ∆t simply requires an update of the second term, implying that
integration is not required after the initial step.

2.3. Boundary value problems

In this section we briefly describe how our parametric framework may be applied to the boundary value problem⎧⎨⎩
ut + (F (u))x = 0
u(x, 0) = g(x), for x ≥ x0
u(x0, t) = h(t) ≥ 0.

(2.15)

Similar to our discussion of the initial value problem in Section 2.2, we begin by obtaining an exact expression for the
parametric curve emerging from the boundary at x = x0. According to the method of characteristics, the particle at
position x0 at time t0 ≥ 0 has height h(t0) and moves with speed F ′(h(t0)). Therefore, the position of the particle at time
t > t0 is given by

(
x0 + F ′(h(t0))(t − t0), h(t0)

)
. Thus, the curve emerging from the boundary, parametrized by t0 ∈ [0, t],

is given by

⟨x0 + F ′(h(t0))(t − t0), h(t0)⟩, for 0 ≤ t0 ≤ t. (2.16)

Obtaining the data for our area-preserving parametric interpolation follows the same procedure as in Section 2.2. Suppose
we want to obtain function values, tangent direction and area data to construct an interpolant from the curve (2.16) for
t ∈ [τ0, τ1]. Function values are obtained through evaluation of (2.16) at τ0 and τ1, and tangent direction are obtained
through evaluation of the curve ⟨F ′′(h(t0))h′(t0)(t − t0)− F ′(h(t0)), h(t0)⟩ at τ0 and τ1. The parametric area between τ0 and
τ1 is given by∫ τ1

τ0

h(s)
d
ds

(
F ′(h(s))(t − s)

)
ds

Performing integration by parts twice yields(
h(s)F ′(h(s)) − F (h(s))

)
(t − s)

⏐⏐⏐⏐τ1
s=τ0

−

∫ τ1

τ0

F (h(s))ds. (2.17)

We see that the parametric area equation for curves emerging from the boundary is nearly identical to the parametric
area equation for the initial value problem, except now a single approximation or computation of

∫ τ1
τ0

F (h(s))ds is required
nitially. Since the time variable t is not present in the integral term, the evolution of the area as time evolves is dictated
ntirely by the first term of (2.17).

.4. Example 1

In this example we consider the following Cauchy problem{
ut + uux = 0

(2.18)

u(x, 0) = g(x),

7



G. McGregor and J.-C. Nave Journal of Computational and Applied Mathematics 404 (2022) 113891

i
S

Fig. 2. Area-preserving interpolation of (2.20).

where,

g(x) =

{
sin(x), for x ∈ [0, π]

0 otherwise.

We begin by constructing the area-preserving interpolation of the parametric curve obtained from the characteristic
equation and show that we obtain the convergence claimed in [46]. Then, we apply the equal-area principle discussed in
Theorem 2.5 and show that the correct shock position is obtained.

The characteristic equations associated with (2.18) are

ẋ = u (2.19)
u̇ = 0,

which yields the solution

⟨x(x0, t), u(x0)⟩ = ⟨x0 + sin(x0)t, sin(x0)⟩, for x0 ∈ [0, π]. (2.20)

For this simple example we are able to compute the equal-area solution by hand. A plot of the area-preserving
parametric interpolation of (2.20) is shown in Fig. 2 at times t = 0, t = 1 and t = 2. The resulting weak solution is
obtained by cutting out the overturn portion of the curve at the shock location.

As we can see the curve eventually overturns in such a way that we know the right state of the shock will be height
zero. With this information we search for the point in the parametrization a(t) satisfying∫ π

a(t)
sin(s)(1 + cos(s)t)ds = 0,

which, after some simplification, leads to the equation

t cos2(a(t))
2

+ cos(a(t)) +

(
1 −

t
2

)
= 0.

Some basic algebra tells us that a(t) = arccos
( t−2

t

)
, and that the position of the equal-area line is therefore given by

x(a(t), t) = arccos
(
t − 2
t

)
+ 2

√
t − 1. The height of the equal-area line is given by u(a(t)) = sin

(
arccos

(
t − 2
t

))
=

2
√
t − 1
t

. To see that this agrees with the Rankine–Hugoniot condition we should have that
d
dt

x(a(t), t) =
F (u(a(t)))
u(a(t))

=

u(a(t))
2

=

√
t − 1
t

. Differentiating arccos
( t−2

t

)
+ 2

√
t − 1 with respect to t shows this is indeed the case. Therefore the

equal-area line moves at Rankine–Hugoniot speed. Next we show how one constructs the area-preserving parametric
polynomials for this example.

On each subinterval [xi, xi+1] ⊂ [0, π], for i = 1, . . . , n−1 we use (2.20) to construct our Bézier polynomial B⃗i(t), (2.1).
The coefficients A⃗i, α⃗i, β⃗i and D⃗i are given by

A⃗i = ⟨xi + sin(xi)t, sin(xi)⟩

D⃗i = ⟨xi+1 + sin(xi+1)t, sin(xi+1)⟩
α⃗i = ⟨1 + cos(xi)t, cos(xi)⟩

β⃗i = ⟨1 + cos(xi+1)t, cos(xi+1)⟩,

where C⃗1i = A⃗i +
r1i α⃗i
3 , and C⃗2 i = D⃗i −

r2i β⃗i
3 . Therefore all that is left is to determine r1i and r2i . As discussed in [46] there

s an entire family of pairs (r1i , r2i ) which are fifth order accurate and ensure exact area-preservation. As discussed in
ection 2 we take r =

D1i−A1i and solve for r using (2.2).
1i α1 2i

8
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Fig. 3. Area-preserving interpolation of (2.20).

The error in shock position at time t = 2 is plotted in Fig. 3. We expect to obtain sixth order accuracy in the shock
osition since it is obtained from the integration of a fifth order accurate curve. As predicted, Fig. 3 shows that sixth order
ccuracy in the shock position is obtained.
We see that in the homogeneous case the data for constructing the parametric interpolants is readily available, making

ur numerical scheme simple to implement. Moving to the source term case we lose a bit of this efficiency as, in general,
e cannot obtain an analytical solution to the characteristic equations. (1.2). On top of this the shock motion itself is far
ore complex, however, through the use of our parametric interpolation framework we are still able to capture the shock
osition to high-order, both temporally and spatially.

. The non-homogeneous case

In this section we apply the parametric framework discussed in Section 2.1 to the non-homogeneous setting. The
auchy problem we are interested in solving is given by{

ut + (F (u))x = Q (u, x, t)
u(x, 0) = g(x),

(3.1)

here g is piecewise smooth and both F and Q are smooth functions in their respective domains with F uniformly convex.
s discussed in Section 1, we apply the method of characteristics to obtain the system of equations

ẋ = F ′(u) (3.2)
u̇ = Q (u, x, t).

he solution to (3.2) can be represented as the parametric curve parametrized by x0, ⟨x(x0, t), u(x0, t)⟩, or in terms of F
nd Q as

⟨x(x0, t), u(x0, t)⟩ = ⟨x0 +

∫ t

0
F ′(u)dτ , g(x0) +

∫ t

0
Q (u, x, τ )dτ ⟩. (3.3)

The distinction from the homogeneous case appears through the second component, u, which now varies in time. Also
we notice that the system (3.2) is a fully coupled system of ordinary differential equations, and therefore we are not able
to come up with a general solution without knowing more about F and Q . This implies that, in general, we will work
directly with the curve (3.3) to extract the required data for the parametric interpolation, and thus introduce a temporal
error that was not present in the homogeneous case. For now we focus our attention on the validity of the parametric
framework before we discuss how to construct the parametric interpolants in this setting.

Just as in the homogeneous case, if the solution curve ⟨x(x0, t), u(x0, t)⟩ obtained by solving (3.2) does not overturn
(remaining the graph of a single variable function) then the method of characteristics guarantees that this is indeed the
correct solution to our Cauchy problem (3.1). Therefore we only need to worry about the case when discontinuities are
present in the solution. In the homogeneous case we found that the equal-area principle provided us with the correct
projection to obtain the desired weak solution of (2.4), however, as seen in the next theorem this same approach does
not work for general source terms Q (u, x, t).

Theorem 3.1. The equal-area principle applied to the parametric curve (3.3), in general, fails to predict the correct shock
speed and thus cannot be used to find the appropriate weak solution of (3.1).
9
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Proof. Applying the same technique as in Theorem 2.5 we begin by supposing we have an equal-area curve between
s1(t) and s2(t). This implies that

d
dt

∫ s2(t)

s1(t)
u(s, t)xs(s, t)ds = 0.

Computing the full derivative we obtain a very similar result as in the homogeneous case, with

u(s2(t), t)xs(s2(t), t)s′2(t) − u(s1(t), t)xs(s1(t), t)s′1(t)

+

∫ s2(t)

s1(t)
u(s, t)xst (s, t)ds +

∫ s2(t)

s1(t)
Q (u, x, t)xs(s, t)ds = 0.

The major difference here is the addition of the second integral term which, in general, we are unable to simplify.
Continuing with the same simplifications as in Theorem 2.5, we set d

dt x(s(t), t) − xt (s(t), t) = xs(s(t), t)s′(t). Recalling
hat x(s1(t), t) = x(s2(t), t) and using ⟨x(x0, t), u(x0, t)⟩ from (3.3) we obtain

d
dt

x(s1(t), t) (u(s2(t), t) − u(s1(t), t)) + u(s1(t), t)F ′(u(s1(t), t)) (3.4)

−u(s2(t), t)F ′(u(s2(t), t)) +

∫ s2(t)

s1(t)
u(s, t)F ′′(u(s, t))us(s, t)ds

+

∫ s2(t)

s1(t)
Q (u, x, t)xs(s, t)ds = 0.

The first of the two integrals is the same as (2.13), therefore applying the same procedure as in Theorem 2.5 we obtain
the final equation

d
dt

x(s1(t), t) =
F (u(s1(t), t)) − F (u(s2(t), t))

u(s1(t), t) − u(s2(t), t)
+

∫ s2(t)
s1(t)

Q (u, x, t)xs(s, t)ds

u(s1(t), t) − u(s2(t), t)
. (3.5)

Therefore, if at any point in time the integral term in (3.5) is nonzero we obtain the incorrect shock speed from the
equal-area principle, which completes the proof. □

To better understand why the equal-area principle fails in the non-homogeneous case we look to the following
example.

3.1. Example 2

Here we consider the Cauchy problem{
ut + uux = −(u(1 − u))k

u(x, 0) = g(x),
(3.6)

here,

g(x) =

{
1, for x ∈ [0, 1]
0 otherwise,

here k is a parameter of our choosing.
Mirroring the technique used in the homogeneous setting, we take each point on the initial condition sketched in Fig. 4

both the top and sides of the rectangle) and flow them under the characteristic equations associated with (3.6). In terms
f the free parameter k, the characteristic equations are

ẋ = u (3.7)

u̇ = −(u(1 − u))k.

Under the dynamics governed by the system (3.7) we flow each portion of the initial condition in Fig. 4 until t = 1
for the parameter values k = 1, 1.5 and 6. The resulting curves are displayed in Fig. 5. The rarefaction curve on the left
portion of Fig. 5 is correct for the respective values of k, and the portion of the curve on top is also correct, however a shock
should be present somewhere in the multi-valued portion of the curve. If we apply the equal-area principle it is clear,
even by visual inspection, that each of these three curves will yield a different equal-area line and thus the equal-area
principle will predict different shock positions at time t = 1 for the different values of k. However, u = 1 is a fixed point
of its corresponding differential equation regardless of the value of k, therefore we know that the shock speed will be
exactly 1

2 until the rarefaction wave comes into contact with the shock, but this does not occur until t = 2. Therefore the
qual-area principle clearly is not capturing the motion of the shock in the non-homogeneous case correctly.
10
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Fig. 4. Initial condition for Example 3.1.

Fig. 5. Resulting curves after solving the system (3.7) for k = 1, 1.5 and 6 until t = 1.

The main takeaway from Theorem 3.1 and Example 3.1 is that shock formation and its subsequent motion need to be
reated carefully and cannot be computed with the same techniques as in the homogeneous case. In the following section
e present numerical methods for first detecting and locating where shocks are forming and then how to compute their
otion to high spatial and temporal order.

. Numerical methods for shock motion in the non-homogeneous case

The numerical framework presented in this section will contain three distinct parts. First we have the standard
haracteristic flow given by solving (3.2) on which we perform a high-order parametric interpolation. The second part of
he method involves shock detection and initial shock positioning which will utilize an equal-area projection along with
splitting method. Finally we have the shock propagation method. For these methods to be effective we rely heavily
n having a precise representation of the solution curve associated with (3.2). We therefore begin this section by briefly
iscussing how to obtain high-order parametric interpolants in the non-homogeneous case.
Recalling again the characteristic equations and the given initial condition,{

ẋ = F ′(u), x(0) = x0
u̇ = Q (u, x, t), u(0) = g(x0),

(4.1)

we aim to construct solutions to (4.1) at each point x0 in the domain of g(x0) given in the Cauchy problem (1.1). As
entioned in Section 3 we are unable to solve these equations exactly in the vast majority of cases, therefore we apply
umerical methods on Eqs. (3.3),

⟨x(x0, t), u(x0, t)⟩ = ⟨x0 +

∫ t

0
F ′(u)dτ , g(x0) +

∫ t

0
Q (u, x, τ )dτ ⟩.

At each grid point xi we employ a suitable differential equation solver to obtain ⟨x̃(xi, t), ũ(xi, t)⟩, for example, if the
differential equations are not stiff, explicit Runge–Kutta methods can be utilized. Applying this idea on consecutive nodes
x and x yields the endpoint values for us to perform our interpolation. To obtain our parametric interpolation to at least
i i+1

11
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Fig. 6. Particle path of the solution to the initial value problem (4.5) at times t = 2.5, t = 3 and t = 5 respectively.

ourth order we also need information about the tangents along the solution curve. This data is obtained by expanding the
ystem (4.1) to include differential equations for the partials along the parametrization. Our extended set of characteristic
quations therefore becomes⎧⎪⎨⎪⎩

ẋ = F ′(u), x(0) = x0
ẋx0 = F ′′(u)ux0 , xx0 (0) = 1
u̇ = Q (u, x, t), u(0) = g(x0)
u̇x0 = Qu(u, x, t)ux0 + Qx(u, x, t)xx0 , ux0 (0) = g ′(x0).

(4.2)

Solving (4.2) at initial points xi and xi+1 until time t yields the endpoint data x̃(xi, t), ũ(xi, t), x̃(xi+1, t), ũ(xi+1, t) along with
tangent the data x̃x0 (xi, t), ũx0 (xi, t), x̃x0 (xi+1, t) and ũx0 (xi+1, t). Using the cubic Bézier framework discussed in Section 2
we only need to determine choices for r1i and r2i to generate the parametric polynomial interpolants. A fourth order
accurate choice is simply using the parametric Hermite from Section 2.1,

r1i =
x̃(xi+1, t) − x̃(xi, t)

x̃x0 (xi, t)
, provided x̃x0 (xi, t) ̸= 0, (4.3)

r2i =
x̃(xi+1, t) − x̃(xi, t)

x̃x0 (xi+1, t)
, provided x̃x0 (xi+1, t) ̸= 0. (4.4)

If either of the horizontal tangents vanish, then a simple rotation of the problem or a refinement of the grid is required.

Example 4.1. In this example we want to perform a high-order interpolation (both in space and time) of the particle
path traced out by the solution to the initial value problem{

ẋ = u x(0) = 0
u̇ = sin(x)u, u(0) =

1
2 .

(4.5)

he chain rule tells us that u(x(t)) =
3
2 − cos(x(t)), which implies d

dt x =
3
2 − cos(x(t)). With a bit of work one arrives at

he solution

x(t) = 2 arctan

⎛⎝ tan
(√

5
4 t
)

√
5

⎞⎠ (4.6)

u(t) =
3
2

− cos

⎛⎝2 arctan

⎛⎝ tan
(√

5
4 t
)

√
5

⎞⎠⎞⎠ .

The curve from (4.6) at times t = 2.5, t = 3 and t = 5 is plotted below in Fig. 6.
Using Runge–Kutta 4 and a time step of ∆t = 0.001 we compute the particle position at time t = 5 to fourteen digits of

accuracy. The data required to construct the parametric interpolants is given through the Runge–Kutta method applied to
the extended system (4.2) associated with (4.5). Constructing the parametric cubic Hermite polynomials discussed above
we achieve fourth order convergence in space as seen in Fig. 7.

The scheme used here is therefore fourth order in both space and time. High-order spatial methods such as the area-
preserving method of [46] or the sixth order curvature matching method of [41] can also be applied here. A further
discussion of these can be found in Section 5.

Example 4.1 shows us that the idea of applying parametric interpolation to the extended characteristic equations (4.2)
indeed allows us to construct high-order numerical approximations of (3.3). The next step is showing how the constructed
parametric interpolants can be used to correctly predict shock formation and initial shock location.
12
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Fig. 7. Spatial convergence of particle path measured in the L∞ norm using parametric Hermite interpolation for (4.5)).

The first piece of the puzzle is shock detection, which turns out to be very simple. Using the definition of shock
formation discussed in Section 1, if at any point in the parametrization s we have xs(s, t) < 0, then we know a shock
has formed. Similarly we can check this on our parametric interpolants. If at time t we have x̃is (s, t) > 0, but at time
t + ∆t we have x̃is (s, t + ∆t) < 0 within some interpolant i at some point s within its parametrization, then we predict
a shock has formed between time t and t + ∆t . If we apply the equal-area principle on our curve x̃(s, t + ∆t), where
x̃(s, t + ∆t), ũ(s, t + ∆t)⟩ is given by parametric interpolation of the extended characteristic equation (4.2), then we
know by Theorem 3.1 that the shock position is incorrect. To overcome this we employ a modified equal-area principle.
Recalling Eqs. (3.3), we have that

x(s, t + ∆t) = x(s, t) +

∫ t+∆t

t
F ′(u(s, τ ))dτ , where u is given by,

u(s, t + ∆t) = u(s, t) +

∫ t+∆t

t
Q (u, x, τ )dτ .

Instead of applying the equal-area principle on ⟨x(s, t +∆t), u(s, t +∆t)⟩, we fix the height of each particle, but still flow
t under the correct horizontal motion given by solving the full system for ∆t seconds. We therefore search for s1(t +∆t)
nd s2(t + ∆t) such that∫ s2(t+∆t)

s1(t+∆t)
u(s, t)

∂

∂s

(
x(s, t) +

∫ t+∆t

t
F ′(u(s, τ ))dτ

)
ds = 0, with, (4.7)

x(s1(t + ∆t), t + ∆t) = x(s2(t + ∆t), t + ∆t).

Once the shock position is found, we replace the overturned curve with a jump at x(s1(t + ∆t), t + ∆t). Applying the
vertical flow at this stage maps u(s, t) → u(s, t + ∆t) which yields the left shock state u(s1(t + ∆t), t + ∆t) and right
state u(s2(t + ∆t), t + ∆t). It is important to note that the true shock is located somewhere in the multivalued region,
say x(s∗1, t + ∆t) = x(s∗2, t + ∆t), for some parameter values s∗1 and s∗2. The method of characteristics guarantees that the
shock states must be given by u(s∗1, t + ∆t) on the left and u(s∗2, t + ∆t) on the right, where ⟨x(s∗1, t + ∆t), u(s∗1, t + ∆t)⟩
nd ⟨x(s∗2, t +∆t), u(s∗2, t +∆t)⟩ are given by solving (1.2). Therefore, since our proposed method works directly with the

characteristic equations the main source of error will come from the shock location itself. The following Theorem proves
that the one step error of (4.7) is second order accurate in time.

Theorem 4.2. Suppose u(x, t) is a weak solution of (1.1) with an isolated shock at position x∗(t) with left state uL(t) and right
state uR(t). Then, if at time t the parametric curve given by solving (1.2) is an equal-area curve about x∗(t), then the modified
equal-area principle predicts the shock position at time t + ∆t with second order accuracy in time.

Proof. Suppose ⟨x(s, t), u(s, t)⟩ is the parametric curve obtained by solving the characteristic equations (1.2) which
contains an equal-area curve at position x(s1(t), t) = x(s2(t), t) = x∗(t). This implies∫ s2(t)

s1(t)
u(s, t)xs(s, t)ds = 0. (4.8)

Applying the modified equal-area principle after ∆t seconds yields∫ s2(t+∆t)

u(s, t)xs(s, t + ∆t)ds = 0, with, (4.9)

s1(t+∆t)

13
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x(s1(t + ∆t), t + ∆t) = x(s2(t + ∆t), t + ∆t).

Differentiating in ∆t yields

u(s2(t + ∆t), t)xs(s2(t + ∆t), t + ∆t)s′2(t + ∆t)
− u(s1(t + ∆t), t)xs(s1(t + ∆t), t + ∆t)s′1(t + ∆t)

+

∫ s2(t+∆t)

s1(t+∆t)
u(s, t)xst (s, t + ∆t)ds = 0.

Applying the same techniques as in Theorem 3.1 yields

d
dt

x(s1(t + ∆t), t + ∆t) (u(s2(t + ∆t), t) − u(s1(t + ∆t), t)) (4.10)

+ u(s1(t + ∆t), t)F ′(u(s1(t + ∆t), t + ∆t))
− u(s2(t + ∆t), t)F ′(u(s2(t + ∆t), t + ∆t))

+

∫ s2(t+∆t)

s1(t+∆t)
u(s, t)F ′′(u(s, t + ∆t))us(s, t + ∆t)ds = 0.

Applying integration by parts on the integration term we obtain∫ s2(t+∆t)

s1(t+∆t)
u(s, t)F ′′(u(s, t + ∆t))us(s, t + ∆t)ds = u(s, t)F ′(u(s, t + ∆t))

⏐⏐⏐⏐s2(t+∆t)

s=s1(t+∆t)
(4.11)

−

∫ s2(t+∆t)

s1(t+∆t)
us(s, t)F ′(u(s, t + ∆t))ds.

Plugging (4.11) into (4.10), cancelling terms and then solving for d
dt x(s1(t + ∆t), t + ∆t) yields the equation

d
dt

x(s1(t + ∆t), t + ∆t) =

∫ s2(t+∆t)
s1(t+∆t) us(s, t)F ′(u(s, t + ∆t))ds

u(s2(t + ∆t, t)) − u(s1(t + ∆t, t))
. (4.12)

Using the first order approximation in time of F ′(u(s, t + ∆t)) = F ′(u(s, t)) + O(∆t) in (4.12) allows us to compute the
ntegration term to first order, which gives us

d
dt

x(s1(t + ∆t), t + ∆t) =
F (u(s2(t + ∆t, t))) − F (u(s1(t + ∆t, t)))

u(s2(t + ∆t, t)) − u(s1(t + ∆t, t))
+ O(∆t). (4.13)

sing that u(s(t + ∆t), t) = u(s(t), t) + O(∆t), long division yields

d
dt

x(s1(t + ∆t), t + ∆t) =
F (u(s2(t), t)) − F (u(s1(t), t))

u(s2(t), t) − u(s1(t), t)
+ O(∆t). (4.14)

Integrating from t to t+∆t and using our assumptions that x(s1(t), t) = x∗(t) and u(s1(t), t) = uL(t) and u(s2(t), t) = uR(t),
e obtain

x(s1(t + ∆t), t + ∆t) = x∗(t) +
F (uR(t)) − F (uL(t))

uR(t) − uL(t)
∆t + O(∆t2), (4.15)

hich agrees with the true shock position given by the Rankine–Hugoniot condition up to second order. □

emark 4.3. Theorem 4.2 states that given the correct initial shock position along with upper and lower shock states, we
re able to approximate the shock position after ∆t seconds with error proportional to ∆t2. Since our goal in this work is
o obtain high-order numerical schemes, it would seem that applying the modified equal-area principle would eliminate
he possibility of obtaining higher than second order. The idea here is that we can use an adapted time step of ∆t̃ for a
ingle step to obtain the desired accuracy to not impact the overall error in the problem, then continue with a different
ethod once we have a sufficiently accurate initial shock position.
We also note we have access to the correct initial shock position and states at the moment the shock forms since the

nitial shock position and states are given from the characteristic equations (1.2). Therefore we will utilize the modified
qual-area principle when we predict that a shock is forming.

The final missing piece of our approach is how to propagate the shock once we know its initial position and shock
tates. As discussed above, our main objective is to predict the shock position as accurately as possible, since everything
lse comes directly from solving the characteristic equations, which we have already shown can be done to high accuracy.
n the following subsection we introduce the parametric shock propagation method.
14
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Fig. 8. Initial configuration for Parametric Shock Propagation method.

Fig. 9. Predicted shock position using Forward Euler.

4.1. Parametric shock propagation method

Suppose we have an isolated shock at x∗(t) with smooth curves uL(x, t) to the left, defined for x ≤ x∗(t), and uR(x, t) to
he right, defined for x ≥ x∗(t), with uL(x∗(t), t) > uR(x∗(t), t), as depicted in Fig. 8. Provided the shock remains isolated
from other shocks or discontinuities, the Rankine–Hugoniot condition determines the shock motion through the equation

d
dt

x∗(t) =
F (uL(x∗(t), t)) − F (uR(x∗(t), t))

uL(x∗(t), t) − uR(x∗(t), t)
, (4.16)

where both uL(x, t) and uR(x, t) are flowing under the characteristic equations (1.2). In this situation it is clear that having
an analytical representation for both uL(x, t) and uR(x, t) turns (4.16) into an ordinary differential equation in which
standard numerical methods can be applied.

The key ingredient in allowing us to treat (4.16) as a typical ordinary differential equation is splitting the problem
into three distinct parts, the top curve, uL(x, t), the shock itself, located at x∗(t), and the bottom curve uR(x, t). Since we
are working with a uniformly convex flux function, we know that the shock will remain sandwiched between uL and
uR, provided the shock remains isolated. Therefore, at time t + ∆t we can evaluate the slope field defined by (4.16) at
ny point z in the domain of both uL(x, t + ∆t) and uR(x, t + ∆t), where uL(z, t + ∆t) > uR(z, t + ∆t), the region of
verlap. From a numerical point of view this enables us to employ a wide range of methods, for example Runge–Kutta
ype methods, where the slope field is evaluated in several locations to obtain a high-order approximation of the shock
peed between time t and t + ∆t . Later we see that multi-stage methods will require a stability condition to ensure that
he slope field is always evaluated in a region of overlap.

To help clarify this approach we begin with a simple Euler step. Taylor expansion and then integration of (4.16), as
one in the proof of Theorem 4.2, yields

x∗(t + ∆t) = x∗(t) +
F (uL(x∗(t), t)) − F (uR(x∗(t), t))

uL(x∗(t), t) − uR(x∗(t), t)
∆t + O(∆t2). (4.17)

A single step of Forward Euler yields the predicted shock position at time t + ∆t

x̃∗

E(t + ∆t) = x∗(t) +
F (uL(x∗(t), t)) − F (uR(x∗(t), t))

uL(x∗(t), t) − uR(x∗(t), t)
∆t, (4.18)

which is equivalent to (4.17) up to the second order term. An illustration is shown in Fig. 9.
Once we have verified that x̃∗

E(t+∆t) is within the region of overlap, the portion of uL(x, t+∆t) to the right of x̃∗

E(t+∆t)
s removed and the portion of uR(x, t + ∆t) to the left of x̃∗

E(t + ∆t) is removed. This process brings us back to a shock
state similar to that seen in Fig. 8.

Remark 4.4. If at a time t∗ ∈ [t, t +∆t] either uL(x, t) or uR(x, t) becomes multi-valued, a fractional step of size ∆t̃ must
to taken instead to ∆t to locate the newly formed shock. Once located, we can propagate both shocks in the manner
described above until either shock comes into contact with a discontinuity.
15
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This idea can easily be adapted to Improved Euler, also known as the predictor corrector method. As seen in Fig. 9, we
re able to now evaluate the slope at x̃∗

E(t +∆t) using uL(x, t +∆t) and uR(x, t +∆t). Averaging the predicted slope, given
y Forward Euler, and the corrected slope, given by this additional evaluation, we obtain the Improved Euler method

x̃∗(t + ∆t) = x∗(t) +
∆t
2

(
F (uL(x∗(t), t)) − F (uR(x∗(t), t))

uL(x∗(t), t) − uR(x∗(t), t)
(4.19)

+
F (uL(x̃∗

E(t + ∆t), t + ∆t)) − F (uR(x̃∗

E(t + ∆t), t + ∆t))
uL(x̃∗

E(t + ∆t), t + ∆t) − uR(x̃∗

E(t + ∆t), t + ∆t)

)
.

Although we omit the calculation due to its length, by setting x̃∗

E(t + ∆t) = x∗(t) +
F (uL(x∗(t),t))−F (uR(x∗(t),t))

uL(x∗(t),t)−uR(x∗(t),t)
∆t and Taylor

xpanding (4.19) in ∆t we obtain exactly the Taylor expansion of x∗(t + ∆t) from Eq. (4.16) up to the ∆t3 term. In
ection 5 we show how these ideas generalize to higher-order Runge–Kutta methods. Using computational software we
ave confirmed that indeed the Taylor expansions cancel up to the ∆t5 term in the Runge–Kutta 4 case, but these details
re omitted due to their length.
Before moving to the results section we first need to justify that numerically we can always find a ∆t small enough

uch that each evaluation of multi-stage Runge–Kutta methods land in the region of overlap. But first we need a rigorous
efinition of the region of overlap.

efinition 4.5. Suppose we have a shock at x∗(t) with smooth curves ũL(x, t) to the left, defined for x ≤ x∗(t), and ũR(x, t)
o the right, defined for x ≥ x∗(t), with ũL(x∗(t), t) > ũR(x∗(t), t) as in Fig. 8, where ũL and ũR are obtained by numerically
olving the system (1.2). Without loss of generality suppose we parametrize ũL(x, t) by the curve ⟨xL(s, t), uL(s, t)⟩, where
L(1, t) = x∗(t) and uL(1, t) = ũL(x∗(t), t). Similarly we parametrize ũR(x, t) by the curve ⟨xR(s, t), uR(s, t)⟩, where xR(0, t) =
∗(t) and uR(0, t) = ũR(x∗(t), t). The Region of Overlap at time t+∆t is all x ∈ R such that xR(0, t+∆t) < x < xL(1, t+∆t).

Theorem 4.6. Suppose we have an isolated shock at x∗(t) with smooth curves ũL(x, t) to the left, defined for x ≤ x∗(t),
and ũR(x, t) to the right, defined for x ≥ x∗(t), with ũL(x∗(t), t) > ũR(x∗(t), t) as in Fig. 8, where ũL and ũR are obtained by
umerically solving the system (1.2). In addition we suppose that neither curve uL(x, t) or uR(x, t) form an additional shock
etween times t and t + ∆t. Then, given a Runge–Kutta method, there exists a ∆t small enough such that each stage of
he method can be evaluated from the slope field defined by (4.16), and therefore the utilized Runge–Kutta method can be
onstructed as in the standard ordinary differential equation setting.

roof. As can be found in numerous numerical analysis of ordinary differential equations books, for example [51], Runge–
utta methods obtain the numerical approximation x̃(t+∆t) through a convex combination of slopes in a neighbourhood
f x̃(t). Each slope, ki, has the same first term,

ki =
F (uL(x̃(t), t)) − F (uR(x̃(t), t))

uL(x̃(t), t) − uR(x̃(t), t)
+ O(∆t). (4.20)

Uniform convexity of the flux function F implies that F ′(u1) < F ′(u2) whenever u1 < u2, therefore since condition (4.16)
s the average value of F ′(u) between uR and uL we have

F ′(uR(x̃(t), t)) <
F (uL(x̃(t), t)) − F (uR(x̃(t), t))

uL(x̃(t), t) − uR(x̃(t), t)
< F ′(uL(x̃(t), t)). (4.21)

The region of overlap, given by Definition 4.5, has left boundary given by xR(0, t+∆t) = xR(0, t)+F ′(uR(x̃(t), t))∆t+O(∆t2)
nd right boundary xL(1, t+∆t) = xL(1, t)+F ′(uL(x̃(t), t))∆t+O(∆t2). Therefore inequality (4.21) implies, for small enough
t , we have

d
d∆t

xR(0, t + ∆t) < ki <
d

d∆t
xL(1, t + ∆t). (4.22)

herefore, provided ∆t is small enough, every stage of a Runge–Kutta method can be evaluated from the slope field given
y the numerical approximation of uL(x, t) and uR(x, t) in the differential equation (4.16). □

Remark 4.7. It is important to note that either uL(x, t) or uR(x, t) may become multi-valued between time t and t + ∆t .
If this occurs within the region of overlap then the resulting slope field given by (4.16) is no longer reliably smooth. A
smaller time step is required and then a point of contact between the two shocks must be approximated.

In the following section we present detailed numerical examples showing that the Parametric Shock Propagation
Method captures the shock position to high spatial and temporal order.

5. Numerical results

Example 5.1. In this example we consider the following Cauchy problem{
ut + uux = −u(1 − u)x

(5.1)

u(x, 0) = g(x),

16
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Fig. 10. The initial condition and solution from Example 5.1 before and after the shocks collide at time t∗ ≈ 1.44769.

here,

g(x) =

⎧⎨⎩
0.9, for x < 2
0.5, for 2 < x < 2.5
0.2, for x > 2.5.

The characteristic equations associated with each constant state of g(x) can be solved exactly. The equation for u can be
solved independently, yielding

u(x0, t) =
1

1 + ( 1
g(x0)

− 1)et
. (5.2)

Using (5.2) we obtain the height of each state at time t , given by

uL(t) =
1

1 + ( 1
0.9 − 1)et

=
1

1 + ( 0.10.9 )e
t

(5.3)

uM (t) =
1

1 + ( 1
0.5 − 1)et

=
1

1 + et
(5.4)

uR(t) =
1

1 + ( 1
0.2 − 1)et

=
1

1 + 4et
(5.5)

qs. (5.3)–(5.5) allow us to compute the shock speeds corresponding to the discontinuities in g(x) at x = 2 and x = 2.5.
he shock starting at x = 2 must satisfy the equation

d
dt

x∗

1(t) =
F (uL(t)) + F (uM (t))

uL(t) + uM (t)
=

uL(t) + uM (t)
2

. (5.6)

herefore we have

x∗

1(t) = 2 +
1
2

∫ t

0

1
1 + ( 0.10.9 )e

τ
+

1
1 + eτ

dτ .

= 2 + t +
1
2

(
ln
(

2
0.9

)
− ln

((
1 +

0.1
0.9

et
) (

1 + et
)))

. (5.7)

imilarly we obtain an equation for the shock starting at x = 2.5,

x∗

2(t) = 2.5 + t +
1
2

(
ln (10) − ln

((
1 + et

) (
1 + 4et

)))
. (5.8)

For this initial condition the two shocks collide at time t∗ given by

t∗ = ln

(
(1 +

0.1
0.9 ) − 5e

0.5
0.9 e −

4
0.9

)
≈ 1.44769. (5.9)

ig. 10 shows the initial condition in the left panel and the solution before and after the shocks intersect in the middle
nd right panel respectively.
Applying the parametric shock propagation method we compute the approximate position of the shock at time t = 2.

ince we are working with constant states, there is no spatial interpolation error. Therefore the only source of error comes
rom the propagation of the shocks and their collision at t∗. Applying the fourth order Runge–Kutta version of the method
escribed in Section 4.1 we obtain fourth order accuracy in the shock position. The convergence plot is shown in Fig. 11.
17
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Fig. 11. Convergence of the fourth order Runge–Kutta Shock Propagation Method.

emark 5.2. In order to not lose any accuracy as the shocks merge we are required to numerically approximate the
ime t∗∗ when the shocks collide. In the above example we did this by taking a few adapted time steps ∆t̃ until the
shocks were within machine precision of each other and thus merged into a single shock. Ensuring that each stage of the
Runge–Kutta method evaluates the slope field correctly is required. In this case we had to ensure that the propagation of
the left shock did not require any evaluations past the right shock. This condition can easily be checked at each stage of
the Runge–Kutta method.

Example 5.3. In our final example we aim to track the shock propagating under the boundary value problem⎧⎨⎩
ut + uux = sin(x)u
u(0, t) =

1
2 , for t ≥ 0

u(x, 0) = 0, for x > 0.

his example breaks down into a Riemann problem where the left shock state is given by the solution to the curve traced
ut by the system{

ẋ = u, x(0) = 0
u̇ = sin(x)u u(0) =

1
2 .

(5.10)

s we saw in Example 4.1 we are able to perform a high-order spatial and temporal interpolation of this curve using
arametric interpolation methods. Before jumping into the full numerical method we first ensure that the appropriate
emporal error from the shock propagation method is achieved. Using the analytical solution to 5.3, derived in Example 4.1,
e simply solve the differential equation given by the Rankine–Hugoniot Condition,

d
dt

x∗(t) =
3 − 2 cos(x∗(t))

4
. (5.11)

he true shock position is therefore

x(t) = arctan

⎛⎝ tan
(√

5
4 t
)

√
5

⎞⎠ . (5.12)

t comes to no surprise that the shock propagation method succeeds to obtain fourth-order accuracy when employing
he fourth order Runge–Kutta method on the differential equation (5.12). The convergence of the shock position at time
= 5 is plotted in Fig. 12.
Now we solve the same problem utilizing the parametric interpolation discussed in Section 2. To do this we compute

he extended characteristic equations as done in Example 4.1. Then, at each stage of the Runge–Kutta shock propagation
e evaluate the approximate value of u(x∗(t +∆t)) using the computed parametric interpolants. A plot of the solution at
ime t = 3.5 and t = 5 is given in Fig. 13.

Taking small enough time steps to ensure that the temporal error does not influence the convergence, we compute the
patial convergence in the shock position at time t = 5. First we employ a basic parametric Hermite cubic interpolation
nd obtain the fourth order convergence seen in Fig. 14. Next, using a sequence of Hermite interpolants to compute the
pproximate area, we compute the area-preserving cubic Bézier of [46] and indeed achieve fifth order as predicted.

emark 5.4. Unlike the homogeneous case, it can be difficult to compute the area under each portion of the parametric
urve given by solving the characteristic equations. In Example 5.3 we used approximately ten Hermite interpolants to
18
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Fig. 12. Convergence of the fourth order Runge–Kutta Shock Propagation Method on exact solution.

Fig. 13. The solution from Example 5.3 at times t = 3.5 and t = 5.

Fig. 14. Convergence of the fourth order Runge–Kutta Parametric Shock Propagation Method.

approximate the area under each Bézier curve. In the end we obtained one order higher, but with an added computational
cost. The main takeaway from this example is that parametric interpolation methods which are capable of obtaining high-
order can indeed be applied to this framework resulting in high-order numerical approximation of the weak solution, even
in the presence of spatial and solution dependent source terms.
19
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6. Discussion

In this paper we present a framework for obtaining high-order numerical solutions of scalar conservation laws in
ne-space dimension containing shocks. Unlike the majority of methods available, the approach presented here, which
elies on high-order parametric interpolation of the characteristic equations, preserves the spatial and temporal order
t the shock location. In the homogeneous case, shocks are located through an equal-area projection, while in the non-
omogeneous case, a modified equal-area principle is applied for a single step to find an initial shock location to second
rder accuracy. The Rankine–Hugoniot condition can then be solved directly using the left and right shock states given
y parametric interpolation of the characteristic equations.
In the homogeneous case, we showed that the data required to perform the area-preserving Bézier interpolation

f [46] is easily obtained from the characteristic equations. Fifth order spatial accuracy, or better, is indeed obtained
s expected. In the non-homogeneous case, we showed that a simple parametric Hermite interpolation works very well,
nd although we succeeded to obtain the spatial fifth order accuracy using the area-preserving interpolation, it came at
n additional computational cost. If one seeks higher-order spatial interpolation we suggest doing a further extension of
he characteristic equations to include second derivatives in the parametrization. From here, one would be able to apply
he sixth order accurate curvature matching method discussed in [41]. There are also many parametric quintic methods
ithin the parametric interpolation literature that could be employed. Going forward, a natural extension of our work
ould be towards scalar conservation laws in 2-dimensions. Here, the characteristic structure is similar to the 1-D case
nd a parametric surface interpolation such as [52] could be utilized, or perhaps a volume preserving parametric surface
nterpolation could be constructed. Although resolving shocks from the overturned surfaces could be challenging, we
elieve the outcome of this work could be of great interest to the conservation law community. We are also interested in
dapting these methods to system of conservation laws in one-space dimension. In particular we are interested in studying
ystem of two equations containing Riemann Invariants. We also are interested in transforming the methods discussed
n this paper onto a grid, instead of a tracking particles as they flow along the characteristics. From this perspective, it
ould be interesting to study the differences between area-preserving parametric methods and finite volume methods.
dditionally, if our method can be moved onto a grid, then it may be possible to utilize our high-order shock capturing
ithin other methods such as Discontinuous Galerkin (DG). For example, finite volume methods have been utilized within
G to improve shock capturing, for example see [53].

eferences

[1] Constantine M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl. 38 (1)
(1972) 33–41.

[2] Bradley J. Lucier, A moving mesh numerical method for hyperbolic conservation laws, Math. Comp. 46 (173) (1986) 59–69.
[3] Gerald Beresford Whitham, Linear and Nonlinear Waves, vol. 42, John Wiley & Sons, 2011.
[4] Yann Brenier, Averaged multivalued solutions for scalar conservation laws, SIAM J. Numer. Anal. 21 (6) (1984) 1013–1037.
[5] Randall J. LeVeque, Numerical Methods for Conservation Laws, vol. 132, Springer, 1992.
[6] Randall J. LeVeque, Finite Volume Methods for Hyperbolic Problems, vol. 31, Cambridge University Press, 2002.
[7] Chi-Wang Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, in: Advanced

Numerical Approximation of Nonlinear Hyperbolic Equations, Springer, 1998, pp. 325–432.
[8] Xu-Dong Liu, Stanley Osher, Tony Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys. 115 (1) (1994) 200–212.
[9] Lin Fu, Xiangyu Y. Hu, Nikolaus A. Adams, A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws, J.

Comput. Phys. 374 (2018) 724–751.
[10] Bao-Shan Wang, Peng Li, Zhen Gao, Wai Sun Don, An improved fifth order alternative WENO-Z finite difference scheme for hyperbolic

conservation laws, J. Comput. Phys. 374 (2018) 469–477.
[11] Zhifang Du, Jiequan Li, A Hermite WENO reconstruction for fourth order temporal accurate schemes based on the GRP solver for hyperbolic

conservation laws, J. Comput. Phys. 355 (2018) 385–396.
[12] Fuxing Hu, The 6th-order weighted ENO schemes for hyperbolic conservation laws, Comput. & Fluids 174 (2018) 34–45.
[13] Chi-Wang Shu, High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent

developments, J. Comput. Phys. 316 (2016) 598–613.
[14] Jianxian Qiu, Chi-Wang Shu, Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method:

one-dimensional case, J. Comput. Phys. 193 (1) (2004) 115–135.
[15] Jianxian Qiu, Chi-Wang Shu, Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method II: Two

dimensional case, Comput. & Fluids 34 (6) (2005) 642–663.
[16] Hong Luo, Joseph D. Baum, Rainald Löhner, A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids, J. Comput.

Phys. 225 (1) (2007) 686–713.
[17] Bram Van Leer, Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme,

J. Comput. Phys. 14 (4) (1974) 361–370.
[18] Jan Glaubitz, Shock capturing by Bernstein polynomials for scalar conservation laws, Appl. Math. Comput. 363 (2019) 124593.
[19] Sulin Wang, Zhengfu Xu, Total variation bounded flux limiters for high order finite difference schemes solving one-dimensional scalar

conservation laws, Math. Comp. 88 (316) (2019) 691–716.
[20] Matania Ben-Artzi, Jiequan Li, Consistency of finite volume approximations to nonlinear hyperbolic balance laws, Math. Comp. 90 (327) (2020)

141–169.
[21] Thi-Thao-Phuong Hoang, Lili Ju, Wei Leng, Zhu Wang, High order explicit local time stepping methods for hyperbolic conservation laws, Math.

Comp. 89 (324) (2020) 1807–1842.
[22] N.H. Risebro, A. Tveito, A front tracking method for conservation laws in one dimension, J. Comput. Phys. 101 (1) (1992) 130–139.
[23] Sergei Konstantinovich Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics,

Mat. Sb. 89 (3) (1959) 271–306.
20

http://refhub.elsevier.com/S0377-0427(21)00514-8/sb1
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb1
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb1
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb2
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb3
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb4
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb5
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb6
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb7
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb7
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb7
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb8
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb9
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb9
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb9
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb10
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb10
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb10
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb11
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb11
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb11
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb12
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb13
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb13
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb13
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb14
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb14
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb14
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb15
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb15
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb15
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb16
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb16
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb16
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb17
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb17
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb17
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb18
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb19
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb19
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb19
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb20
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb20
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb20
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb21
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb21
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb21
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb22
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb23
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb23
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb23


G. McGregor and J.-C. Nave Journal of Computational and Applied Mathematics 404 (2022) 113891
[24] Amiram Harten, Peter D. Lax, Bram van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM
Rev. 25 (1) (1983) 35–61.

[25] Eleuterio F. Toro, Michael Spruce, William Speares, Restoration of the contact surface in the HLL-Riemann solver, Shock Waves 4 (1) (1994)
25–34.

[26] Dinshaw S. Balsara, Three dimensional HLL Riemann solver for conservation laws on structured meshes; Application to Euler and
magnetohydrodynamic flows, J. Comput. Phys. 295 (2015) 1–23.

[27] Jeaniffer Vides, Boniface Nkonga, Edouard Audit, A simple two-dimensional extension of the HLL Riemann solver for hyperbolic systems of
conservation laws, J. Comput. Phys. 280 (2015) 643–675.

[28] Claus R. Goetz, Dinshaw S. Balsara, Michael Dumbser, A family of HLL-type solvers for the generalized Riemann problem, Comput. & Fluids
169 (2018) 201–212.

[29] John VonNeumann, Robert D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys. 21 (3) (1950) 232–237.
[30] Per-Olof Persson, Jaime Peraire, Sub-cell shock capturing for discontinuous Galerkin methods, in: 44th AIAA Aerospace Sciences Meeting and

Exhibit, 2006, p. 112.
[31] Andreas Klöckner, Tim Warburton, Jan S. Hesthaven, Viscous shock capturing in a time-explicit discontinuous Galerkin method, Math. Model.

Nat. Phenom. 6 (3) (2011) 57–83.
[32] Jan Glaubitz, AC Nogueira, João LS Almeida, RF Cantão, CAC Silva, Smooth and compactly supported viscous sub-cell shock capturing for

discontinuous Galerkin methods, J. Sci. Comput. 79 (1) (2019) 249–272.
[33] Niccolo Discacciati, Jan S. Hesthaven, Deep Ray, Controlling oscillations in high-order discontinuous Galerkin schemes using artificial viscosity

tuned by neural networks, J. Comput. Phys. 409 (2020) 109304.
[34] Ming-Hseng Tseng, Improved treatment of source terms in TVD scheme for shallow water equations, Adv. Water Resour. 27 (6) (2004) 617–629.
[35] Javier Burguete, P. García-Navarro, Efficient construction of high-resolution TVD conservative schemes for equations with source terms:

application to shallow water flows, Internat. J. Numer. Methods Fluids 37 (2) (2001) 209–248.
[36] Yulong Xing, Chi-Wang Shu, High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of

hyperbolic systems with source terms, J. Comput. Phys. 214 (2) (2006) 567–598.
[37] Wei Wang, Chi-Wang Shu, Helen C Yee, Björn Sjögreen, High order finite difference methods with subcell resolution for advection equations

with stiff source terms, J. Comput. Phys. 231 (1) (2012) 190–214.
[38] Yossi Farjoun, Benjamin Seibold, An exactly conservative particle method for one dimensional scalar conservation laws, J. Comput. Phys. 228

(14) (2009) 5298–5315.
[39] William John Macquorn Rankine, On the thermodynamic theory of waves of finite longitudinal disturbance, Philos. Trans. R. Soc. Lond. (1870)

277–288.
[40] Pierre Henri Hugoniot, Memoir on the propagation of movements in bodies, especially perfect gases (first part), J. L’Ecole Polytech. 57 (1887)

3–97.
[41] Carl De Boor, Klaus Höllig, Malcolm Sabin, High accuracy geometric Hermite interpolation, Comput. Aided Geom. Design 4 (4) (1987) 269–278.
[42] Rida T. Farouki, Construction of G1 planar Hermite interpolants with prescribed arc lengths, Comput. Aided Geom. Design 46 (2016) 64–75.
[43] Rida T. Farouki, C. Andrew Neff, Hermite interpolation by Pythagorean-hodograph quintics, Math. Comp. 64 (212) (1995) 1589–1609.
[44] Lizheng Lu, Chengkai Jiang, Qianqian Hu, Planar cubic G1 and quintic G2 Hermite interpolations via curvature variation minimization, Comput.

Graph. 70 (2018) 92–98.
[45] Jun-Hai Yong, Fuhua Frank Cheng, Geometric Hermite curves with minimum strain energy, Comput. Aided Geom. Design 21 (3) (2004) 281–301.
[46] Geoffrey McGregor, Jean-Christophe Nave, Area-preserving geometric Hermite interpolation, J. Comput. Appl. Math. 361 (2019) 236–248.
[47] Lawrence C. Evans, Partial Differential Equations, in: Graduate studies in mathematics, American Mathematical Society, ISBN: 9780821807729,

1998.
[48] Peter D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, vol. 11, SIAM, 1973.
[49] Marjeta Kramer FijavŽ, Mitja Lakner, Marjeta ŠKapin Rugelj, An equal-area method for scalar conservation laws, ANZIAM J. 53 (02) (2011)

156–170.
[50] Geoffrey McGregor, Jean-Christophe Nave, Parametric interpolation framework for 1-D scalar conservation laws with non-convex flux functions,

2019, arXiv preprint arXiv:1911.13174.
[51] John Charles Butcher, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods, Wiley-Interscience,

1987.
[52] Gašper Jaklič, Tadej Kanduč, Hermite parametric surface interpolation based on Argyris element, Comput. Aided Geom. Design 56 (2017) 67–81.
[53] Matthias Sonntag, Claus-Dieter Munz, Shock capturing for discontinuous Galerkin methods using finite volume subcells, in: Finite Volumes for

Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, Springer, 2014, pp. 945–953.
21

http://refhub.elsevier.com/S0377-0427(21)00514-8/sb24
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb24
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb24
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb25
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb25
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb25
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb26
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb26
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb26
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb27
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb27
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb27
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb28
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb28
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb28
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb29
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb31
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb31
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb31
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb32
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb32
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb32
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb33
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb33
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb33
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb34
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb35
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb35
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb35
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb36
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb36
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb36
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb37
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb37
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb37
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb38
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb38
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb38
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb39
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb39
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb39
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb40
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb40
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb40
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb41
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb42
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb43
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb44
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb44
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb44
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb45
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb46
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb47
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb47
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb47
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb48
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb49
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb49
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb49
http://arxiv.org/abs/1911.13174
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb51
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb51
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb51
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb52
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb53
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb53
http://refhub.elsevier.com/S0377-0427(21)00514-8/sb53

	Parametric interpolation framework for scalar conservation laws
	Introduction
	Parametric interpolation framework for 1-D homogeneous scalar conservation laws
	Area-preserving parametric interpolation
	Application to 1-D scalar conservation laws
	Boundary value problems
	Example 1

	The non-homogeneous case
	Example 2

	Numerical methods for shock motion in the non-homogeneous case
	Parametric shock propagation method

	Numerical results
	Discussion
	References


