
Adaptive Wavelet Algorithms
for solving operator equations

Tsogtgerel Gantumur

August 2006

Contents

Notations and acronyms vii

1 Introduction 1

1.1 Background . 1

1.2 Thesis overview . 3

1.3 Algorithms . 6

1.4 Notational conventions . 6

2 Basic principles 9

2.1 Introduction . 9

2.2 Wavelet bases . 9

2.3 Best N -term approximations . 14

2.4 Linear operator equations . 19

2.5 Convergent iterations in the energy space 22

2.6 Optimal complexity with coarsening of the iterands 24

2.7 Adaptive application of operators. Computability 29

2.8 Approximate steepest descent iterations 37

3 Adaptive Galerkin methods 43

3.1 Introduction . 43

3.2 Adaptive Galerkin iterations . 45

3.3 Optimal complexity without coarsening of the iterands 52

3.4 Numerical experiment . 55

4 Using polynomial preconditioners 59

i

ii CONTENTS

4.1 Introduction . 59

4.2 Polynomial preconditioners . 60

4.3 Preconditioned adaptive algorithm 65

5 Adaptive algorithm for nonsymmetric and indefinite elliptic problems 69

5.1 Introduction . 69

5.2 Ritz-Galerkin approximations . 70

5.3 Adaptive algorithm for nonsymmetric and indefinite elliptic prob-
lems . 78

6 Adaptive algorithm with truncated residuals 85

6.1 Introduction . 85

6.2 Tree approximations . 86

6.3 Adaptive algorithm with truncated residuals 88

6.3.1 The basic scheme . 88

6.3.2 The main result . 91

6.4 Elliptic boundary value problems 101

6.4.1 The wavelet setting . 101

6.4.2 Differential operators . 107

6.4.3 Verification of Assumption 6.3.3 108

6.5 Completion of tree . 114

7 Computability of differential operators 119

7.1 Introduction . 119

7.2 Error estimates for numerical quadrature 120

7.3 Compressibility . 125

7.4 Computability . 128

8 Computability of singular integral operators 133

8.1 Introduction . 133

8.2 Compressibility . 135

8.3 Computability . 140

8.4 Quadrature for singular integrals 152

9 Conclusion 161

9.1 Discussion . 161

9.2 Future work . 162

CONTENTS iii

Bibliography 165

iv CONTENTS

List of Algorithms

2.6.1 Quasi-sorting algorithm BSORT 26
2.6.3 Clean-up step COARSE . 26
2.6.6 Algorithm template ITERATE 27
2.6.7 Method SOLVE with coarsening 28
2.7.1 Algorithm template APPLY . 29
2.7.2 Algorithm template RHS . 29
2.7.6 The Richardson method RICHARDSON 31
2.7.9 Realization of APPLY . 33
2.8.2 Residual computation RES . 37
2.8.5 Method of steepest descent SD 39
3.2.3 Galerkin system solver GALSOLVE 47
3.2.5 Adaptive Galerkin method GALERKIN 49
3.3.2 Index set expansion RESTRICT 53
3.3.4 Method SOLVE without coarsening of the iterands 54
4.2.3 Polynomial preconditioner PRECa 63
4.2.4 Polynomial preconditioner PRECb 63
4.3.1 Galerkin system solver GALSOLVE 65
4.3.3 Preconditioned adaptive method SOLVE 66
5.3.1 Galerkin system solver GALSOLVE 79
5.3.4 Galerkin residual GALRES . 81
5.3.8 Adaptive Galerkin method SOLVE 83
6.3.7 Algorithm template TRHS . 95
6.3.8 Algorithm template TAPPLY 96
6.3.9 Algorithm template TGALSOLVE 96
6.3.10 Algorithm template COMPLETE 96
6.3.11 Computation of truncated Galerkin residual TGALRES 97
6.3.13 Adaptive Galerkin method SOLVE 99
6.4.3 Graded tree node insertion APPEND 104

v

vi LIST OF ALGORITHMS

6.4.10 Realization of the mapping V : (Λ, Λ̄) 7→ Λ? 113
6.5.4 Tree completion . 115
8.3.6 Nonuniform subdivision of the product domain Π× Π′ 147
8.3.11 Computation of the integral Iλλ′(Π,Π

′) 150

Notations and acronyms

notation meaning
SPD symmetric and positive definite
CBS inequality Cauchy-Bunyakowsky-Schwarz inequality
N, N0 the natural numbers 1, 2, 3, . . ., and N ∪ {0}, resp.
Z, R, C integers, reals, and complex numbers, respectively
R>0, R≥0 positive and nonnegative reals, respectively
Ω, ∂Ω bounded Lipschitz domain in Rn, and its boundary
Lp(Ω), Lp the space of functions on Ω for which

∫
Ω
|f |p is finite

W s
p (Ω), W s

p the Sobolev space with smoothness s measured in Lp
Hs(Ω), Hs equal to W s

2 (Ω)
Hs

0(Ω), Hs
0 the closure of C∞

0 (Ω) in Hs(Ω)
Bs
q(Lp(Ω)), Bs

q(Lp) Besov space with smoothness s measured in Lp and
secondary index q

H a separable Hilbert space, typically L2 or H1
0

H′ the dual of H
u, v, w, . . . elements of H
`2 the space `2(∇) with a countable index set ∇
P the set of finitely supported sequences in `2, i.e., is

equal to {v ∈ `2 : # suppv <∞}
〈·, ·〉 the duality product on H×H′, or the standard inner

product in `2
‖ · ‖ the standard norm on `2, or the induced operator norm

on `2 → `2

vii

viii NOTATIONS AND ACRONYMS

notation meaning
u,v,w elements (or vectors, sequences) of `2(Λ) with some

countable index set Λ ⊆ ∇
vλ, [v + w]λ,wµ entries (or coefficients) in elements of `2(Λ), thus e.g.

vλ ∈ R
v1,vk,wK different elements of `2, thus e.g. vk ∈ `2
BN(v) a best N -term approximation of v ∈ `2
As the set of sequences in `2 that can be approximated

by best N -term approximations with the rate s; or in
Chapter 6, the set of sequences in `2 that can be ap-
proximated by best tree N -term approximations with
the rate s

Ãs the set of sequences in `2 that can be approximated by
best graded tree N -term approximations with the rate
s

A,L,M bounded linear operators of type `2 → `2
A a symmetric and positive definite matrix
κ(M) condition number of M, i.e., ‖M‖‖M−1‖ for an invert-

ible M
〈〈·, ·〉〉 inner product defined by 〈A·, ·〉
||| · ||| the norm defined by 〈〈·, ·〉〉 1

2 , called the energy norm
IΛ the trivial inclusion `2(Λ) → `2(∇), for Λ ⊂ ∇
PΛ equal to the adjoint I∗ : `2(∇) → `2(Λ), for Λ ⊂ ∇
f . g f ≤ C·g with a constant C > 0 that may depend only

on fixed constants under consideration
f & g g . f
f h g f . g and g . f
� end of example, definition, or long remark

end of proof

Chapter 1
Introduction

1.1 Background
This thesis treats various aspects of adaptive wavelet algorithms for solving op-
erator equations. For a separable Hilbert space H, a linear functional f ∈ H ′,
and a boundedly invertible linear operator A : H → H ′, we consider the problem
of finding u ∈ H satisfying

Au = f.

Typically A is given by a variational formulation of a boundary value problem
or integral equation, and H is a Sobolev space formulated on some domain or
manifold, possibly incorporating essential boundary conditions. Often we will
assume that A is self-adjoint and H-elliptic. General operators can be treated,
e.g., by forming normal equations, although in particular situations quantitatively
more attractive alternatives exist.

In their pioneering works [17, 18], Cohen, Dahmen and DeVore introduced
adaptive wavelet paradigms for solving the problem numerically. Utilizing a Riesz
basis Ψ = {ψi ∈ H : i ∈ N} for H, the idea is to transform the original problem
into a problem involving the coefficients of u with respect to the basis Ψ. Writing
the collection of these coefficients of u as u ∈ `2, u has to satisfy

Au = f ,

where A : `2 → `2 is an infinitely sized stiffness matrix with elements Aik =
[Aψk](ψi) ∈ R, and f ∈ `2 is an infinitely sized load vector with elements fi =
f(ψi) ∈ R. Under certain assumptions concerning the cost of evaluating the
entries of the stiffness matrix, the methods from the aforementioned works of
Cohen, Dahmen, and DeVore for solving this infinite matrix-vector problem were
shown to be of optimal computational complexity. In this thesis, we will verify

1

2 INTRODUCTION 1.1

those assumptions, extend the scope of problems for which the adaptive wavelet
algorithms can be applied directly, and most importantly, develop and analyze
modified adaptive algorithms with improved quantitative properties.

In order to solve the infinitely sized problem on a computer (within a given
tolerance ε > 0), one should be able to approximate both f and Av for finitely
supported v. Let P ⊂ `2 denote the set of finite sequences. Then one utilizes some
maps A : R>0×P → P and F : R>0 → P , both realized by some implementable
computational procedures, such that for any ε > 0 and for any v ∈ P ,

‖A(ε,v)−Av‖ ≤ ε, and ‖F(ε)− f‖ ≤ ε.

We know that the sequence (u(j))j≥0 given by the Richardson iteration{
u(0) = 0,

u(j+1) = u(j) + α(f −Au(j)), j ∈ N,

converges to the solution u for α ∈ (0, 2
‖A‖); however, this iteration is not com-

putable since in general the retrieval of all coefficients of f and the application
of A requires infinite storage and unlimited computing power. Therefore one
has to perform this iteration only approximately, working with finitely supported
vectors and matrices only. By using the procedures A and F one can design a
convergent inexact Richardson iteration. Other Krylov subspace methods can be
used as well, where the theory of inexact Krylov subspace methods comes into
play.

In [17, 86], it is shown, assuming that the individual entries of the matrix A
can be computed efficiently, how a reasonably fast procedure A can be realized,
essentially by proving that the matrix A can be approximated well by sparse
matrices. The latter is a result of the facts that the wavelets are locally supported
and have the so-called cancellation property, and that the considered operators
are local (in case of differential operators) or pseudolocal (in case of singular
integral operators). Based on an inexact Richardson iteration, employing the fast
procedure from the above papers, and assuming that on average, an individual
entry of the matrix A can be computed at unit cost, in [18] an iterative adaptive
algorithm was developed that has optimal computational complexity, meaning
that the algorithm approximates the solution using, up to a constant factor, as
few degrees of freedom as possible and the computational work stays proportional
to the number of degrees of freedom. The average unit cost assumption will be
confirmed in Chapters 7 and 8 of this thesis for both differential and singular
integral operators.

As an alternative to using the Richardson iteration, in [17] another approach
was suggested of using Galerkin approximation in combination with a residual

1.2 THESIS OVERVIEW 3

based a posteriori error indicator, leading to an algorithm of optimal computa-
tional complexity which is similar in spirit to an adaptive finite element method.

A crucial ingredient for proving the optimal complexity of both algorithms was
the coarsening step that was applied after every fixed number of iterations. This
step consists of removing small coefficients from the current iterand, ensuring
that the support of the iterand does not grow too much in comparison to the
convergence obtained by the algorithm. As we will show in Chapter 3, it turns
out that coarsening is unnecessary for proving optimal computational complexity
of algorithms of the type considered in [17]. Since with the new method no
information is deleted that has been created by a sequence of computations, we
expect that it is more efficient. Numerical experiments from e.g. Chapter 3 and
[30] show that removing the coarsening improves the quantitative performance of
the algorithm.

For the algorithms we have mentioned, the matrix A is assumed to be symmet-
ric and positive definite, i.e., the operator A is self-adjoint and H-elliptic. In the
general case one may replace the problem by the normal equation A∗Au = A∗f .
From a quantitative point of view, the normal equation is undesirable since the
condition number is squared. In some special cases it can be avoided. For exam-
ple, for saddle point problems one can use the Schur complement system, cf. [25].
For strongly elliptic operators, i.e., the operator A is a compact perturbation of a
self-adjoint and H-elliptic operator, we will show in Chapter 5 that the algorithm
from Chapter 3 can be applied directly with minor modifications, avoiding the
normal equations.

Although the algorithms above described are proven to have asymptotically
optimal computational complexity, there are some reasons to expect that the
algorithms can be quantitatively improved. Let w := A(ε,v) for some ε > 0
and finitely supported v ∈ P . The individual wavelet ψi is characterized by its
so-called level and its location in space. Then, with the commonly used map A,
in general, the difference between the highest levels of wavelets that are used in w
and that are used in v grows as ε→ 0, which leads to serious obstacles in practical
implementations of the algorithm. If we simply force the level difference not to
exceed some fixed number, then the numerical experiments show relatively good
performance, see e.g. [5, 54]. In Chapter 6, we will analyze similarly modified
algorithms.

1.2 Thesis overview
The thesis is outlined as follows:

Chapter 2 (Basic principles) contains a short introduction to the theory
of adaptive wavelet algorithms. We start with recalling essential properties of

4 INTRODUCTION 1.2

wavelet bases, and briefly present basic results on best N -term approximation.
Then we describe how an optimally convergent algorithm can be constructed us-
ing any linearly convergent iteration in the energy space. We include proofs of
the most fundamental results, along with references to relevant literature.

In Chapter 3 (Adaptive Galerkin methods), an adaptive wavelet method for
solving linear operator equations is constructed that is a modification of the
method from [17], in the sense that there is no recurrent coarsening of the iterands.
In spite of this, it will be shown that the method has optimal computational
complexity. Numerical results for a simple model problem indicate that the new
method is more efficient than the existing method.

In Chapter 4 (Using polynomial preconditioners), we investigate the possibility
of using polynomial preconditioners in the context of adaptive wavelet methods.
We propose a version of a preconditioned adaptive wavelet algorithm and show
that it has optimal computational complexity.

In Chapter 5 (Adaptive algorithm for nonsymmetric and indefinite elliptic
problems), we modify the adaptive wavelet algorithm from Chapter 3 so that
it applies directly, i.e., without forming the normal equation, not only to self-
adjoint elliptic operators but also to operators of the form L = A + B, where
A is self-adjoint elliptic and B is compact, assuming that the resulting operator
equation is well-posed. We show that the algorithm has optimal computational
complexity.

Aiming at a further improvement of quantitative properties, in Chapter 6 (Adap-
tive algorithm with truncated residuals), a class of adaptive wavelet algorithms for
solving elliptic operator equations is introduced, and is proven to have optimal
complexity assuming a certain property of the stiffness matrix. This assumption
is confirmed for elliptic differential operators.

In Chapter 7 (Computability of differential operators), restricting us to differ-
ential operators, we develop a numerical integration scheme that computes the
entries of the stiffness matrix at the expense of an error that is consistent with
the approximation error, whereas in each column the average computational cost
per entry is O(1). As a consequence, we can conclude that the “fully discrete”
adaptive wavelet algorithm has optimal computational complexity.

In Chapter 8 (Computability of singular integral operators), we prove an analo-
gous result for singular integral operators, by carefully distributing computational
costs over the matrix entries in combination with choosing efficient quadrature
schemes.

Chapter 9 (Conclusion) closes the thesis with a summary and discussion of
the presented research topics, as well as with some suggestions for future research.

To help readers who prefer to read the chapters in an order different than
linear, Figure 1.1 on the facing page illustrates the logical dependencies between

1.3 THESIS OVERVIEW 5

chapters.

Chapter 2

 Chapter 3

Chapter 4

Chapter 6

Chapter 5

Chapter 7

Chapter 8Section 7.2

Figure 1.1: Chapter dependencies

Chapters 3, 5, 7 and 8 have appeared as separate papers. For this thesis,
they have been edited to some extent, varying from small editorial changes to
enlargement by extra sections. Some notations have been changed to ensure
uniformity. Chapter 3 is based on [46]:

Ts.Gantumur, H.Harbrecht, and R.P. Stevenson, An opti-
mal adaptive wavelet method without coarsening of the iterands, Tech-
nical Report 1325, Utrecht University, The Netherlands, March 2005.
To appear in Math.Comp.

Chapter 5 is [45]:

Ts.Gantumur, An optimal adaptive wavelet method for nonsymmet-
ric and indefinite elliptic problems, Technical Report 1343, Utrecht
University, The Netherlands, January 2006. Submitted.

Chapter 7 is [47]:

Ts.Gantumur and R.P. Stevenson, Computation of differential
operators in wavelet coordinates, Math. Comp., 75 (2006), pp. 697–
709.

Chapter 8 appeared as [48]:

Ts.Gantumur and R.P. Stevenson, Computation of singular in-
tegral operators in wavelet coordinates, Computing, 76 (2006), pp. 77–
107.

6 INTRODUCTION 1.4

1.3 Algorithms
Algorithms in this thesis are numbered within sections, and placed between two
horizontal lines, preceded by the caption of the algorithm. Some algorithms have
a name, which is placed, except for a few instances, at the end of the caption.
The name of an algorithm ends with the list of input variables placed between
square brackets, followed by the list of output variables separated from the input
list by an arrow. For example, XY[a, b] → c and XY[a, b] → [c, d] are names of
different algorithms. In any chapter, each algorithm has a unique name. A few
algorithms in different chapters have common names, but it will be clear from
the context which algorithm is in focus. At the beginning of an algorithm, the
conditions that should be satisfied for the input variables are stated after the
keyword Input. For algorithms that do not have a name, the input variables
are also introduced here. Similarly, conditions that are satisfied for the output
variables are stated after the keyword Output. After the keyword Parameter
we declare fixed constants or input parameters that are changed infrequently.
In order not to clutter algorithm names too much, these input parameters are
not listed within the algorithm name. Abstract algorithms are defined only by
their key properties, which should be satisfied for any concrete realization of the
algorithm. Sometimes we call abstract algorithms algorithm templates.

1.4 Notational conventions
While many notations are summarized in the table on page vii, we would like to
highlight some specific ones that appear frequently throughout the thesis. In any
case, their definitions appear at the first place where they are introduced.

In this thesis, we will encounter function spaces Lp(Ω), W s
p (Ω), etc., with Ω

being a bounded Lipschitz domain. Elements of those spaces are indicated by
lowercase letters (e.g., u). Capital letters (e.g., S, L) are used to denote subspaces,
spaces, or operators.

A large portion of the thesis concerns sequence spaces, such as `p(∇) with a
countable index set ∇. We use boldface lowercase letters (e.g., u) for elements of
a sequence space. To indicate an individual entry in a sequence, Greek subscripts
are used, and when a sequence of elements of a sequence space is considered,
Roman subscripts are used. For example, if v ∈ `2(∇) and λ ∈ ∇, then vλ ∈ R
is an entry in the sequence v. In contrast, (vk)k∈N can be a sequence of elements
of `2 and so vk ∈ `2 for k ∈ N. Operators on sequence spaces are denoted by
boldface capital letters, as in L : `2 → `2. We use ‖ · ‖ to denote both ‖ · ‖`2
and ‖ · ‖`2→`2 . For an invertible M : `2 → `2, its condition number is defined by
κ(M) = ‖M‖‖M−1‖.

1.4 NOTATIONAL CONVENTIONS 7

In order to avoid the repeated use of generic but unspecified constants, by
f . g we mean that f ≤ C·g with a constant C > 0 that may depend only on
fixed constants under consideration. For example, |n sin x| . 1 is true uniformly
in x ∈ R for any fixed n ∈ N. Obviously, f & g is defined as g . f , and f h g as
f . g and g . f .

8 INTRODUCTION 1.4

Chapter 2
Basic principles

2.1 Introduction
In this chapter we will take a short tour of the field of adaptive wavelet algorithms.
We introduce and explain various concepts and terms that will be referred to
frequently in this thesis.

We begin with recalling essential properties of wavelet bases, and briefly
present basic results on best N -term approximation. Using Richardson’s iter-
ation as an example, we will describe how an optimally convergent algorithm can
be constructed using linearly convergent iterations in the energy space. We then
go into the fundamental building blocks of optimally convergent adaptive wavelet
algorithms, such as the fast application of operators and the coarsening routine.

We include proofs of the most crucial results, along with references to relevant
literature.

2.2 Wavelet bases
A wavelet basis is a basis with certain properties, and one or more of these prop-
erties can be emphasized depending on the particular application. In this section,
we recall some relevant properties of wavelet bases, for simplicity considering the
case of wavelet bases for Sobolev spaces on bounded domains. Although many
of the results in this thesis hold in more general and hence abstract settings,
we will occasionally return to the setting from this section to discuss how those
general ideas could be applied in a concrete setting. On the other hand, we will
explicitly state it if we need specific additional properties of wavelet bases. Let
H := H t(Ω) be the Sobolev space with some smoothness index t ∈ R, defined on
a bounded Lipschitz domain Ω ⊂ Rn, and with ∇ being some countable index

9

10 BASIC PRINCIPLES 2.2

set, let Ψ = {ψλ : λ ∈ ∇} be a wavelet basis for H.

Riesz basis property

The first important property is that Ψ is a Riesz basis of H. Recall that a basis
Ψ is Riesz if and only if

‖v‖ h ‖vTΨ‖H v ∈ `2(∇), (2.2.1)

where we used the shorthand notation vTΨ :=
∑

λ∈∇ vλψλ. Here ‖ · ‖ denotes
the standard norm on `2 := `2(∇). With 〈·, ·〉 denoting the duality product on
H×H′, we define the analysis and synthesis operators by

F : H′ → `2 : g 7→ 〈g,Ψ〉 and F ′ : `2 → H : v 7→ vTΨ, (2.2.2)

respectively, where with 〈g,Ψ〉 we mean the sequence (〈g, ψλ〉)λ. The Riesz ba-
sis property of Ψ ensures that both F and F ′ are continuous bijections. The
collection Ψ̃ := (F ′F)−1Ψ is a Riesz basis for H′, called the dual basis of Ψ.

Direct and inverse estimates

Another property is that there exists a sequence of subsets ∇0 ⊂ ∇1 ⊂ . . . ⊂ ∇
such that with some d > γ > max{0, t}, the subspaces

Sj := span {ψλ : λ ∈ ∇j} (j ∈ N0),

satisfy the Jackson (or direct) estimate for r < γ and s ∈ [r, d],

inf
vj∈Sj

‖v − vj‖Hr . 2−j(s−r)‖v‖Hs (v ∈ Hs), (2.2.3)

as well as the Bernstein (or inverse) estimate for r ≤ s < γ,

‖vj‖Hs . 2j(s−r)‖v‖Hr (vj ∈ Sj). (2.2.4)

Furthermore, the dual sequence (S̃j)j≥0 defined via the dual wavelets Ψ̃ and the
sequence (∇j)j≥0 also satisfies the analogous estimates with constants d̃ > γ̃ >
max{0,−t}. In particular, the Bernstein estimates give information about the
smoothness of the wavelets or their duals, namely, we have Ψ ⊂ Hs for any s < γ
and Ψ̃ ⊂ Hs for any s < γ̃.

The Jackson estimate is typically valid when Sj both contains all polynomials
of degree less than d, and is spanned by compactly supported functions such
that the diameter of the supports is uniformly proportional to 2−j. Likewise
the Bernstein estimate is known to hold with γ = r + 3

2
when Sj is spanned

by piecewise smooth, globally Cr-functions for some r ∈ {−1, 0, 1, . . .}, where
r = −1 means that they satisfy no global continuity condition.

2.2 WAVELET BASES 11

Locality

Another important characteristic of wavelets is that they are local in the sense
that for λ ∈ ∇ and x ∈ Ω, j ∈ N0,

diam(suppψλ) . 2−|λ| and #{|λ| = j : B(x, 2−j) ∩ suppψλ 6= ∅} . 1,

where the level number |λ| for λ ∈ ∇ is defined by |λ| = j if λ ∈ ∇j \ ∇j−1 with
∇−1 := ∅, and B(x, r) ⊂ Rn is the ball with radius r > 0 centered at x ∈ Rn.
For j ∈ N0, the domain Ω can be covered by an order of 2jn balls with radius 2−j,
thus the number of wavelets on level j is bounded by some constant multiple of
2jn.

We remark that typically the locality of the dual wavelets is not necessary for
wavelet methods for solving operator equations.

Cancellation property

By using that 〈ψ̃µ, ψλ〉 = δµ,λ, with δµ,λ the Kronecker delta, we have for λ ∈
∇ \ ∇0, g ∈ Hs(Ω), gλ ∈ S̃|λ|−1,

〈g, ψλ〉 = 〈g − gλ, ψλ〉 ≤ ‖g − gλ‖H−t‖ψλ‖Ht ,

and from the Jackson estimate for the dual sequence (S̃j)j≥0, we infer

〈g, ψλ〉 ≤ inf
gλ∈S̃|λ|−1

‖g − gλ‖H−t . 2−|λ|(s+t)‖g‖Hs (−t ≤ s ≤ d̃).

This is an instance of the so-called cancellation property of order d̃.
Analogously to the above lines, for wj ∈ Wj := span{ψλ : |λ| = j} and

g ∈ H−s with −r ≤ −s ≤ d̃ for some −r < γ̃, we have

〈g, wj〉 ≤ inf
gj∈S̃j−1

‖g − gj‖H−r‖wj‖Hr . 2j(s−r)‖g‖H−s‖wj‖Hr ,

and so, for r > −γ̃ and s ∈ [−d̃, r],

‖wj‖Hs . 2j(s−r)‖wj‖Hr (wj ∈ Wj). (2.2.5)

Note that since Wj ⊂ Sj, the above estimate is valid also for s ∈ [r, γ) by the
Bernstein estimate (2.2.4) on the preceding page.

Characterization of Besov spaces

Since the next property of wavelets will involve Besov spaces, before stating that
property we recall some definitions and facts related to Besov spaces.

12 BASIC PRINCIPLES 2.2

For p ∈ (0,∞], we introduce the m-th order Lp-modulus of smoothness

ωm(v, t)Lp := sup
|h|≤t

‖∆m
h v‖Lp(Ωh,m),

where Ωh,m := {x ∈ Ω : x + jh ∈ Ω, j = 0, . . .m} and ∆m
h is the m-th order

forward difference operator defined recursively by [∆1
hv](x) = v(x+h)−v(x) and

∆m
h v = ∆1

h(∆
m−1
h)v. Then, for p, q ∈ (0,∞] and s ≥ 0, with m > s being an

integer, the Besov space Bs
q(Lp) consists of those v ∈ Lp for which

|v|Bs
q(Lp) := ‖(2jsωm(v, 2−j)Lp)j≥0‖`q

is finite. The mapping ‖·‖Bs
q(Lp) := ‖·‖Lp + | · |Bs

q(Lp) defines a norm when p, q ≥ 1
and only a quasi-norm otherwise.

We now recall a number of embedding relations between Besov spaces with
different indices. Simple embeddings are that Bs

q1
(Lp) ⊂ Bs

q2
(Lp) for q1 < q2,

and that Bs
q(Lp1) ⊃ Bs

q(Lp2) for p1 < p2. We also have Bs
p1

(Lp1) ⊃ Bs
p2

(Lp2) for
p1 < p2, and Bs1

q1
(Lp) ⊃ Bs2

q2
(Lp) for s1 < s2, regardless of the secondary indices

q1 and q2. Not so obvious is that

Bs1
q (Lp1) ⊂ Bs2

q (Lp2) for s1 − s2 = n(1
p1
− 1

p2
) > 0.

In particular, combining some of the above relations we have Bs1
p1

(Lp1) ⊂ Bs2
p2

(Lp2)
for s1 − s2 ≥ n(1

p1
− 1

p2
) > 0, cf. [16].

It is worth noting that besides the aforementioned definition, there are a
number of other natural ways to define Besov spaces, which definitions are all
equivalent when s/n > max{1/p − 1, 0}, cf. [16]. Besov spaces with negative
smoothness index s are defined by duality: for s < 0, Bs

q(Lp) := [B−s
q′ (Lp′)]

′ with
1/q + 1/q′ = 1 and 1/p+ 1/p′ = 1, so necessarily p, q ≥ 1.

It is well known that at least when Ω is a bounded Lipschitz domain, one has
Bs

2(L2) = Hs for s ∈ R and Bs
p(Lp) = W s

p for s > 0, s /∈ N, where Hs = W s
2 , and

W s
p denotes the Sobolev space of smoothness s measured in Lp(Ω).
The norm equivalence (2.2.1) provides a simple criterion to check whether a

function is in H by means of its wavelet coefficients. Similarly, other function
spaces also can be characterized by wavelet coefficients of functions. We shall
briefly describe such a characterization for Besov spaces. It is known that for any
v = (vλ)λ∈∇ such that vTΨ ∈ Bs

q(Lp),∥∥∥∥(2j(s−t+n
2
−n

p
)‖(vλ)|λ|=j‖`p

)
j≥0

∥∥∥∥
`q

h ‖vTΨ‖Bs
q(Lp), (2.2.6)

is valid for p > 0 and max{0, n(1/p− 1)} < s < min{d, γ(p)}, with

γ(p) := sup{σ : Ψ ⊂ Bσ
q0

(Lp) for some q0},

2.2 WAVELET BASES 13

at least when Ψ, Ψ̃ ⊂ L∞. The equivalence (2.2.6) is also valid for p ≥ 1 and
−min{d̃, γ̃(p)} < s < 0, with γ̃(p) := sup{σ : Ψ̃ ⊂ Bσ

q0
(L1−1/p) for some q0}. It

is perhaps most convenient to describe the above conditions as a region in the
(1
p
, s)-plane, see Figure 2.1. Note also that depending on the particular situation,

this region may have some more constraints, e.g., when boundary conditions are
incorporated into the space. For proofs of (2.2.6) in various circumstances we
refer to [16, 29].

An interesting special case of (2.2.6) occurs when s− t = n(1
p
− 1

2
) and p = q,

namely

‖vTΨ‖Bs
p(Lp) h ‖v‖`p . (2.2.7)

As noted earlier, the line s−t = n(1
p
− 1

2
) is the demarcation line of the embedding

Bs
p(Lp) ⊂ Bt

2(L2) ≡ H t.

1
2

1
p

1

s

0

d

−d̃

γ(p)

−γ̃(p)

n(1
p
− 1)

−n
2

t

Figure 2.1: In this so-called DeVore diagram ([39]), the point (1
p , s) represents the

whole range of Besov spaces Bs
q(Lp), 0 < q ≤ ∞. Then the concave polygon bordered by

the thick lines is the region for which the norm equivalence (2.2.6) is valid. The Besov
spaces satisfying the norm equivalence (2.2.7) are on the line starting from the point
(1
2 , t).

Finally, we would like to note that one side of the estimate (2.2.6) is generally
valid for a wider range of parameters p and s. To be specific, for p > 0 and

14 BASIC PRINCIPLES 2.3

max{0, n(1/p− 1)} < s < d, we have

sup
j≥0

(
2j(s−t+

n
2
−n

p
)‖(vλ)|λ|=j‖`p

)
. ‖vTΨ‖Bs

p(Lp), (2.2.8)

at least when Ψ, Ψ̃ ⊂ L∞, cf. [16].

2.3 Best N -term approximations
In order to assess the quality of approximations generated by adaptive algorithms
that we will consider in the sequel, we introduce the following benchmark. With
∇ a countable index set, let `2 := `2(∇). For N ∈ N, we collect all the elements
of `2 whose support size is at most N in

XN := {v ∈ `2 : # suppv ≤ N}, (2.3.1)

and define X0 := {0}. We will consider approximations to elements of `2 from
the subsets XN . The subset XN is not a linear space, meaning that it concerns
nonlinear approximation. For v ∈ `2 and N ∈ N0, we define the error of the best
approximation of v from XN by

EN(v) := dist(v, XN) = inf
vN∈XN

‖v − vN‖. (2.3.2)

Any element vN ∈ XN that realizes this error is called a best N-term approxima-
tion of v. With PΛ : `2 → `2(Λ) being the `2-orthogonal projector onto `2(Λ), a
best N -term approximation of v ∈ `2 is equal to PΛv for some set Λ ⊂ ∇ with
#Λ ≤ N , on which |vλ| takes its largest N values. Note that PΛv is obtained
by simply discarding the coefficients vλ of v with λ /∈ Λ. The set Λ is not neces-
sarily unique. For N ∈ N0, we denote an arbitrary best N -term approximation
of v ∈ `2 by BN(v) or more briefly, vN if there is no risk of confusion. Any
result in the thesis shall not depend on the arbitrary choice between best N -term
approximations.

For s ≥ 0, we define the approximation space As ⊂ `2 by

As := {v ∈ `2 : |v|As := ‖v‖+ sup
N∈N

N sEN(v) <∞}. (2.3.3)

Clearly, it is the class of `2-sequences whose best N -term approximation decays
like N−s. It is obvious that As ⊂ Ar for s > r.

Lemma 2.3.1. For s ≥ 0 and for v,w ∈ As a generalized triangle inequality
holds,

|v + w|As ≤ max{2s, 22s−1}
(
|v|As + |w|As

)
,

2.3 BEST N -TERM APPROXIMATIONS 15

meaning that | · |As is a quasi-norm.

The Aoki-Rolewicz theorem (cf. [4, 68]) states the existence of a quasi-norm
| · |∗As h | · |µAs with µ = min{ 1

s+1
, 1

2s
}, satisfying the standard triangle inequality

|v + w|∗As ≤ |v|∗As + |w|∗As for v,w ∈ As. Moreover, As is complete with respect
to the metric defined by d(v,w) = |v −w|∗As, i.e., As is a quasi-Banach space.

Proof. Since XN +XN ⊂ X2N for N ∈ N, we have

E2N(v + w) ≤ ‖v + w − BN(v)− BN(w)‖ ≤ EN(v) + EN(w).

Moreover, we have E2N+1(·) ≤ E2N(·), and E1(·) ≤ ‖ · ‖, and taking into account
that (2N + 1)s ≤ max{2sN s + 1, 22s−1N s + 2s−1}, we get the generalized triangle
inequality.

We remark that the functional | · |As is homogeneous: |ν · |As = |ν|| · |As , ν ∈ R,
but it is not guaranteed to satisfy the standard triangle inequality, while for | · |∗As

the situation is the other way around. Let (vk)k∈N be a Cauchy sequence in As.
Then obviously it has a limit v ∈ `2, and with a subsequence (vkN

)N∈N such that
‖v − vkN

‖ ≤ N−s, we have

EN(v) ≤ ‖v − BN(vkN
)‖ ≤ ‖v − vkN

‖+ ‖vkN
− BN(vkN

)‖
≤ N−s +N−s|vkN

|As .

From the triangle inequality for | · |∗As we have ||w|∗As − |z|∗As | ≤ |w − z|∗As for
w, z ∈ As, thus (|vk|∗As)k∈N is a Cauchy sequence. This implies the existence of
a constant C > 0 such that |vk|µAs . |vk|∗As ≤ C for k ∈ N, and so we conclude
that EN(v) . N−s, or equivalently, v ∈ As.

Now we consider a relation between As and the classical sequence spaces `p.
To this end, for p ∈ (0, 2), we introduce the weak `p spaces by

`∗p := {v ∈ `2 : ‖v‖`∗p := sup
j∈N

j1/p|γj(v)| <∞},

where (γj(v))j∈N denotes the non-increasing rearrangement of v in modulus.

Lemma 2.3.2. Let s > 0 and let p be defined by 1
p

= s+ 1
2
. Then we have

As = `∗p, and ‖ · ‖As h ‖ · ‖`∗p ,

with the equivalency constants depending on s only as s→ 0 or s→∞.

16 BASIC PRINCIPLES 2.3

Proof. We include a proof for the reader’s convenience. By definition, v ∈ `∗p if

and only if for some constant c > 0, |γj(v)| ≤ c · j−1/p, j ∈ N, and the smallest
such c is equal to ‖v‖`∗p . For v ∈ `∗p and N ∈ N, we have

(EN(v))2 = ‖v − BN(v)‖2 =
∑
j>N

|γj(v)|2 ≤ ‖v‖2
`∗p

∑
j>N

j−2/p

. 1
2/p−1

‖v‖2
`∗p
N1−2/p = 1

2s
‖v‖2

`∗p
N−2s.

Conversely, for v ∈ As and N ∈ N we have

|γ2N(v)|2N ≤
∑

N<j≤2N

|γj(v)|2 ≤ ‖v − BN(v)‖2 ≤ N−2s|v|2As ,

which means that |γ2N(v)| ≤ N (−s+1/2)|v|As = N−1/p|v|As . Now we use γ1(v) ≤
‖v‖ and γ2N+1(v) ≤ γ2N(v) to complete the proof.

Since for p ≤ 1, `∗p is not normable, cf. [4], the above result shows that for
s ≥ 1

2
, As is not normable, meaning that it is only a quasi-Banach space. On

the other hand, also from the theory of `∗p-spaces one infers that for s < 1
2
, there

exists a norm equivalent to | · |As , so that As is a Banach space with respect to
it.

The next observation is that `∗p is very close to `p. In fact, for any p ∈ (0, 2)
and ε > 0, we have

j1/p|γj(v)| =
(
j|γj(v)|p

)1/p ≤ (∑
k≤j

|γk(v)|p
)1/p ≤ ‖v‖`p ,

and

‖v‖p+ε`p+ε
=
∑
j∈N

|γj(v)|p+ε ≤
∑
j∈N

|v|p+ε`∗p
· j−1−ε/p ≤ C · |v|p+ε`∗p

,

so that
`p ↪→ `∗p ↪→ `p+ε. (2.3.4)

Remark 2.3.3. Let us consider a wavelet basis Ψ for H t. In view of the above
results and the norm equivalence (2.2.7) on page 13, we have that whenever
vTΨ ∈ Bt+ns

p (Lp) with 1
p

= s+ 1
2
, v satisfies v ∈ As with |v|As . ‖vTΨ‖Bt+ns

p (Lp).
Therefore, the rate of the best N -term approximation of a function in wavelet
bases is governed by the Besov regularity of the function.

As we know, the validity of the norm equivalence (2.2.7) imposes certain
constraints on the possible values of the parameters. In the present context,
those constraints can be rephrased as follows. For t < −n

2
, the value of s is

2.3 BEST N -TERM APPROXIMATIONS 17

restricted by s ≤ 1
2
, because of the condition p ≥ 1. For arbitrary t, one needs

t + ns < min{d, γ(p)} or s < min{d−t
n
, γ(p)−t

n
}. If the wavelets are piecewise

smooth, globally Cr-functions for some r ∈ {−1, 0, 1, . . .}, where r = −1 means
that they satisfy no global continuity condition, then it is known that γ(p) =

r + 1 + 1/p = r + 1 + s+ 1/2 = γ(2) + s, giving the bound s < min{d−t
n
, γ(2)−t

n−1
}.

So if r ≥ t−d
n

+ d − 3
2
, then the smoothness of the wavelets does not limit the

range for which the norm equivalence (2.2.7) is valid. With spline wavelets we
have r = d− 2, in which case the above requirement reads as d−t

n
≥ 1

2
.

On the other hand, we see that only one side of the relation (2.2.7) is sufficient
to bound the `p-norm of a sequence by the Besov norm of the corresponding
function. In fact, by using the inequality (2.2.8), for s ∈ (0, d−t

n
) and t > −n

2
, we

infer that if vTΨ ∈ Bt+ns
q (Lp) with 1

p
< s + 1

2
and q ∈ (0, p], then v ∈ As with

|v|As . ‖vTΨ‖Bt+ns
p (Lp). Note that the condition involving γ(p) has disappeared.

We sketch here a proof of the aforementioned fact. Let vTΨ ∈ Bt+ns
q (Lp) with

q = p, and let C ≥ 0 denote the quantity in the left side of the inequality (2.2.8).
Noting that s in (2.2.8) has to be replaced by t + ns here, when 1

p
< s + 1

2
, we

have ‖(vλ)|λ|=j‖`p ≤ C2−jnδ with δ := s + 1
2
− 1

p
> 0. With (γj(v))j≥0 denoting

the non-increasing rearrangement of v, we infer

2jn/p|γ2jn(v)| ≤ (
∑
k≤2jn

|γk(v)|p)1/p . C2−jnδ = C(2jn)−δ.

Now taking into account that #{λ : |λ| = j} . 2jn, by monotonicity of (γk(v)),
the above estimate implies that j1/p|γj(v)| . j−δ or v ∈ `∗p̃ with 1

p̃
= 1

p
+δ = s+ 1

2
,

so that v ∈ As. The case q < p follows by embedding. �

Remark 2.3.4. Even though `∗p is very close to `p in the sense of (2.3.4), the

embedding `p ↪→ `∗p is proper, since for example, a sequence v with |γj(v)| = j−1/p

is in `∗p but not in `p. Hence we see that the spaceXs := {vTΨ : v ∈ As} is slightly
bigger than Bt+ns

p (Lp), with 1
p

= s + 1
2
. Actually, given the norm equivalence

(2.2.7), the spaces Xα, α ∈ (0, s), can be characterized by interpolation spaces
as Xα = [H t, Bt+ns

p (Lp)]α/s,∞, which, however, is not a Besov space, cf. [16, 39].
On the other hand, defining the “refined” approximation spaces for s > 0 and

q ∈ (0,∞], by

As
q :=

{
v ∈ `2 : |v|As

q
:=
∥∥∥(N s−1/qEN(v)

)
N∈N

∥∥∥
`q
<∞

}
,

an extension of Lemma 2.3.2 exists that says that As
q = `p,q with 1

p
= s + 1

2
,

where `p,q := {v : ‖(j1/p−1/q|γ(v)|)j∈N‖`q < ∞} is the Lorentz sequence space.
Since `p,p = `p, in view of the norm equivalence (2.2.7), we have Bt+ns

p (Lp) =
{vTΨ : v ∈ As

p} with 1
p

= s + 1
2
. Note that As = As

∞, and that As
q1
↪→ As

q2
for

18 BASIC PRINCIPLES 2.3

0 < q1 < q2 ≤ ∞, and As
q1
↪→ As−ε

q2
for any ε > 0 and any q1, q2 ∈ (0,∞]. These

relations imply (2.3.4) as special cases. For a detailed treatment of related issues
in the theory of nonlinear approximation, the reader is referred to [16, 39]. �

Remark 2.3.5. In view of the Jackson estimate (2.2.3) on page 10, membership
of a function v in the Sobolev space H t+ns yields an error decay measured in
H t-metric of order 2−jns|v|Ht+ns for the approximation from the “coarsest level”
linear subspaces Sj = span {ψλ : λ ∈ ∇j}. Since the number of wavelets in ∇j

is of order Nj h 2jn, the error of this linear approximation expressed in terms
of the number of degrees of freedom decays like N−s

j |v|Ht+ns . The condition

v ∈ Bt+ns
p (Lp) with 1

p
= s + 1

2
involving Besov regularity which is sufficient to

guarantee this rate of convergence with nonlinear approximation, is much milder
than the condition v ∈ H t+ns involving Sobolev regularity. Indeed, H t+ns is
properly imbedded in Bt+ns

p (Lp), and the gap increases when s grows. Assuming
a sufficiently smooth right-hand side, for several boundary value problems it
was proven that the solution has a much higher Besov regularity than Sobolev
regularity [26].

Similar to the previous remark, the Jackson estimate (2.2.3), however, presents
only a sufficient condition for the error decay of order N−s

j , and the question arises
whether there are functions in H t outside H t+ns that nevertheless show an error
decay of order N−s

j for the linear approximation process. One can show that for
s < γ, such functions do exist, but they are necessarily contained in H t+ns−ε for
arbitrarily small ε > 0.

Note that we have been discussing only a particular type of linear approxima-
tion, namely, the approximation from the subspaces Sj. So a natural question is
whether there exists a linear approximation process that approximates as good as
best N -term approximations. The answer turns out to be negative. By employing
the notion of Kolmogorov’s N -widths, it has been shown that for any sequence of
nested linear spaces, the corresponding approximation space As is always prop-
erly included in the approximation space As for the best N -term approximation,
where the gap between them increases as s grows, cf. [39]. �

We end this section by recalling some facts concerning perturbations of best
N -term approximations, which will be often used in the sequel. The following
proposition is recalled from [17, 83].

Proposition 2.3.6. Let s > 0 and let P ⊂ `2 denote the set of all finitely sup-
ported sequences. Then for any v ∈ As and z ∈ P , we have

|z|As . |v|As + (# supp z)s‖v − z‖.

2.4 LINEAR OPERATOR EQUATIONS 19

Proof. Let N := # supp z, then

|z|As . |z− BN(v)|As + |BN(v)|As . (2N)s‖z− BN(v)‖+ |v|As ,

where we used # supp (z− BN(v)) ≤ 2N and (2.3.3). The proof is completed by

‖z− BN(v)‖ ≤ ‖z− v‖+ ‖v − BN(v)‖ ≤ 2‖z− v‖.

The following result shows that by removing small coefficients from an ap-
proximation z ∈ P of v ∈ As, one can get an approximation nearly as efficient
as a best N -term approximation. The proof follows the proof of [28, Proposition
3.4].

Proposition 2.3.7. Let θ > 1 and s > 0. Then for any ε > 0, v ∈ As, and
z ∈ P with

‖z− v‖ ≤ ε,

for the smallest N ∈ N0 such that ‖z− BN(z)‖ ≤ θε, it holds that

N . ε−1/s|v|1/sAs ,

and
|BN(z)|As . |v|As .

Proof. When ‖v‖ ≤ (θ − 1)ε, we have ‖z− 0‖ ≤ θε, meaning that N = 0.
From now on we assume that ‖v‖ > (θ − 1)ε. Let m ∈ N0 be the largest

integer with Em(v) > (θ− 1)ε. Such an m exists by our assumption. For m > 0,
we have

(θ − 1)ε < Em(v) ≤ m−s|v|As ,

or m . ε−1/s|v|1/sAs , which is also trivially true for m = 0. By the definition of
m, we infer Em+1(v) ≤ (θ − 1)ε or ‖z − Bm+1(v)‖ ≤ ‖z − v‖ + Em+1(v) ≤ θε,
and so N ≤ m + 1. The proof of the bound on N is completed by noting that
1 . (θ − 1)1/s < ε−1/s‖v‖1/s ≤ ε−1/s|v|1/sAs . The bound on |BN(z)|As follows from
an application of Proposition 2.3.6.

2.4 Linear operator equations
Let H and H′ be a separable Hilbert space and its dual respectively. We consider
the problem of numerically solving an operator equation, which is formulated as

20 BASIC PRINCIPLES 2.4

follows. For a given boundedly invertible linear operator L : H → H′ and a linear
functional f ∈ H′, find u ∈ H such that

Lu = f. (2.4.1)

We refer to H as the energy space of the problem. Within this framework we
can discuss a quite wide range of problems, including for example weak formu-
lations of partial differential equations, pseudo-differential equations, boundary
integral equations, as well as systems of equations of those kinds. Then the cor-
responding energy space H is (a closed subspace of) a relevant Sobolev space
formulated on a domain or manifold, or a product of relevant Sobolev spaces,
cf. [18]. As a well known example, one may think of the weak formulation of an
elliptic boundary value problem.

Example 2.4.1 (Elliptic boundary value problems). Let Ω ⊂ Rn be a bou-
nded Lipschitz domain, and with Γ ⊆ ∂Ω being a part of the boundary with
nonzero measure, let H := H1

Γ(Ω) ⊂ H1(Ω) be the subspace of the Sobolev space
H1(Ω) of functions with vanishing trace on Γ. Let L : H → H′ be defined by

〈Lv,w〉 = −
n∑

j,k=1

〈ajk∂kv, ∂jw〉L2 +
n∑
k=1

〈bk∂kv, w〉L2 + 〈cv, w〉L2 v, w ∈ H,

where 〈·, ·〉 is the duality pairing on H×H′. If the coefficients satisfy ajk, bk, c ∈
L∞ then L : H → H′ is bounded. Moreover, if there exists a constant α > 0 such
that ∑n

j,k=1 ajk(x)ξjξk ≥ α
∑n

k=1 ξ
n
k for all ξ ∈ Rn a.e. in Ω,

and
α2 +

∑n
k=1 ‖bk‖2

L∞(Ω) ≤ 2α · essinf{b0(x) : x ∈ Ω},

then the operator L is elliptic on H, meaning that 〈Lv, v〉 & ‖v‖2
H for v ∈ H.

Therefore L is boundedly invertible, cf. [11]. �

Another class of examples comes from a reformulation of boundary value
problems on domains as integral equations on the boundary of the domain.

Example 2.4.2 (Single layer operator). Let Γ be a sufficiently smooth closed

two dimensional manifold in R3, and set H := H
1
2 (Γ). Then the single layer

operator L : H → H′ defined by

〈Lv,w〉 =

∫∫
Γ×Γ

v(x)w(y)

4π|x− y|
dΓxdΓy v, w ∈ H,

is bounded and H-elliptic, cf. [57]. �

2.4 LINEAR OPERATOR EQUATIONS 21

Let Ψ = {ψλ : λ ∈ ∇} be a Riesz basis ofH, with F : H′ → `2 and F ′ : `2 → H
being the analysis and synthesis operators as defined in (2.2.2), respectively. If
we write the solution of (2.4.1) as u = F ′u for some u ∈ `2, u must satisfy

Lu = f , (2.4.2)

where the so called stiffness matrix L := FLF ′ : `2 → `2 is boundedly invertible
and the right hand side vector f := Ff ∈ `2. In the sequel, we also use the
notation 〈Ψ, LΨ〉 := FLF ′.

Many of the results in the sequel are formulated specifically for the case that
the stiffness matrix L in (2.4.2) is symmetric and positive definite (SPD). For
clarity, in the context of those results we will denote the stiffness matrix by
A := L, i.e., we will be considering the equation

Au = f , (2.4.3)

with A : `2 → `2 SPD, and f ∈ `2. For the case that L is not SPD, in view
of transferring the results obtained for (2.4.3) to the general case (2.4.2), one
possibility could be to consider the normal equation LTLu = LT f .

For a given subset Λ ⊂ ∇, considering `2(Λ) as a linear subspace of `2, an
approximation from `2(Λ) to the exact solution of (2.4.3) is given by the Ritz-
Galerkin approximation that is obtained by requiring that the residual r := f −
AuΛ for the sought approximation uΛ ∈ `2(Λ) is `2-orthogonal to the subspace
`2(Λ), i.e., 〈f −AuΛ,vΛ〉 = 0 for vΛ ∈ `2(Λ). Since A is SPD, 〈〈·, ·〉〉 := 〈A·, ·〉
defines an inner product, and ||| · ||| := 〈〈·, ·〉〉 1

2 is an equivalent norm in `2. Then the
orthogonality condition 〈f −AuΛ,vΛ〉 = 0 is equivalent to 〈〈u− uΛ,vΛ〉〉 = 0, so
for any vΛ ∈ `2(Λ), we have |||u−vΛ|||2 = |||u−uΛ|||2 + |||uΛ−vΛ|||2, which is called
the Galerkin orthogonality. The Galerkin orthogonality immediately implies that
the approximation uΛ is the best approximation to u from the subspace `2(Λ) in
the norm ||| · |||.

Recalling that PΛ : `2 → `2(Λ) is the `2-orthogonal projector onto `2(Λ), the
Ritz-Galerkin approximation uΛ can be found by solving the equation PΛAuΛ =
PΛf . This equation has a unique solution uΛ since, as the following lemma
implies, the matrix AΛ := PΛAIΛ is SPD with IΛ := P∗

Λ : `2(Λ) → `2 being the
trivial inclusion of `2(Λ) into `2. Note that IΛvΛ is simply the vector obtained by
extending vΛ by zeros for indices outside Λ. We will return to the Ritz-Galerkin
approximation in the next chapter.

Lemma 2.4.3. Let A : `2 → `2 be a symmetric and positive definite matrix.
Then ||| · ||| := 〈A·, ·〉 1

2 is a norm in `2, satisfying

‖A−1‖−
1
2‖v‖ ≤ |||v||| ≤ ‖A‖

1
2‖v‖, (2.4.4)

22 BASIC PRINCIPLES 2.5

and

‖A−1‖−
1
2 |||IΛvΛ||| ≤ ‖PΛAIΛvΛ‖ ≤ ‖A‖

1
2 |||IΛvΛ|||, (2.4.5)

for any v ∈ `2, Λ ⊆ ∇, and vΛ ∈ `2(Λ).

Proof. Since A is SPD, so are A−1 and the finite section AΛ = PΛAIΛ, therefore
〈A−1·, ·〉 and 〈AΛ·, ·〉 define inner products in `2 and `2(Λ), respectively. The sec-
ond inequality in (2.4.4) follows from the CBS (Cauchy-Bunyakowsky-Schwarz)
inequality for the standard inner product 〈·, ·〉. The first inequality is derived by
using the CBS inequality for 〈A−1·, ·〉 as

〈A−1Av,v〉 ≤ 〈A−1Av,Av〉
1
2 〈A−1v,v〉

1
2 ≤ |||v|||‖A−1‖

1
2‖v‖.

An application of the CBS inequality for 〈·, ·〉 followed by the first inequality
in (2.4.4) gives the first inequality in (2.4.5). The second inequality in (2.4.5) is
obtained similarly by applying the CBS inequality for 〈AΛ·, ·〉.

2.5 Convergent iterations in the energy space
Let us consider the following iteration in the sequence space `2 to solve our discrete
problem (2.4.2)

ul = Kul−1, l = 1, 2, . . . (2.5.1)

where u0 ∈ `2 is an initial guess and K : `2 → `2 is continuous. The map K
depends on the operator L and the right hand side f . We assume that for some
ρ < 1,

‖ul − u‖? ≤ ρl‖u0 − u‖? for all u0 ∈ `2, (2.5.2)

where the norm ‖ · ‖? satisfies

α?‖v‖ ≤ ‖v‖? ≤ β?‖v‖ v ∈ `2, (2.5.3)

with constants α?, β? > 0. We will call the map K the iterator and the result
vectors ul the iterands.

For symmetric and positive definite (SPD) systems, typical examples are the
steepest descent, and the Richardson iteration. In addition, general problems
can be transferred to SPD problems using the formulation of normal equations,
although in special cases more efficient formulations can be achieved, for example
Uzawa type algorithms for saddle point problems. Therefore, for the moment
ignoring the question of quantitative performance, there is no loss of generality
when we focus on SPD matrices L = A.

2.5 CONVERGENT ITERATIONS IN THE ENERGY SPACE 23

Example 2.5.1 (The Richardson iteration). Let A : `2 → `2 be an SPD
matrix. We consider here the Richardson iteration for the linear equation (2.4.3),

Kv := v + ω(f −Av). (2.5.4)

Using the positive definiteness and the boundedness of the matrix A, for any
v ∈ `2 the following estimate is obtained.

‖u−Kv‖ = ‖(I− ωA)(u− v)‖
≤ max{|1− ωλmax|, |1− ωλmin|} · ‖u− v‖,

with λmax := ‖A‖ and λmin := ‖A−1‖−1. Therefore, if ρ := max{|1− ωλmin|, |1−
ωλmax|} < 1 or equivalently, ω ∈ (0, 2/λmax) then Richardson’s iteration con-
verges:

‖u−Kv‖ ≤ ρ‖u− v‖.

Furthermore, with κ(A) := ‖A‖‖A−1‖, the minimum value of the error reduction
factor ρ and the corresponding damping parameter ω are:

ρopt = λmax−λmin

λmax+λmin
= κ(A)−1

κ(A)+1
when ωopt = 2

λmax+λmin
. �

Example 2.5.2 (Steepest descent method). Let A : `2 → `2 be a SPD ma-
trix. We consider the steepest descent iteration for the linear equation (2.4.3),

Kv := v +
〈r, r〉
〈Ar, r〉

r, (2.5.5)

where r := f −Av 6= 0 is the residual for v. With the equivalent norm ||| · ||| :=

〈A·, ·〉 1
2 , this iteration satisfies, cf. e.g. [66],

|||u−Kv||| ≤ κ(A)− 1

κ(A) + 1
|||u− v|||. �

Now let us turn our attention to general iterations (2.5.1). In view of the
above examples, the exact iteration cannot be expected to be implementable
since in general the iterands are infinite dimensional vectors. However, since
we can approximate any `2-sequence by finite ones within any finite accuracy, we
shall consider the approximate application of the iterator within finite accuracies.
Postponing the question of how to do so, first we will discuss how a perturbation
affects the exact iteration (2.5.1). Let P ⊂ `2 be the set of all finitely supported
sequences and let K̃ : R>0 × P → P be a mapping such that

‖K̃(ε,v)−Kv‖ ≤ ε for all ε > 0, v ∈ P. (2.5.6)

24 BASIC PRINCIPLES 2.6

Then we consider the following approximate iteration:

ũl = K̃(εl, ũl−1), l = 1, 2, . . . (2.5.7)

with the initial guess ũ0 ∈ P and control parameters (εl)l.

Lemma 2.5.3. Let the initial guesses of the iterations (2.5.1) and (2.5.7) satisfy
u0 = ũ0. Then the error of the approximate iteration (2.5.7) is, with ε0 :=
‖u0 − u‖,

‖ũl − u‖ ≤ β?

α?

∑l
k=0 ρ

kεl−k,

with the constants α? and β? from (2.5.3). In particular, by taking εi := γε0ρ
i/l,

i = 1, . . . , l, with some γ > 0, we can ensure ‖ũl − u‖ ≤ (1 + γ)ε0ρ
lβ?/α?.

Proof. By using (2.5.3), (2.5.6), and (2.5.2), the distance between the two itera-
tions can be estimated as

el := ‖ũl − ul‖? = ‖K̃(εl, ũl−1)−Kul−1‖?
≤ β?‖K̃(εl, ũl−1)−Kũl−1‖+ ‖Kũl−1 −Kul−1‖?
≤ β?εl + ρel−1 ≤ β?

∑l−1
k=0 ρ

kεl−k.

Hence the error of the approximate iteration is

‖ũl − u‖ ≤ 1
α?

(‖ũl − ul‖? + ‖ul − u‖?) ≤ β?

α?

∑l
k=0 ρ

kεl−k.

2.6 Optimal complexity with coarsening of the iterands
Lemma 2.5.3 shows that the approximate iteration (2.5.7) can be organized such
that for any given target tolerance ε > 0, it produces an approximation uε ∈ P
with ‖u−uε‖ ≤ ε. We are interested in adaptive solution methods, where suppuε
depends on both the exact solution u and the target tolerance ε. The method
may use low level wavelets where the solution is smooth, and higher level wavelets
only where the solution has singularities. This is an analogy to non-uniform
meshes arising from local refinements in adaptive finite element methods. For
non-adaptive methods a sequence Λ0 ⊂ Λ1 ⊂ . . . ⊂ ∇ is fixed a priori, and the
goal is to find the smallest i such that there is an approximation uε ∈ `2(Λi) with
‖u− uε‖ ≤ ε.

In any case, it is obvious that with N := # suppuε, ‖u−uε‖ ≥ EN(u). In this
regard, the rate of convergence of bestN -term approximations delivers a yardstick
against which the convergence rate of a solution method can be measured. Recall

2.6 OPTIMAL COMPLEXITY WITH COARSENING OF THE ITERANDS 25

that whenever u ∈ As, the smallest N such that EN(u) ≤ ε satisfies N .
ε−1/s|u|1/sAs . Let a method define a map (u, ε) 7→ uε, where of course, the solution
u is given only implicitly. Then, for s > 0, we say that the method converges
at the optimal rate s, when u ∈ As implies # suppuε . ε−1/s|u|1/sAs . Our goal
is to construct methods which converge at the optimal rate for a reasonably
wide range of s, with the additional property that the method takes a number
of arithmetic operations bounded by an absolute multiple of ε−1/s|u|1/sAs . This
additional property is called the property of optimal computational complexity.

Since for non-adaptive methods the approximations take place in the linear
spaces `2(Λi), these methods converge at most with the same rate as that of the
corresponding linear approximation process. In view of Remark 2.3.5 on page 18,
we see that adaptive methods have potentially large advantages over their non-
adaptive counterparts.

We now return to the discussion of constructing optimally convergent meth-
ods. To this end, a central idea is the idea of coarsening, which was introduced
in the pioneering work [17]. Given some approximation z ∈ P with ‖u− z‖ ≤ ε,
Proposition 2.3.7 on page 19 states that with a constant θ > 1, and the smallest
N ∈ N0 such that ‖z − BN(z)‖ ≤ θε, obviously ‖u − BN(z)‖ ≤ (1 + θ)ε and

N . ε−1/s|u|1/sAs whenever u ∈ As for some s > 0. The name coarsening comes
from the fact that removing small coefficients from z most likely results in remov-
ing unnecessarily fine level wavelets from regions where the solution is smooth,
hence leaving only coarser level wavelets. This idea reduces the issue of optimal
convergence rate to that of convergence: any linearly convergent method can be
made optimally convergent with the help of an appropriate coarsening procedure.
As it turns out, the remaining issue of optimal computational complexity can be
dealt with by coarsening the iterands at least once in every fixed number of iter-
ations. Of course, appropriate (but mild) requirements have to be made on the
computational cost of the underlying convergent method.

In view of implementing the coarsening routine, for z ∈ P , determining BN(z)
generally requires sorting of the coefficients in z, which takes at least the order of
m logm operations, with m = # supp z. Although it is not likely that in practice
this log-factor harms the efficiency of the algorithm, for a full proof of optimality
we need to get rid of this log-factor. The observation is that instead of determining
BN(z), it suffices to find some index set Λ ⊂ supp z such that ‖z − PΛz‖ ≤ θε
and #Λ is at most a constant multiple of N , after which one can use PΛz as a
“coarsened” z. To this end, we introduce a quasi-sorting algorithm which uses
the so-called bins or buckets to store entries with roughly equal values. In the
context of adaptive wavelet algorithms, this sorting algorithm was first used in
[3, 83], see also [63].

26 BASIC PRINCIPLES 2.6

Algorithm 2.6.1 Quasi-sorting algorithm BSORT[z, ε] → {bi}0≤i≤q

Parameter: Let β ∈ (0, 1) be a constant.
Input: z ∈ P and ε > 0.
Output: bi ∈ P , z|suppbi

= bi for all i, and z =
∑

i bi, and ‖bq‖ ≤ ε.
1: N := # supp z, M := ‖z‖`∞ ;
2: Let q ∈ N0 be the smallest integer with βqM ≤ ε/

√
N ;

3: From the elements of z, construct the vectors b0, . . . ,bq as follows:
4: b0 := 0, . . . ,bq := 0;
5: For λ ∈ supp z and 0 ≤ i < q, set [bi]λ := zλ when |zλ| ∈ (βi+1M,βiM]; set

[bq]λ := zλ when |zλ| ≤ βqM .

For future reference, we state the following straightforward result, cf. [46, 83].

Lemma 2.6.2. The number of arithmetic operations and storage locations needed
for {bi} := BSORT[z, ε] can be bounded by an absolute multiple of

supp z + q + 1 . # supp z + log
(
ε−1‖z‖

)
+ 1. (2.6.1)

Moreover, ‖bq‖ ≤ ε, and for 0 ≤ i < q, any two nonzero entries from the vector
bi differ at most a factor 1/β in modulus.

Proof. The only thing that might need a proof is (2.6.1). We have

q + 1 . 1 + log
(
ε−1‖z‖`∞(# supp z)

1
2

)
≤ 1 + log

(
ε−1‖z‖`∞

)
+ 1

2
log(# supp z)

. 1 + log
(
ε−1‖z‖

)
+ # supp z.

Now we are ready to define the coarsening routine that for a given z ∈ P ,
finds a PΛz such that ‖z − PΛz‖ ≤ ε, and where #Λ is minimal modulo some
constant factor.

Algorithm 2.6.3 Clean-up step COARSE[z, ε] → z̃

Input: Let z ∈ P and ε > 0.
Output: z̃ ∈ P and ‖z̃− z‖ ≤ ε.
1: {bi}0≤i≤q := BSORT[z, ε];
2: Create z̃ by collecting nonzero entries first from b0 and when it is exhausted

from b1 and so on, until ‖z̃− z‖ ≤ ε is satisfied.

Lemma 2.6.4. For z ∈ P and ε > 0, z̃ := COARSE[z, ε] terminates with
‖z̃− z‖ ≤ ε and z̃ = P[supp z̃]z. Moreover, the output satisfies

supp z̃ . min{N : EN(z) ≤ ε} = min{#Λ : ‖z−PΛz‖ ≤ ε}, (2.6.2)

2.6 OPTIMAL COMPLEXITY WITH COARSENING OF THE ITERANDS 27

with EN(·) from (2.3.2) on page 14. The number of arithmetic operations and
storage locations needed for this routine can be bounded by an absolute multiple
of # supp z + log (ε−1‖z‖) + 1. Note that for any fixed s > 0, log (ε−1‖z‖) .
ε1/s‖z‖1/s ≤ ε1/s|z|1/sAs .

Proof. We will prove only (2.6.2). Assume that z̃ 6= 0, and let β be the constant
inside BSORT. Since ‖bq‖ ≤ ε, the last entry added to z̃ originates from bi with
i < q. Then a minimal set Λ that satisfies ‖PΛz− z‖ ≤ ε contains all the entries
from the vectors b0, . . . ,bi−1, as any entry in any of these vectors is greater in
magnitude than any entry in bi. Since any two nonzero entries from bi differ
less than a factor 1/β in modulus, the cardinality of the contribution from bi to
supp z̃ is at most a factor 1/β2 larger than that to Λ, so that # supp z̃ ≤ β−2#Λ.

The following is a key ingredient in proving optimal complexity of adaptive
algorithms with coarsening of the iterands. Given Proposition 2.3.7 on page 19
and Lemma 2.6.4, the proof is straightforward.

Corollary 2.6.5. Let θ > 1 and s > 0. Then for any ε > 0, v ∈ As, and z ∈ P
with

‖z− v‖ ≤ ε,

for z̃ := COARSE[z, θε] it holds that

supp z̃ . ε−1/s|v|1/sAs ,

obviously ‖z̃− v‖ ≤ (1 + θ)ε, and

|z̃|As . |v|As .

In view of the discussion at the beginning of this section, the above result
shows that this coarsening routine can be used in adaptive algorithms. Before
presenting an optimal adaptive algorithm with coarsening of the iterands, we
assume to have the following routine available, which can be thought of as some
convergent method, not necessarily being optimal. In the subsequent sections we
will consider a number of realizations of this routine, including the approximate
Richardson and steepest descent iterations.

Algorithm 2.6.6 Algorithm template ITERATE[v, ν, η] → w

Parameters: Let ‖ · ‖? and α?, β? > 0 be such that α?‖z‖ ≤ ‖z‖? ≤ β?‖z‖ for
z ∈ `2.

Input: Let η > 0, v ∈ P and ν ≥ ‖u− v‖?.
Output: w ∈ P with ‖u−w‖? ≤ η

28 BASIC PRINCIPLES 2.6

Now we are ready to present our adaptive wavelet algorithm. Note that inside
this algorithm we will only call ITERATE for ν/η . 1.

Algorithm 2.6.7 Method SOLVE[ε] → uj with coarsening

Parameters: Let χ > 0 and θ > 1 be constants with χ(1 + θ)(β?/α?) < 1.
Input: ε > 0.
Output: uj ∈ P with ‖u− uj‖? ≤ ε.
1: u0 := 0, ν0 := β?‖L−1‖‖f‖, j := 0;
2: while νj > ε do
3: j := j + 1;
4: vj := ITERATE[uj−1, νj−1, χνj−1];
5: uj := COARSE[vj, θχνj−1/α?];
6: νj := χνj−1(1 + θ)(β?/α?);
7: end while

Theorem 2.6.8. For any ε > 0, uε := SOLVE[ε] terminates with ‖u− uε‖? ≤
ε. Moreover, if u ∈ As for some s > 0, then # suppuε . ε−1/s|u|1/sAs . In
addition, let ε . ‖f‖, and assume that for any v ∈ P and η & ν ≥ ‖u − v‖?,
w := ITERATE[v, ν, η] satisfies

suppw . # suppv + η−1/s|u|1/sAs and |w|As . (# suppv)sη + |u|As ,

where the number of arithmetic operations and storage locations required by this
call of ITERATE can be bounded by an absolute multiple of

η−1/s|u|1/sAs + # suppv + 1.

Then, the number of arithmetic operations and storage locations required by the
call is bounded by some absolute multiple of ε−1/s|u|1/sAs .

Proof. We first indicate the need for the condition ε . ‖f‖. If ε 6. ‖f‖, then

ε−1/s|u|1/sAs might be arbitrarily small, whereas SOLVE takes in any case some
arithmetic operations. Without this condition, the total work can be bounded
by an absolute multiple of ε−1/s|u|1/sAs + 1.

We have ν0 ≥ ‖u‖?. Now suppose that in the j-th iteration, ITERATE was
called with a valid parameter νj−1. Then from the properties of the subroutine
ITERATE, we have

‖u− uj‖? ≤ β?‖u− uj‖ ≤ β?(‖u− vj‖+ θχνj−1/α?)

≤ (β?/α?)(1 + θ)χνj−1 = νj,

2.7 ADAPTIVE APPLICATION OF OPERATORS. COMPUTABILITY 29

from which the first statement of the theorem follows.

Since ‖u − vj‖ ≤ νj/α?, Corollary 2.6.5 on page 27 implies # suppuj .
ν
−1/s
j−1 |u|

1/s
As . So if SOLVE terminates directly after theK-th iteration withK > 0,

meaning that νK ≤ ε and νK−1 > ε, then we have the second statement of the
theorem. The case K = 0 is trivial.

Now we will confirm the bound on the cost of the algorithm. By the third
assumption on ITERATE, the cost of the j-th call of ITERATE is of order
ν
−1/s
j−1 |u|

1/s
As + 1. Taking into account the cost of COARSE and the first assump-

tion on ITERATE, the total cost of the j-th iteration can be bounded by an
absolute multiple of

ν
−1/s
j−1 |u|

1/s
As + log

(
ν−1
j−1‖vj‖

)
+ 1 . ν

−1/s
j−1 |u|

1/s
As + ν

−1/s
j−1 |vj|

1/s
As + 1.

By the second assumption on ITERATE, we have

|vj|As . (# suppuj−1)
sνj−1 + |u|As . |u|As .

From νj ≤ ν0 . ‖u‖, we have ν
−1/s
j−1 |u|

1/s
As & ‖u‖−1/s|u|1/sAs & 1. The proof is

completed by the geometric decrease of νj.

2.7 Adaptive application of operators. Computability
When implementing an approximate Richardson iteration, for a given approxi-
mation w ∈ P , we need to compute the residual f − Lw approximately. We will
accomplish this by computing the two terms separately, by assuming that the
succeeding two subroutines are available.

Algorithm 2.7.1 Algorithm template APPLY[M,v, ε] → w

Input: Let M : `2 → `2 be bounded, v ∈ P and ε > 0.
Output: w ∈ P and ‖w −Mv‖ ≤ ε.

Algorithm 2.7.2 Algorithm template RHS[g, ε] → gε
Input: Let g ∈ `2 and ε > 0.
Output: gε ∈ P and ‖gε − g‖ ≤ ε.

Prior to considering how to implement such subroutines, we need to state
some more requirements in the form of definitions.

30 BASIC PRINCIPLES 2.7

Definition 2.7.3 (Admissibility of the stiffness matrix). Let s∗ > 0. A
bounded linear M : `2 → `2 is called s∗-admissible, when for a suitable rou-
tine APPLY, for each s ∈ (0, s∗), for all v ∈ P and ε > 0, with wε :=
APPLY[M,v, ε] the following is valid:

(i) # suppwε . ε−1/s|v|1/sAs ;

(ii) the number of arithmetic operations and storage locations required by the

call is bounded by some absolute multiple of ε−1/s|v|1/sAs + # suppv + 1. �

Definition 2.7.4 (Admissibility of the right hand side). Let s∗ > 0. A
vector g ∈ `2 is called s∗-admissible, when for a suitable routine RHS, for each
s ∈ (0, s∗), for all ε > 0, with gε := RHS[g, ε] the following is valid:

(i) # suppgε . ε−1/s|g|1/sAs ;

(ii) the number of arithmetic operations and storage locations required by the

call is bounded by some absolute multiple of ε−1/s|g|1/sAs + 1. �

We recall the following result from [18, 28].

Proposition 2.7.5. Let M : `2 → `2 be s∗-admissible for some s∗ > 0. Then,
for any s ∈ (0, s∗), M : As → As is bounded, and for wε := APPLY[M,v, ε],
we have |wε|As . |v|As uniformly in ε > 0 and v ∈ P .

Similarly, if g ∈ `2 is s∗-admissible for some s∗ > 0, then for any s ∈ (0, s∗),
g ∈ As, and for gε := RHS[g, ε], we have |gε|As . |g|As uniformly in ε > 0.

Proof. It is immediately clear that g ∈ As. Next we will show that for any
s ∈ (0, s∗), M : As → As is bounded. Let C > 0 be a constant such that for

wε := APPLY[M,v, ε], # suppwε ≤ Cε−1/s|v|1/sAs . Let v ∈ As and N ∈ N be
given. For ε̄ := Cs|BN(v)|AsN−s, let wε̄ := APPLY[M,BN(v), ε̄]. Then, by
(2.3.3), we have

‖Mv −wε̄‖ ≤ ‖MBN(v)−wε̄‖+ ‖M‖‖v − BN(v)‖
≤ Cs|BN(v)|AsN−s + ‖M‖N−s|v|As . N−s|v|As .

Since # suppwε ≤ N , from (2.3.3) we infer that |Mv|As . |v|As .
With wε as above, by using Proposition 2.3.6 on page 18 we have |wε|As .

|Mv|As + (# suppwε)
sε ≤ |Mv|As + Cs|v|As . |v|As . Similarly, for gε :=

RHS[g, ε], we have |gε|As . |g|As + (# suppgε)
sε . |g|As .

2.7 ADAPTIVE APPLICATION OF OPERATORS. COMPUTABILITY 31

With the subroutines APPLY and RHS at hand, we can define an approx-
imate Richardson iteration that defines a valid procedure ITERATE in Algo-
rithm 2.6.7 on page 28, and so provides an optimal adaptive algorithm. This
algorithm was first introduced in the pioneering work [18].

Algorithm 2.7.6 The Richardson method RICHARDSON[v, ν, η] → w

Parameters: Let ω be the damping parameter of Richardson’s iteration (Exam-
ple 2.5.1 on page 23), let ρ < 1 be the corresponding error reduction factor,
and let l ∈ N be the smallest number such that 2νρl ≤ η.

Input: Let v ∈ P , ν ≥ ‖u− v‖, and η > 0.
Output: w ∈ P with ‖u−w‖ ≤ η.
1: v0 := v;
2: for i = 1 to l do
3: εi := νρi/l;
4: vi := RHS[ωf , εi/2] + APPLY[I− ωA,vi−1, εi/2];
5: end for
6: w := vl.

Theorem 2.7.7. Let A be symmetric and positive definite, and let both A and
f be s∗-admissible for some s∗ > 0. Then, for v ∈ P , ν ≥ ‖f −Av‖, and η > 0,
w := RICHARDSON[v, ν, η] terminates with ‖u−w‖ ≤ η. Moreover, the pro-
cedure ITERATE := RICHARDSON with ‖·‖? := ‖·‖ satisfies the conditions
of Theorem 2.6.8 on page 28 for any s ∈ (0, s∗), meaning that RICHARDSON
defines an optimal adaptive algorithm for s ∈ (0, s∗).

Proof. An application of Lemma 2.5.3 on page 24 guarantees that ‖u − w‖ ≤
2νρl ≤ η, latter inequality by construction.

As for the conditions of Theorem 2.6.8 on page 28, recall that we need to
prove that for any s ∈ (0, s∗) and for η & ν ≥ ‖u− v‖,

suppw . # suppv + η−1/s|u|1/sAs , |w|As . (# suppv)sη + |u|As ,

and that the number of arithmetic operations and storage locations required by
this call of RICHARDSON can be bounded by an absolute multiple of

η−1/s|u|1/sAs + # suppv + 1.

For 1 ≤ i ≤ l, from ‖u− vi‖ ≤ ν and Proposition 2.3.6 on page 18 we have

|vi|1/sAs . |u|1/sAs + (# suppvi)ν
1/s.

32 BASIC PRINCIPLES 2.7

From νρl−1 & η we get (1/ρ)l−1 . ν/η . 1 or l . 1, and so εi & νρl−1/l & η/l &
η. By using this and the s∗-admissibility of f and A, we infer

suppvi . η−1/s|u|1/sAs + η−1/s|vi−1|1/sAs .

Taking into account the condition ν . η, and repeatedly using the above two
estimates, we get for 1 ≤ i ≤ l,

|vi|1/sAs . |u|1/sAs + |v0|1/sAs ,

and
suppvi . η−1/s|u|1/sAs + |v0|1/sAs .

From Proposition 2.3.6 on page 18, we have |v0|As . |u|As + (# suppv0)
sν .

|u|As + (# suppv0)
sη. By using the above estimates, and for bounding the cost

of the algorithm, the s∗-admissibility of f and A, we complete the proof.

Now we address the question of how to implement the subroutine APPLY.
We need the the notion of matrix computability.

Definition 2.7.8 (Computability). M is called s∗-computable, when for each
j ∈ N0, we can construct an infinite matrix Mj having in each column and in each
row at most αj2

j non-zero entries, whose computation takes O(αj2
j) arithmetic

operations, such that ‖M − Mj‖ ≤ Cj, where (αj)j∈N0 is summable and for
any s < s∗, (Cj2

js)j∈N0 is summable. We call the matrices Mj the compressed
matrices. �

For a discussion on why s∗-computability can be expected for the stiffness
matrices M = L, e.g., corresponding to Example 2.4.1 on page 20, we refer to
the forthcoming Remark 2.7.13 on page 34.

Theorem 2.7.10 (cf. Proposition 3.8 of [83]). If a matrix M : `2 → `2 is
s∗-computable for some s∗ > 0, then it is s∗-admissible.

Proof. We employ the routine APPLY as presented in Algorithm 2.7.9 on the
facing page. From (2.7.3), (2.7.1) and (2.7.2), we have

‖Mv −w‖ ≤
∑̀
k=0

‖M−Mj−k‖‖zj‖+ ‖M‖‖v −
∑̀
k=0

zj‖

≤
∑̀
k=0

Cj−k‖zk‖+ ε/2 ≤ ε.

2.7 ADAPTIVE APPLICATION OF OPERATORS. COMPUTABILITY 33

Algorithm 2.7.9 Realization of APPLY[M,v, ε] → w

Parameters: For j ∈ N0, let Cj be such that ‖M−Mj‖ ≤ Cj.
Input: Let M : `2 → `2 be bounded linear, v ∈ P and ε > 0.
Output: w ∈ P and ‖w −Mv‖ ≤ ε.
1: {bi}0≤i≤q := BSORT[v, ε/(2‖M‖)];
2: For k = 0, 1, . . ., generate vectors zk by subsequently collecting 2k − b2k−1c

nonzero entries from ∪ibi, starting from b0 and when it is exhausted from b1

and so on, until for some k = ` either ∪ibi becomes empty or

‖M‖‖v −
∑̀
k=0

zk‖ ≤ ε/2; (2.7.1)

3: Compute the smallest j ≥ ` such that

∑̀
k=0

Cj−k‖zk‖ ≤ ε/2; (2.7.2)

4: Compute
w := Mjz0 + Mj−1z1 + . . .+ Mj−`z`. (2.7.3)

Let s ∈ (0, s∗) be given. The number of operations needed for generating the

vectors zk is of order # suppv + log(ε−1‖v‖) + 1 . # suppv + ε−1/s|v|1/sAs + 1.
Both the number of operations needed for the evaluation of (2.7.3) and # suppw
can be bounded by a multiple of

∑`
k=0 αj−k2

j−k2k . 2j.

Now we will bound 2j. With vk :=
∑k

m=0 zm, we have # suppvk = 2k. Let ṽk
be constructed as follows: Create ṽk by extracting nonzero entries first from b0

and when it is zero from b1 and so on, until ‖v− ṽk‖ ≤ min{‖v−vk‖, ε/(2‖M‖)}
is satisfied. Note that ‖v−vk‖ < ε/(2‖M‖) for k < `. Then by construction, we
have 2k−1 < # supp ṽk. Since ‖bq‖ ≤ ε/(2‖M‖) by Lemma 2.6.2 on page 26, for
k ≤ `, the last entry added to ṽk originates from bik with some ik < q. Moreover,
for k ≤ `, a minimal set Λk that satisfies ‖v−PΛk

v‖ ≤ min{‖v−vk‖, ε/(2‖M‖)}
contains all the entries from the vectors b0, . . . ,bik−1. Since any two nonzero
entries from bik differ less than a factor 1/β in modulus, with β the constant
inside BSORT, the cardinality of the contribution from bik to supp ṽk is at most
a factor 1/β2 larger than that to Λk, so that # supp ṽk ≤ β−2#Λk. By the
same reasoning as in the proof of Proposition 2.3.7 on page 19, we conclude that
#Λk . ‖v − vk‖−1/s|v|1/sAs or

‖v − vk‖ . (#Λk)
−s|v|As . 2−ks|v|As , for k < `,

34 BASIC PRINCIPLES 2.7

and 2`−1 . #Λ` . ε−1/s|v|As . The latter estimate gives a suitable bound on 2j

for j = `.
For j > `, from the definition of j we have

ε/2 <
∑̀
k=0

Cj−1−k‖zk‖ ≤
∑̀
k=0

Cj−1−k‖v − vk−1‖ .
∑̀
k=0

Cj−1−k2
−(k−1)s|v|As

. 2−js|v|As

∑̀
k=0

Cj−1−k2
(j−k−1)s . 2−js|v|As ,

which completes the proof.

The notion of matrix compressibility further simplifies the notion of com-
putability, by isolating the costs for computing matrix entries.

Definition 2.7.11 (Compressibility). M is called s∗-compressible, when for
each j ∈ N0, there exists an infinite matrix Mj, constructed by dropping entries
from M, such that in each column and in each row it has O(2j) non-zero entries,
and such that for any s < s∗, ‖M−Mj‖ . 2−js. �

Lemma 2.7.12 (cf. Remark 2.4 of [86]). Let M be s∗-compressible, and let
the matrices Mj be as in Definition 2.7.11. In addition, for j ∈ N0, assume
that each column and each row of Mj can be computed at the expense of O(2j)
arithmetic operations. Then M is s∗-computable.

Proof. For j ∈ N0, let M̃j := Mdj+log2 αje with αj = j−ε for some ε > 1. Then the
number of nonzero entries, as well as the cost of computing these entries in each
column and each row of M̃j is of order 2jαj . 2jj−ε. Since for any s < s′ < s∗

we have
2−js‖M− M̃j‖ <∼ 2−js2−(j+logαj)s

′
= 2−j(s

′−s)α−s
′

j

and
∑

j 2−j(s
′−s)α−s

′

j <∞, the proof is established.

Remark 2.7.13. In this remark, we comment on why s∗-compressibility of a
matrix M can be expected when M is the stiffness matrix corresponding to a
differential operator in a wavelet basis. For simplicity, with Ω ⊂ Rn a bounded
Lipschitz domain and H := H1

0 (Ω), we will consider the Laplace operator −∆ :
H → H ′ and a wavelet basis Ψ for H. An element of the stiffness matrix is
given by Mλµ = 〈ψλ,−∆ψµ〉 :=

∫
Ω
∇ψλ∇ψµ. First note that the matrix M is

not sparse, since any wavelet will necessarily intersect with infinitely many higher
level wavelets. Let us look more closely into the interactions between wavelets
on different levels. Let M[j,k] := (Mλµ)|λ|=j,|µ|=k be the block of M corresponding

2.7 ADAPTIVE APPLICATION OF OPERATORS. COMPUTABILITY 35

to the interaction between the j-th and k-th levels. Then the number of rows or
columns of M[j,k] is of order 2jn or 2kn, respectively. For a given λ with |λ| = j,
by the locality of the wavelets, the number of indices µ with |µ| = k for which
suppψλ ∩ suppψµ 6= ∅ is of order max{1, 2(k−j)n}. We see that the block M[j,k]

is sparse (or nearly sparse) when the difference |j − k| is small, and that the
sparseness diminishes as the difference increases. Our strategy to compress the
matrix M will be to discard blocks M[j,k] for which |j−k| is larger than a certain
threshold. For J ∈ N, let MJ be the matrix obtained from M by keeping only
the blocks M[j,k] with |j − k| ≤ J . Then, the number of nonzero entries in each
row and column of MJ is of order∑

|j−k|≤J

max{1, 2(k−j)n} . J + 2Jn . 2Jn. (2.7.4)

Now we will estimate the error ‖M − MJ‖. For any r > 0, −∆ : H1+r →
H−1+r is bounded. Using this, and the estimate (2.2.5) on page 11, for wj ∈ Wj,
wk ∈ Wk, and r ∈ (0, d̃+ 1] ∩ (0, γ − 1), we have

〈wj,−∆wk〉 ≤ ‖wj‖H1−r‖∆wk‖H−1+r . ‖wj‖H1−r‖wk‖H1+r

. 2r(k−j)‖wj‖H1‖wk‖H1 .

and analogously by the self-adjointness of the Laplacian,

〈wj,−∆wk〉 = 〈−∆wj, wk〉 . 2r(j−k)‖wj‖H1‖wk‖H1 .

So for r in the above range, and for arbitrary v ∈ `2(∇j \ ∇j−1) and w ∈
`2(∇k \ ∇k−1), we have

〈v,M[j,k]w〉 =
〈
vTΨ,−∆(wTΨ)

〉
. 2−r|j−k|

∥∥vTΨ
∥∥
H1

∥∥wTΨ
∥∥
H1

. 2−r|j−k|‖v‖‖w‖,

or ‖M[j,k]‖ . 2−r|j−k|. Furthermore, with P[i] := P∇i\∇i−1
, for arbitrary v,w ∈ `2

we have

〈v, (M−MJ)w〉 =
∑

|j−k|>J

〈P[j]v,M[j,k]P[k]w〉

.
∑

|j−k|>J

2−r|j−k|‖P[j]v‖‖P[k]w‖

. 2−rJ

√√√√ ∞∑
j=0

‖P[j]v‖2

√√√√ ∞∑
k=0

‖P[k]w‖2

= 2−rJ‖v‖‖w‖,

36 BASIC PRINCIPLES 2.7

where in the third line we used ‖(2−r|j−k|)j,k‖`2→`2 < ∞. We conclude that
‖M−MJ‖ . 2−rJ for r ∈ (0, d̃+ 1] ∩ (0, γ − 1), and this, together with (2.7.4),

implies that M is s∗-compressible with s∗ = max{ d̃+1
n
, γ−1

n
}. �

Remark 2.7.14. In view of Remark 2.3.3 on page 16, since, by imposing what-
ever smoothness conditions on the solution u generally the convergence rate of
best N -term approximations cannot be higher than d−t

n
, it is fully satisfactory if

an adaptive wavelet algorithm is optimal for s ∈ (0, d−t
n

]. To this end, considering
Theorem 2.7.7 on page 31, it is necessary to show that the stiffness matrix L is s∗-
computable for some s∗ > d−t

n
, since otherwise for a solution u that has sufficient

Besov regularity, the computability will be the limiting factor. So in particular,
since γ < d, the value of s∗ from the previous remark is not satisfactory.

For both differential and singular integral operators, and piecewise polyno-
mial wavelets that are sufficiently smooth and have sufficiently many vanishing
moments, s∗-compressiblity for some s∗ > d−t

n
has been demonstrated in [86].

These results are quoted in Chapter 7 and Chapter 8. For simplicity thinking
of the Laplacian as in the previous remark, the key to obtaining these improved
results on compressibility can be understood as follows. For piecewise polynomial
wavelets, for a given ψλ, most of the wavelets ψµ, especially when |µ| � |λ|, will
have their support inside some patch on which ψλ is infinitely smooth, hence by
the cancellation property giving an improved bound on the corresponding matrix
entry, and only for ψµ with a support that intersects with the (n−1)-dimensional
singular supports of ψλ, the estimate of the corresponding entry has to rely on
the global smoothness parameter γ.

Yet, only in a few special cases, e.g., in the case of a differential operator with
constant coefficients, entries of L can be computed exactly, in O(1) operations,
so that s∗-compressibility immediately implies s∗-computability. In general, nu-
merical quadrature is required to approximate the entries. In Chapter 7 and
Chapter 8, considering both differential and singular integral operators, we will
show that L is s∗-computable for the same value of s∗ as for which it was shown
to be s∗-compressible. �

Remark 2.7.15. In view of Definition 2.7.4 on page 30, s∗-admissibility of f
requires the availability of a sequence of approximations for f that converges
with the rate s for any s < s∗. By Proposition 2.7.5, if u ∈ As and L is s∗-
admissible for some s∗ > s, then f = Lu ∈ As with |f |As . |u|As , and so
supN N

s‖f − BN(f)‖ . |u|As , which, however does not tell how to construct
an approximation g which is qualitatively as good as BN(f) with a comparable
support size. In general, a realization of such an approximation depends on the
right-hand side at hand, and it can be practically achieved by exploiting the local
smoothness of f and the cancellation properties of the wavelets. See §3.4 for an
example.

2.8 APPROXIMATE STEEPEST DESCENT ITERATIONS 37

2.8 Approximate steepest descent iterations
In Algorithm 2.7.6 on page 31, being an approximate Richardson iteration, the
user needs to provide estimates of the error reduction factor ρ and the optimal
value of the damping parameter ω. For doing so, one has to estimate the extremal
eigenvalues of A. Since, in view of Example 2.5.2 on page 23, without requiring
any user defined parameters, the steepest descent method automatically achieves
the best error reduction factor of Richardson’s iteration, a suitable implementa-
tion of the approximate steepest descent method would release the user from the
task of accurately estimating the extremal eigenvalues. In the context of adaptive
wavelet algorithms, the steepest descent method was first studied in [15]. In [28],
the analysis was extended to the case where wavelet frames are used instead of a
basis.

The following perturbation result on the steepest descent iteration is a quo-
tation of [28, Proposition 3.2].

Proposition 2.8.1. In the setting of Example 2.5.2 on page 23, for any ρ ∈(
κ(A)−1
κ(A)+1

, 1
)
, there exists a δ = δ(ρ) small enough, such that if ‖r− r̃‖ ≤ δ‖r̃‖ and

‖Ar̃− z‖ ≤ δ‖r̃‖, then with

w = v +
〈r̃, r̃〉
〈z, r̃〉

r̃,

we have

|||u−w||| ≤ ρ|||u− v|||, and
〈r̃, r̃〉
〈z, r̃〉

. 1.

In view of this proposition, we introduce an algorithm that computes the
residual with some prescribed relative error δ, unless the residual itself is less
than the prescribed final tolerance ε > 0. Moreover, the residual is computed
within an absolute error ξ > 0.

Algorithm 2.8.2 Residual computation RES[v, ξ, δ, ε] → [r̃, ν]

Input: v ∈ P , δ ∈ (0, 1), and ξ, ε > 0.
Output: r̃ ∈ P and ν > 0, such that with r := f − Lv, ν ≥ ‖r‖, ‖r − r̃‖ ≤ ξ,

and either ν ≤ ε or ‖r− r̃‖ ≤ δ‖r̃‖.
1: ζ := 2ξ;
2: repeat
3: ζ := ζ/2;
4: r̃ := RHS[f , ζ/2]−APPLY[L,v, ζ/2];
5: until ν := ‖r̃‖+ ζ ≤ ε or ζ ≤ δ‖r̃‖.

38 BASIC PRINCIPLES 2.8

Remark 2.8.3. If RES is called with a parameter ξ that it is outside [δ
1+δ
‖f −

Lv‖, δ
1−δ‖f − Lv‖], then so is ζ at the first evaluation of r̃, and from ‖r̃‖ − ζ ≤

‖f − Lv‖ ≤ ‖r̃‖ + ζ, one infers that in this case either the second test in the
until-clause will fail anyway, meaning that the first iteration of the repeat-loop
is not of any use, or that the second test in the until-clause is always passed,
but possibly with a tolerance that is unnecessarily small. We conclude that
there is not much sense in calling RES with a value of ξ that is far outside
[δ
1+δ
‖f − Lv‖, δ

1−δ‖f − Lv‖].

The following result can be extracted from [46, Theorem 2.4] or [28, Theorem
3.7].

Proposition 2.8.4. [r̃, ν] := RES[v, ξ, δ, ε] terminates with ν ≥ ‖r‖, and either
ν ≤ ε or ‖r− r̃‖ ≤ δ‖r̃‖, where r := f −Lv. In addition, we have ν & min{ξ, ε},
‖r− r̃‖ ≤ ξ, and in case ν > ε, ν ≤ (1 + δ)‖r̃‖. Furthermore, if, for some s > 0,
u ∈ As, and L and f are s∗-admissible with s∗ > s, then

supp r̃ . min{ξ, ν}−1/s
(
|v|1/sAs + |u|1/sAs

)
, |r̃|As . |v|As + |u|As ,

and the number of arithmetic operations and storage locations required by the call
is bounded by some absolute multiple of

min{ξ, ν}−1/s
(
|v|1/sAs + |u|1/sAs + ξ1/s(# suppv + 1)

)
.

Proof. If at evaluation of the until-clause, ζ > δ‖r̃‖, then ‖r̃‖+ ζ < (δ−1 + 1)ζ.
Since ζ is halved in each iteration, we infer that, if not by ζ ≤ δ‖r̃‖, RES will
terminate by ‖r̃‖+ ζ ≤ ε.

Since after any evaluation of r̃ inside the algorithm, ‖r̃− r‖ ≤ ζ, any value of
ν determined inside the algorithm is an upper bound on ‖r‖.

If the loop terminates in the first iteration, or the algorithm terminates with
ν > ε, then ν & min{ξ, ε}. In the other case, let r̃old := RHS[ζ]−APPLY[w, ζ].
We have ‖r̃old‖+ 2ζ > ε and 2ζ > δ‖r̃old‖, so that ν ≥ ζ > (2δ−1 + 2)−1(‖rold‖+
2ζ) > δε

2+2δ
.

The bound on # supp r̃ and |r̃|As easily follows from the s∗-admissibility of L
and f , once we have shown that ζ & min{ξ, ν}. When the loop terminates in the
first iteration, we have ζ = ξ, and when the algorithm terminates with ζ ≥ δ‖r̃‖,
we have ζ & ν. In the other case, we have δ‖r̃old‖ < 2ζ with r̃old as above, and
so from ‖r̃ − r̃old‖ ≤ ζ + 2ζ, we infer ‖r̃‖ ≤ ‖r̃old‖ + 3ζ < (2δ−1 + 3)ζ, so that
ν < (2δ−1 + 4)ζ.

By the geometrical decrease of ζ inside the algorithm, and the s∗-admissi-bility
of L and f , the total cost of the call of RES can be bounded by some multiple

2.8 APPROXIMATE STEEPEST DESCENT ITERATIONS 39

of ζ−1/s(|v|1/sAs + |u|1/sAs) + K(# suppv + 1), with ζ, r̃ and ν having their values
at termination and K being the number of calls of APPLY that were made.
Taking into account the initial value of ζ, and again its geometrical decrease
inside the algorithm, we have K(# suppv + 1) = Kξ−1/sξ1/s(# suppv + 1) .
ζ−1/sξ1/s(# suppv + 1).

We are now ready to present the approximate steepest descent method.

Algorithm 2.8.5 Method of steepest descent SD[v, ν0, ε] → vi
Parameters: Let δ = δ(ρ) be the constant as in Proposition 2.8.1 on page 37

with some ρ < 1. Let θ > 0 be a fixed constant.
Input: v ∈ P , ν0 ≥ ‖f −Av‖, and ε > 0.
Output: vi ∈ P with ‖f −Avi‖ ≤ ε.
1: i := 0, v1 := v;
2: loop
3: i := i+ 1;
4: [r̃i, νi] := RES[vi, θνi−1, δ, ε], with L := A inside RES;
5: if νi ≤ ε then
6: Terminate the subroutine.
7: end if
8: zi := APPLY[r̃i, δ‖r̃i‖];
9: vi+1 := vi +

〈r̃i,r̃i〉
〈zi,r̃i〉 r̃i;

10: end loop

Remark 2.8.6. We will see that at the call of RES[vi, θνi−1, δ, ε], it holds that
‖f −Avi‖ . νi−1. Although for any fixed θ > 0 the following theorem is valid, in
view of Remark 2.8.3 on page 38 a suitable tuning of θ will result in quantitatively
better results. Ideally, θ has the largest value for which the repeat-loop inside
RES always terminates in one iteration.

Theorem 2.8.7. Let A be symmetric and positive definite, and let both A and
f be s∗-admissible for some s∗ > 0. Then w := SD[v, ν0, ε] terminates with
‖f −Aw‖ ≤ ε. Moreover, the procedure ITERATE := SD with ‖ · ‖? := ‖A · ‖
satisfies the conditions of Theorem 2.6.8 on page 28 for any s ∈ (0, s∗), meaning
that, incorporated in the method SOLVE from Algorithm 2.6.7 on page 28, SD
defines an optimal adaptive algorithm for s ∈ (0, s∗).

Proof. From the properties of RES, for any vi determined inside the loop, we
have νi ≥ ‖ri‖, and with ri := f −Avi, either νi ≤ ε or ‖ri − r̃i‖ ≤ δ‖r̃i‖. As
long as νi > ε, from (1 − δ)‖r̃i‖ ≤ ‖ri‖ ≤ (1 + δ)‖r̃i‖ and νi ≤ (1 + δ)‖r̃i‖, we
have νi h ‖r̃i‖ h ‖ri‖, and Proposition 2.8.1 on page 37 shows that |||u−vi+1||| ≤

40 BASIC PRINCIPLES 2.8

ρ|||u−vi|||, or νi . ρiν0. This proves that the loop terminates after a finite number
of iterations, say directly after the K-th call of RES.

As for the conditions of Theorem 2.6.8 on page 28, recall that we need to
prove that for any s ∈ (0, s∗) and for ε & ν0 ≥ ‖f −Av‖,

suppw . # suppv + ε−1/s|u|1/sAs , |w|As . (# suppv)sε+ |u|As ,

and that the number of arithmetic operations and storage locations required by
this call of SD can be bounded by an absolute multiple of

ε−1/s|u|1/sAs + # suppv + 1.

Since, by ν0 . ε, K is uniformly bounded and ‖u − v1‖ ≤ ν0 . ε, for
1 ≤ i < K it follows from Proposition 2.8.4 on page 38 that

|vi+1|As . |vi|As + |u|As . |v1|As + |u|As . |u|As + (# suppv1)
sε,

and therefore

suppvi+1 . # suppvi + ε−1/s
(
|vi|1/sAs + |u|1/sAs

)
. # suppv1 + ε−1/s|u|1/sAs .

Note that the above two estimates are trivially true for i = 0.
For 1 ≤ i < K, Proposition 2.8.4 on page 38 shows that |r̃i|As . |vi|As +

|u|As . (# suppv1)
sε + |u|As , and using this we infer that the cost of the i-th

iteration is bounded by an absolute multiple of

ε−1/s
(
|vi|1/sAs + |u|1/sAs + ε1/s(# suppvi + 1)

)
+ ε−1/s

(
(# suppv1)ε

1/s + |u|1/sAs

)
. ε−1/s|u|As + # suppv1 + 1.

The cost of the K-th call of RES can be bounded by some multiple of the same
expression, and the proof is completed by the uniform boundedness of K.

Remark 2.8.8. In Algorithm 2.8.5 on the preceding page, if we remove Line
8 and replace the statement in Line 9 by vi+1 := vi + ωr̃i, with ω having a
value for which Richardson’s iteration converges (cf. Example 2.5.1 on page 23),
then we get another implementation of Richardson’s iteration. The results of
Theorem 2.8.7 on the previous page carries over to this case in a straightforward
manner. The point is now we use a posteriori tolerances, whereas in Algorithm
2.7.6 on page 31 we used a priori tolerances.

2.8 APPROXIMATE STEEPEST DESCENT ITERATIONS 41

Remark 2.8.9. The Chebyshev iteration can be used to accelerate the conver-
gence of the aforementioned methods. Then a convergence proof is obtained by
following the analysis in [49], with the help of the spectral theory for bounded
self-adjoint operators.

42 BASIC PRINCIPLES 2.8

Chapter 3
Adaptive Galerkin methods

3.1 Introduction
We consider the equation (2.4.3) on page 21, which is repeated here for conve-
nience:

Au = f ,

where A : `2 → `2 is an SPD matrix, and f ∈ `2. For Λ ⊂ ∇, we call the solution
uΛ ∈ `2(Λ) of the system

PΛAIΛuΛ = PΛf ,

the Galerkin solution on Λ. We are going to exploit the fact that it is the best
approximation in energy norm from `2(Λ), i.e.,

|||u− uΛ||| = inf
vΛ∈`2(Λ)

|||u− vΛ|||,

and furthermore that uΛ can be accurately approximated at relatively low cost.
To this end, obviously we need some way to generate the index set Λ, or a sequence
of increasingly larger index sets, that gives rise to an accurate approximation
to the exact solution u. One could use e.g. an approximate steepest descent
iteration to create a sequence of index sets as follows: For a given approximation
v ∈ P , compute the next approximate steepest descent iterand w ∈ P as in
Proposition 2.8.1 on page 37. Then take Λ := suppw and compute the Galerkin
solution uΛ on Λ, to update w. Now Proposition 2.8.1 guarantees convergence:

The work in this chapter is a joint work with Helmut Harbrecht and Rob Stevenson, see
Section 1.2

43

44 ADAPTIVE GALERKIN METHODS 3.1

|||u − uΛ||| ≤ |||u − w||| ≤ ρ|||u − v||| with ρ < 1. In fact, there is no need to
compute w; it suffices to compute the approximate residual r̃ for v, and then set
Λ := suppv ∪ supp r̃.

Since uΛ is the best approximation to u in the energy norm, an analysis
based on Proposition 2.8.1 is likely not sharp, however. An improved analysis
can be made by employing the Galerkin orthogonality: |||u−uΛ|||2 + |||uΛ−v|||2 =
|||u− v|||2. This orthogonality shows the equivalence between the error reduction
|||u − uΛ||| ≤ ξ|||u − v||| for some ξ ∈ (0, 1), and the so-called saturation property

|||uΛ − v||| ≥ (1 − ξ2)
1
2 |||u − v|||. It is well known, and recalled below in Lemma

3.2.1, that for a given initial approximation v, any set Λ ⊃ suppv satisfying
‖PΛ(f −Av)‖ ≥ µ‖f −Av‖ for some constant µ ∈ (0, 1), realizes the saturation

property: |||uΛ − v||| ≥ κ(A)−
1
2µ|||u − v|||. In [17], this property, combined with

coarsening of the iterands, was used to obtain the first optimal adaptive wavelet
algorithm.

The main point of this chapter is that we will show that if µ is less than
κ(A)−

1
2 , and Λ is the smallest set containing suppv that satisfies the condition

‖PΛ(f − Av)‖ ≥ µ‖f − Av‖, then, without coarsening of the iterands, these
approximations converge with a rate that is guaranteed for best N -term approx-
imations. Both conditions on the selection of Λ can be qualitatively understood
as follows: The idea to realize the saturation property is the use of the coefficients
of the residual vector as local error indicators. In case κ(A) = 1, the residual is
just a multiple of the error, but when κ(A) � 1, only the largest coefficients can
be used as reliable indicators about where the error is large. Of course, applying
a larger set of indicators cannot reduce the convergence rate, but it may ham-
per optimal computational complexity. Notice the similarity with adaptive finite
element methods where the largest local error indicators are used for marking
elements for further refinement.

As we will see, the above result holds also true when the residuals and the
Galerkin solutions are determined only inexactly, assuming a proper decay of
the tolerances as the iteration proceeds, and when the cardinality of Λ is only
minimal up to some constant factor. Using both generalizations, again a method
of optimal computational complexity is obtained.

One might argue that picking the largest coefficients of the (approximate)
residual vector is another instance of coarsening, but on a different place in the
algorithm. The principle behind it, however, is very different from that behind
coarsening of the iterands. What is more, since with the new method no informa-
tion is deleted that has been created by a sequence of computations, we expect
that it is more efficient.

Another modification to the method from [17] we will make is that for each call
of APPLY or RHS, we will use as a tolerance some fixed multiple of the norm of

3.2 ADAPTIVE GALERKIN ITERATIONS 45

the current approximate residual, instead of using an a priori prescribed tolerance.
Since it seems hard to avoid that a priori tolerances get either unnecessarily
smaller, making the calls costly, or larger so that the perturbed iteration due to
the inexact evaluations converges significantly slower than the unperturbed one,
also here we expect to obtain a quantitative improvement.

This chapter is organized as follows. Before introducing our adaptive algo-
rithm without coarsening of the iterands, in the next section, we will formulate
an adaptive Galerkin algorithm as a valid instance of the subroutine ITERATE
that is intended to be combined with coarsening of the iterands as in Algorithm
2.6.7 on page 28. Then in Section 3.3, we will introduce the adaptive algorithm
without coarsening of the iterands and prove its optimality. We tested our adap-
tive wavelet solver for the Poisson equation on the interval. The results reported
in the last section show that in this simple example the new method is indeed
much more efficient than the inexact Richardson method with coarsening of the
iterands. We would like to mention that in [30], numerical results based on tree
approximations are given for singular integral equations on the boundary of three
dimensional domains.

3.2 Adaptive Galerkin iterations
The next lemma is well known:

Lemma 3.2.1. Let µ ∈ (0, 1] be a constant. Let v ∈ `2 and let ∇ ⊇ Λ ⊃ suppv
be such that

‖PΛ(f −Av)‖ ≥ µ‖f −Av‖. (3.2.1)

Then, for uΛ ∈ `2(Λ) being the solution of the Galerkin system PΛAuΛ = PΛf ,
and with κ(A) := ‖A‖‖A−1‖, we have

|||u− uΛ||| ≤
[
1− κ(A)−1µ2

] 1
2 |||u− v|||.

Proof. We have

|||uΛ − v||| ≥ ‖A‖−
1
2‖A(uΛ − v)‖ ≥ ‖A‖−

1
2‖PΛ(f −Av)‖

≥ ‖A‖−
1
2µ‖f −Av‖ ≥ κ(A)−

1
2µ|||u− v|||,

which, with κ(A)−
1
2µ reading as some arbitrary positive constant, is known as

the saturation property of the space `2(Λ) containing v. The proof is completed
by using the Galerkin orthogonality |||u− v|||2 = |||u− uΛ|||2 + |||uΛ − v|||2.

46 ADAPTIVE GALERKIN METHODS 3.2

In this lemma it was assumed to have full knowledge about the exact resid-
ual, and furthermore that the arising Galerkin system is solved exactly. As the
following result shows, however, linear convergence is retained with an inexact
evaluation of the residuals and an inexact solution of the Galerkin systems, in
case the relative errors are sufficiently small.

Proposition 3.2.2. Let 0 < δ < α ≤ 1 and 0 < γ < 1
3
κ(A)−

1
2 (α− δ). Let v, r̃ ∈

`2, ∇ ⊇ Λ ⊃ suppv, w ∈ `2(Λ) be such that, with r := f −Av, ‖r− r̃‖ ≤ δ‖r̃‖,
‖PΛr̃‖ ≥ α‖r̃‖, and ‖PΛ(f −Aw)‖ ≤ γ‖r̃‖. Then, with β := γκ(A)

1
2/(α − δ),

we have

|||u−w||| ≤
(
1− (1− β)(1− 3β)κ(A)−1

(
α−δ
1+δ

)2) 1
2 |||u− v|||.

Proof. From ‖r‖ ≤ (1 + δ)‖r̃‖ and ‖PΛr̃‖ ≤ ‖PΛr‖+ δ‖r̃‖ we have

‖PΛr‖ ≥ (α− δ)‖r̃‖ ≥ α−δ
1+δ

‖r‖,

so that Lemma 3.2.1 shows that

|||u− uΛ||| ≤
[
1− κ(A)−1(α−δ

1+δ
)2
] 1

2 |||u− v|||.

One can simply estimate |||u − w||| ≤ |||u − uΛ||| + |||uΛ − v|||, but a sharper
result can be derived by using that u − w is nearly 〈〈·, ·〉〉-orthogonal to `2(Λ),
with 〈〈·, ·〉〉 := 〈A·, ·〉. We have

|||uΛ −w||| ≤ ‖A−1‖
1
2‖PΛA(uΛ −w)‖ = ‖A−1‖

1
2‖PΛ(f −Aw)‖

≤ ‖A−1‖
1
2γ‖r̃‖ ≤ ‖A−1‖

1
2

γ
α−δ‖PΛr‖ ≤ β|||uΛ − v|||.

Using the Galerkin orthogonality u− uΛ ⊥〈〈 , 〉〉 `2(Λ), we have

〈〈u−w,w − v〉〉 = 〈〈uΛ −w,w − v〉〉
≤ |||uΛ −w||||||w − v||| ≤ β|||uΛ − v||||||w − v|||.

Now by writing

|||u− v|||2 = |||u−w|||2 + |||w − v|||2 + 2〈〈u−w,w − v〉〉,

and, for obtaining the second line in the following multi-line formula, twice ap-
plying

|||w − v||| ≥ |||uΛ − v||| − |||w − uΛ||| ≥ (1− β)|||uΛ − v|||,

3.2 ADAPTIVE GALERKIN ITERATIONS 47

and for the third line, using |||uΛ − v||| ≥ α−δ
1+δ

|||u− v|||, we find that

|||u− v|||2 ≥ |||u−w|||2 + |||w − v|||
(
|||w − v||| − 2β|||uΛ − v|||

)
≥ |||u−w|||2 + (1− β)(1− 3β)|||uΛ − v|||2

≥ |||u−w|||2 + (1− β)(1− 3β)κ(A)−1(α−δ
1+δ

)2|||u− v|||2,

which completes the proof.

An important ingredient of the adaptive method is the approximate solution
of the Galerkin system on `2(Λ) for Λ ⊂ ∇. Given an approximation gΛ for PΛf ,
there are various possibilities to iteratively solving the system PΛAIΛuΛ = gΛ

starting with some initial approximation vΛ for uΛ. Thinking of Λ being an ex-
tension of suppv as created in Proposition 3.2.2 on page 46, obviously we will
take vΛ = v. Note that even when the underlying operator is a differential opera-
tor, due to the fact that Λ can be in principle an arbitrary subset of ∇, it cannot
be expected that the exact application of AΛ := PΛAIΛ to a vector takes O(#Λ)
operations. So in order to end up with a method of optimal complexity we have to
approximate this matrix-vector product. Instead of relying on the adaptive rou-
tine APPLY throughout the iteration, after approximately computing the initial
residual using the APPLY routine, the following routine GALSOLVE iterates
using some fixed, non-adaptive approximation for AΛ. The accuracy of this ap-
proximation depends only on the factor with which one wants to reduce the norm
of the residual. This approach can be expected to be particularly efficient when
the approximate computation of the entries of A is relatively expensive, as with
singular integral operators. As can be deduced from [41], it is even possible in the
course of the iteration to gradually diminish the accuracy of the approximation
for AΛ.

Algorithm 3.2.3 Galerkin system solver GALSOLVE[Λ,gΛ,vΛ, ν, ε] → wΛ

Parameters: Let A : `2 → `2 be SPD and s∗-computable for some s∗ > 0. With
Aj the compressed matrices from Definition 2.7.8 on page 32, let j be such
that

σ := ‖A−Aj‖‖A−1‖ ≤ ε
3ε+3ν

.

Input: Let Λ ⊂ ∇, #Λ <∞, gΛ,vΛ ∈ `2(Λ), ν ≥ ‖gΛ −AΛvΛ‖, ε > 0.
Output: ‖gΛ −AΛwΛ‖ ≤ ε.
1: B := PΛ

1
2
(Aj + AT

j)IΛ;

2: r0 := gΛ −PΛ

(
APPLY[A,vΛ,

ε
3
]
)
;

3: To find an x with ‖r0−Bx‖ ≤ ε
3
, apply a suitable iterative method for solving

Bx = r0, e.g., Conjugate Gradients or Conjugate Residuals;
4: wΛ := vΛ + x.

48 ADAPTIVE GALERKIN METHODS 3.2

Proposition 3.2.4. Let A be s∗-computable for some s∗ > 0. Then wΛ :=
GALSOLVE[Λ,gΛ,vΛ, ν, ε] terminates with ‖gΛ − AΛvΛ‖ ≤ ε, and for any
s < s∗, the number of arithmetic operations and storage locations required by the
call is bounded by some absolute multiple of ε−1/s|vΛ|1/sAs + c(ν/ε)#Λ + 1, where
c : R>0 → R>0 is some non-decreasing function.

Proof. Using that 〈AΛzΛ, zΛ〉 ≥ ‖A−1‖−1‖vΛ‖2 for z ∈ `2(Λ), and ‖AΛ −B‖ ≤
‖A − Aj‖ = σ‖A−1‖−1 < 1

3
‖A−1‖−1, we infer that B is SPD with respect to

the canonical scalar product on `2(Λ), and that κ(B) . 1 uniformly in ε and ν.

Writing B−1 = (I −A−1
Λ (AΛ −B))−1A−1

Λ , we find that ‖B−1‖ ≤ ‖A−1
Λ ‖

1−‖A−1
Λ ‖‖AΛ−B‖

and so ‖AΛ −B‖‖B−1‖ ≤ σ
1−σ .

We have ‖r0‖ ≤ ν + ε
3
. Writing

gΛ −AΛwΛ = (gΛ −AΛvΛ − r0) + (r0 −Bx) + (B−AΛ)B−1(r0 + Bx− r0),

we find
‖AΛwΛ − gΛ‖ ≤ ε

3
+ ε

3
+ σ

1−σ (ν + ε
3

+ ε
3
) ≤ ε.

The s∗-computability of A show that the cost of the computation of r0 is bounded
by some multiple of ε−1/s|vΛ|1/sAs +#Λ. Since B is sparse and can be constructed in
O(#Λ) operations, and the required number of iterations of the iterative method
is bounded, everything only dependent on an upper bound for ν/ε, the proof is
complete.

As announced in the introduction of this chapter, before introducing our adap-
tive algorithm without coarsening of the iterands, we present an adaptive Galerkin
algorithm which, combined with coarsening of the iterands as in Algorithm 2.6.7
on page 28, provides an optimal adaptive algorithm. We use the subroutine RES
given in Algorithm 2.8.2 on page 37 for the computation of the approximate
residuals with sufficiently small relative errors.

3.2 ADAPTIVE GALERKIN ITERATIONS 49

Algorithm 3.2.5 Adaptive Galerkin method GALERKIN[v, ν0, ε] → vi

Parameters: Let 0 < δ < 1 and 0 < γ < 1
6
κ(A)−

1
2 (1− δ). Let θ > 0 be a fixed

constant.
Input: Let v ∈ P , ν0 ≥ ‖f −Av‖, and ε > 0.
Output: vi ∈ P with ‖f −Avi‖ ≤ ε.
1: i := 0, v1 := v;
2: loop
3: i := i+ 1;
4: [r̃i, νi] := RES[vi, θνi−1, δ, ε], with L := A inside RES;
5: if νi ≤ ε then
6: Terminate the subroutine.
7: end if
8: Λi+1 := suppvi ∪ supp r̃i;
9: gi+1 := PΛi+1

(RHS[f , γ‖r̃i‖]);
10: vi+1 := GALSOLVE[Λi+1,gi+1,vi, γ‖r̃i‖+ νi, γ‖r̃i‖];
11: end loop

Remark 3.2.6. Given vi, the index set Λi+1 is the same as the support of the
next iterand in an approximate steepest descent iteration. Although one could
apply Proposition 2.8.1 on page 37 to analyze its convergence, we use Proposition
3.2.2 on page 46 to get a sharper result. It is clear that the above algorithm
corresponds to the case α = 1 in Proposition 3.2.2. In the next section, we will
explore the possibility α < 1.

Theorem 3.2.7. Let A be s∗-computable, and let f be s∗-admissible for some
s∗ > 0. Then w := GALERKIN[v, ν0, ε] terminates with ‖f − Aw‖ ≤ ε.
Moreover, the procedure ITERATE := GALERKIN with ‖ · ‖? := ‖A · ‖
satisfies the conditions of Theorem 2.6.8 on page 28 for any s ∈ (0, s∗), meaning
that SOLVE presented in Algorithm 2.6.7 on page 28 using this ITERATE
defines an optimal adaptive algorithm for s ∈ (0, s∗).

Proof. From the properties of RES, for any vi determined inside the loop, with
ri := f −Avi, we have νi ≥ ‖ri‖, and either νi ≤ ε or ‖ri− r̃i‖ ≤ δ‖r̃i‖. We have
‖PΛi+1

r̃i‖ ≥ α‖r̃i‖ with α = 1, Λi+1 ⊇ suppvi, and

‖gi+1 −PΛi+1
Avi‖ ≤ ‖PΛi+1

(gi+1 − f)‖+ ‖PΛi+1
(f −Avi)‖ ≤ γ‖r̃i‖+ νi.

As long as νi > ε, from (1− δ)‖r̃i‖ ≤ ‖ri‖ ≤ (1 + δ)‖r̃i‖ and νi ≤ (1 + δ)‖r̃i‖, we
have νi h ‖r̃i‖ h ‖ri‖, and Proposition 3.2.2 shows that |||u− vi+1||| ≤ ρ|||u− vi|||
with some ρ ∈ [0, 1), or νi+1 . ρi−kνk for 0 ≤ k ≤ i+ 1. This proves that the

50 ADAPTIVE GALERKIN METHODS 3.2

loop terminates after a finite number of iterations, say directly after the K-th
call of RES.

As for the conditions of Theorem 2.6.8, recall that we need to prove that for
any s ∈ (0, s∗) and for ε & ν0 ≥ ‖f −Av‖,

suppw . # suppv + ε−1/s|u|1/sAs , |w|As . (# suppv)sε+ |u|As ,

and that the number of arithmetic operations and storage locations required by
this call of GALERKIN can be bounded by an absolute multiple of

ε−1/s|u|1/sAs + # suppv + 1.

These conditions are trivially true for K = 1, and from now on we will assume
that K > 1. For 1 ≤ i < K, from Proposition 2.3.6 on page 18 we have, with
Λ1 := suppv1,

|vi|As . |u|As + (#Λi)
sνi, (3.2.2)

and since #Λi+1−#Λi ≤ # supp r̃i for 1 ≤ i < K, by applying Proposition 2.8.4
on page 38 we have, for 1 ≤ k < K,

#Λk+1 ≤ #Λ1 +
∑k

i=1(#Λi+1 −#Λi)

. #Λ1 +
∑k

i=1 ν
−1/s
i

(
|vi|1/sAs + |u|1/sAs

)
. #Λ1 + ν

−1/s
k |u|1/sAs +

∑k
i=1 #Λi,

(3.2.3)

where in the last line we have used (3.2.2) and the fact that νi is geometrically
decreasing.

We have νi & min{θνi−1, ε} & ε for 1 < i ≤ K. We claim that #Λk+1 . #Λ1+

ν
−1/s
k |u|1/sAs for 1 ≤ k < K, and prove it by induction. Since νi is geometrically

decreasing, using (3.2.3) we infer

#Λk+1 . #Λ1 + ν
−1/s
k |u|1/sAs +

∑k
i=1

(
#Λ1 + ν

−1/s
i−1 |u|

1/s
As

)
. k#Λ1 + ν

−1/s
k |u|1/sAs ,

(3.2.4)

which proves the claim since we have K . 1 by the condition ε & ν0. This claim,
together with (3.2.2) and νi h ε, proves the bounds on # suppw and |w|As .

Now it remains to bound the cost of the algorithm. For 1 ≤ i ≤ K, we have

|vi|1/sAs . |u|1/sAs + (#Λ1)ν
1/s
i , (3.2.5)

3.2 ADAPTIVE GALERKIN ITERATIONS 51

from (3.2.2) with the help of (3.2.4) when K > 1. By Proposition 2.8.4 on
page 38, the cost of the i-th call of RES for 1 ≤ i ≤ K is bounded by

ν
−1/s
i

(
|vi|1/sAs + |u|1/sAs + ν

1/s
i−1(# suppvi + 1)

)
. ν

−1/s
i

(
|u|1/sAs + (#Λi)ν

1/s
i + ν

1/s
i−1(#Λ1 + 1)

)
. ν

−1/s
i |u|1/sAs + (νi−1

νi
)1/s(#Λ1 + 1),

where we used (3.2.2), # suppvi ≤ #Λi . #Λ1 +ν
−1/s
i−1 |u|

1/s
As , and νi . νi−1. Now

taking into account that νi & ε & ν0 & νi−1, and summing over 1 ≤ i ≤ K, we
conclude that the total cost of the K . 1 calls of RES is bounded by an absolute

multiple of ε−1/s|u|1/sAs + #Λ1 + 1.

By Proposition 2.8.4 and (3.2.5), we have supp r̃i . ν
1/s
i |u|1/sAs +#Λ1. The cost

of the i-th iteration with the cost of RES removed, for 1 ≤ i < K, is bounded
by an absolute multiple of

1 + #Λ1 + ν
−1/s
i |u|1/sAs + ν

−1/s
i |vi|1/sAs + #Λi+1c(1 + 2νi

γ‖r̃i‖)

. 1 + #Λ1 + ν
−1/s
i |u|1/sAs ,

where we have used νi h ‖r̃i‖, (3.2.5), (3.2.4), and c : R>0 → R>0 is the non-
decreasing function from Proposition 3.2.4 on page 48. The proof is completed
by summing the above cost over 1 ≤ i < K and using that K . 1.

Remark 3.2.8. Inside the call of [r̃i, νi] := RES[vi, θνi−1, δ, ε] that is made in
GALERKIN, we search an approximation

r̃i,ζ := RHS[f , ζ/2]−APPLY[A,vi, ζ/2]

for ri := f − Avi with a ζ ≤ δ‖r̃i,ζ‖ that is as large as possible in order to
minimize the support of r̃i,ζ outside suppvi. When i > 0, because of the preceding
calls of RHS and GALSOLVE, we have a set Λi ⊃ suppvi and a r̃i−1 with
‖PΛi

ri‖ ≤ εi := γ‖r̃i−1‖. In this remark, we investigate whether it is possible to
benefit from this information to obtain an approximation for the residual with
relative error not exceeding δ whose support extends less outside suppvi.

Let r̃Ii,ζ := PΛi
r̃i,ζ and r̃Ei,ζ := P∇\Λi

r̃i,ζ , and similarly rIi and rEi . From

ζ2 ≥ ‖ri − r̃i,ζ‖2 = ‖rIi − r̃Ii,ζ‖2 + ‖rEi − r̃Ei,ζ‖2

≥ (‖r̃Ii,ζ‖ − εi)
2 + ‖rEi − r̃Ei,ζ‖2,

we have

‖ri − r̃Ei,ζ‖ = (‖rEi − r̃Ei,ζ‖2 + ‖rIi ‖2)
1
2 ≤ (ζ2 − (‖r̃Ii,ζ‖ − εi)

2 + ε2i)
1
2 =: ζ̆ .

52 ADAPTIVE GALERKIN METHODS 3.3

So, alternatively, instead of r̃i,ζ , we may use r̃Ei,ζ as an approximation for ri, and

thus stop the routine RES as soon as νi := ‖r̃Ei,ζ‖+ ζ̆ ≤ ε or ζ̆ ≤ δ‖r̃Ei,ζ‖, and use
r̃Ei,ζ also for the determination of Λi+1. Since for any ζ and r̃i,ζ with r̃Ii,ζ 6= 0 and

ζ < ‖r̃i,ζ‖ it holds that ζ̆‖ri,ζ‖ < ζ‖rEi,ζ‖ if εi is small enough, under this condition
the alternative test is passed more easily. This may even be a reason to decrease
the parameter γ.

The approach discussed in this remark has been applied in the experiments
reported in [30]. �

3.3 Optimal complexity without coarsening of the iterands

Now we come to the main part of this chapter. So far we relied on coarsening of
the iterands to control their support sizes. Below we will show that, after a small
change, GALERKIN produces approximate solutions with optimal convergence
rate without such coarsening.

In the following key lemma, it is shown that for sufficiently small µ and
u ∈ As, for a set Λ as in Lemma 3.2.1 on page 45 that has minimal cardi-
nality, #(Λ\ suppv) can be bounded in terms of ‖f −Av‖ and |u|As only, i.e.,
independently of |v|As and the value of s∗ (cf. (3.2.3) on page 50 and [17, §4.2-
4.3]).

Lemma 3.3.1. Let µ ∈ (0, κ(A)−
1
2) be a constant, v ∈ P , and for some s > 0,

u ∈ As. Then the smallest set Λ ⊃ suppv with

‖PΛ(f −Av)‖ ≥ µ‖f −Av‖

satisfies

#(Λ\ suppv) . ‖f −Av‖−1/s|u|1/sAs . (3.3.1)

Proof. Let λ > 0 be a constant with µ ≤ κ(A)−
1
2 (1 − ‖A‖λ2)

1
2 . Let N be

the smallest integer such that a best N -term approximation uN for u satisfies
‖u− uN‖ ≤ λ|||u− v|||. Since |||u− v||| ≥ ‖A‖− 1

2‖f −Av‖, we have

N . ‖f −Av‖−1/s|u|1/sAs .

With Λ̆ := suppv ∪ suppuN , the solution of PΛ̆AuΛ̆ = PΛ̆f satisfies

|||u− uΛ̆||| ≤ |||u− uN ||| ≤ ‖A‖
1
2‖u− uN‖ ≤ ‖A‖

1
2λ|||u− v|||,

3.3 OPTIMAL COMPLEXITY WITHOUT COARSENING 53

and so by Galerkin orthogonality, |||uΛ̆ − v||| ≥ (1− ‖A‖λ2)
1
2 |||u− v|||, giving

‖PΛ̆(f −Av)‖ = ‖PΛ̆(AuΛ̆ −Av)‖ ≥ ‖A−1‖−
1
2 |||uΛ̆ − v|||

≥ ‖A−1‖−
1
2 (1− ‖A‖λ2)

1
2 |||u− v|||

≥ κ(A)−
1
2 (1− ‖A‖λ2)

1
2‖f −Av‖

≥ µ‖f −Av‖.

Since Λ̆ ⊃ suppv, by definition of Λ we conclude that

#(Λ\ suppv) ≤ #(Λ̆\ suppv) ≤ N . ‖f −Av‖−1/s|u|1/sAs .

Before proceeding further, let us briefly describe how the above lemma can be
used to prove the optimal convergence rate of the adaptive algorithm in an ideal
setting. For some constant µ ∈ (0, κ(A)−

1
2) and i ∈ N0, we define Λi+1 to be the

smallest set with ‖PΛ(f −AuΛi
)‖ ≥ µ‖f −AuΛi

‖, where Λ0 := ∅ and uΛi
is the

Galerkin solution in the subspace `2(Λi). By Lemma 3.2.1 on page 45, we have
a fixed error reduction: |||u − uΛi+1

||| ≤ ρ|||u − uΛi
||| for i ∈ N0, with a constant

ρ < 1. Now assuming that u ∈ As with some s > 0, by the preceding lemma and
the geometric decrease of ‖f −AuΛi

‖ h |||u− uΛi
|||, for i ∈ N0 we have

#Λk =
∑k−1

i=0 #(Λi+1 \ Λi) .
∑k−1

i=0 ‖f −AuΛi
‖−1/s|u|1/sAs

. ‖f −AuΛk−1
‖−1/s|u|1/sAs ,

or, ‖u − uΛk
‖ . (#Λk)

−s|u|As , which, in view of the assumption u ∈ As, is
modulo some constant factor the best possible bound on the error.

In view of realizing the above discussed idea for an algorithm with an inexact
evaluation of the residuals and an inexact solution of the Galerkin systems, we
will modify Algorithm 3.2.5 on page 49 so that in Line 8, the set Λi+1 ⊃ suppvi is
chosen to be such that ‖PΛi+1

r̃i‖ ≥ α‖r̃i‖ with #(Λi+1 \suppvi) minimal modulo
some constant factor. We define the following routine to perform the latter task.

Algorithm 3.3.2 Index set expansion RESTRICT[Λ, r, α] → Λ̃

Input: Λ ⊂ ∇, #Λ <∞, r ∈ P , α ∈ (0, 1).
Output: Λ̃ ⊇ Λ and ‖PΛ̃r‖ ≥ α‖r‖.
1: r̃ := COARSE[r|∇\Λ,

√
1− α2‖r‖];

2: Λ̃ := Λ ∪ supp r̃.

Lemma 3.3.3. The output of Λ̃ := RESTRICT[Λ, r, α] satisfies Λ̃ ⊇ Λ and
‖PΛ̃r‖ ≥ α‖r‖. Moreover, the output satisfies

#Λ̃−#Λ . min{#Λ̆−#Λ : ‖PΛ̆r‖ ≥ α‖r‖ and ∇ ⊃ Λ̆ ⊇ Λ}, (3.3.2)

54 ADAPTIVE GALERKIN METHODS 3.3

and the number of arithmetic operations and storage locations needed for this
routine can be bounded by an absolute multiple of #Λ + # supp r + 1.

Proof. We have ‖r − PΛ̃r‖ = ‖r|∇\Λ − r̃‖ ≤
√

1− α2‖r‖, which is equivalent
to ‖PΛ̃r‖ ≥ α‖r‖. The work bound immediately follows from Lemma 2.6.4 on
page 26. Since Λ ∩ supp r̃ = ∅, by applying Lemma 2.6.4 we have

#Λ̃−#Λ = # supp r̃ . min{#Λ̆ : ‖r|∇\Λ −PΛ̆r|∇\Λ‖ ≤
√

1− α2‖r‖}
= min{#Λ̆ : ‖r−PΛ̆∪Λr‖ ≤

√
1− α2‖r‖},

and observing that the minimum is obtained when Λ̆ ∩ Λ = ∅, the proof is
completed.

Now we present our modification of Algorithm 3.2.5. Recall that Algorithm
3.2.5 was intended for a reduction of the error with a fixed factor, to be used inside
the algorithm SOLVE from Chapter 2, i.e., Algorithm 2.6.7 on page 28. The
modification given below will be an optimal solver in its own as the forthcoming
Theorem 3.3.5 shows.

Algorithm 3.3.4 Method SOLVE[ε] → vi without coarsening of the iterands

Parameters: Let 0 < δ < α < 1 and 0 < γ < 1
6
κ(A)−

1
2 (α − δ). Let θ > 0 be a

fixed constant, and let ν0 > 0 and v = 0.
Input: ε > 0.
Output: vi ∈ P with ‖f −Avi‖ ≤ ε.
Description: The body of this algorithm is identical to Algorithm 3.2.5 on

page 49, except that we replace the statement in Line 8 by
Λi+1 := RESTRICT[Λi, r̃i, α];

Using perturbation arguments, we will prove that SOLVE has optimal com-
putational complexity.

Theorem 3.3.5. Let A be s∗-computable, and let f be s∗-admissible for some
s∗ > 0. Then uε := SOLVE[ε] terminates with ‖f −Auε‖ ≤ ε. In addition, let

the parameters inside SOLVE satisfy α+δ
1−δ < κ(A)−

1
2 . If ν0 h ‖f‖ & ε, and for

some s < s∗, u ∈ As, then suppuε . ε−1/s|u|1/sAs and the number of arithmetic
operations and storage locations required by the call is bounded by some absolute
multiple of the same expression.

Proof. By the same reasoning in the proof of Theorem 3.2.7 on page 49, SOLVE[ε]
terminates say, after K iterations, and with some ρ ∈ (0, 1), we have

νi . ρi−kνk for 0 ≤ k ≤ i ≤ K. (3.3.3)

3.4 NUMERICAL EXPERIMENT 55

Here we will use the notations from the proof of Theorem 3.2.7. With µ = α+δ
1−δ ,

for 1 ≤ i < K let Λ̆i+1 ⊃ suppvi be the smallest set with ‖PΛ̆i+1
ri‖ ≥ µ‖ri‖.

Then

µ‖r̃i‖ ≤ µ‖ri‖+ µδ‖r̃i‖ ≤ ‖PΛ̆i+1
ri‖+ µδ‖r̃i‖ ≤ ‖PΛ̆i+1

r̃i‖+ (1 + µ)δ‖r̃i‖

or ‖PΛ̆i+1
r̃i‖ ≥ α‖r̃i‖. By the property (3.3.2) of RESTRICT we have #(Λi+1 \

suppvi) . #(Λ̆i+1 \ suppvi). Since µ < κ(A)−
1
2 by the condition on α and

δ, and ‖f − Avi‖ h νi, an application of Lemma 3.3.1 on page 52 shows that

#(Λ̆i+1 \ suppvi) . ν
−1/s
i |u|1/sAs .

Since with Λ1 := ∅, suppvi ⊆ Λi and Λi ⊂ Λi+1, for 1 ≤ k ≤ K by (3.3.1) we
have

suppvk ≤ #Λk =
k−1∑
i=1

#(Λi+1\Λi) . (
k−1∑
i=1

ν
−1/s
i)|u|1/sAs . ν

−1/s
k−1 |u|

1/s
As . (3.3.4)

From |vk|As . |u|As + (# suppvk)
s‖vk − u‖ (Proposition 2.3.6 on page 18), we

infer that |vk|As . |u|As .
By Proposition 2.8.4 on page 38, the cost of the i-th call of RES for 1 ≤ i ≤ K

is bounded by an absolute multiple of

ν
−1/s
i

(
|vi|1/sAs + |u|1/sAs + ν

1/s
i−1(# suppvi + 1)

)
. ν

−1/s
i |u|1/sAs ,

where we used (3.3.4), and 1 . ν
−1/s
k−1 |u|

1/s
As by νk−1 . ν0 . ‖f‖ . |u|As .

The cost of the k-th call for k < K of the subroutines RESTRICT, RHS
or GALSOLVE is bounded by an absolute multiple of #Λk+1 + # supp r̃i .
ν
−1/s
k |u|1/sAs , ν

−1/s
k |u|1/sAs , or ν

−1/s
k (|vk|1/sAs + |u|1/sAs) + #Λk+1 . ν

−1/s
k |u|1/sAs , respec-

tively. From (3.3.3) and νK & min{νK−1, ε} & ε by Proposition 2.8.4, where the
second inequality follows from νK−1 > ε when K > 0, and by assumption when
K = 0, the proof is completed.

3.4 Numerical experiment
We consider the variational formulation of the following problem of order 2t = 2
on the interval [0, 1], i.e., n = 1, with periodic boundary conditions

−∆u+ u = f on R/Z. (3.4.1)

We define the right-hand side f by f(v) = 4v(1
2
) +

∫ 1

0
g(x)v(x)dx, with

g(x) = (16π2 + 1) cos(4πx)− 4 +

{
2x2, if x ∈ [0, 1/2),
2(1− x)2, if x ∈ [1/2, 1],

(3.4.2)

56 ADAPTIVE GALERKIN METHODS 3.4

so that the solution u is given by

u(x) = cos(4πx) +

{
2x2, if x ∈ [0, 1/2),
2(1− x)2, if x ∈ [1/2, 1],

(3.4.3)

see Figure 3.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

x

Figure 3.1: The solution u is the sum of both functions illustrated.

We use the periodized B-spline wavelets of order d = 3 with d̃ = 3 vanish-
ing moments from [21] normalized in the H1(0, 1)-norm. The solution u is in
Hs+1(R/Z) only for s < 1

2
. On the other hand, since u can be shown to be in

Bs+1
p (Lp(R/Z)) for any s > 0 with 1

p
= 1

2
+ s, we deduce that the corresponding

discrete solution u is in As for any s < d−t
n

= 2.
Each entry of the infinite stiffness matrix A can be computed in O(1) opera-

tions. By applying the compression rules from [86], which are quoted in Theorem
7.3.3 on page 127, we see that A is s∗-compressible with s∗ = t+ d̃ = 4.

For developing a routine RHS, we split f = 〈f1, ·〉L2 + f2, where f1(x) =
(16π2 + 1) cos(4πx) − 4. Correspondingly, we split f = f1 + f2, and given a
tolerance ε, we approximate both infinite vectors within tolerance ε/2 by, for
suitable `1(ε), `2(ε), dropping all coefficients with indices λ with |λ| > `1(ε) or
|λ| > `2(ε), respectively.

From

|〈ψλ, f1〉L2| ≤ ‖ψλ‖L1(0,1) inf
p∈P2

‖f1 − p‖L∞(suppψλ),

‖ψλ‖L1(0,1) ≤ diam(suppψλ))
1
2‖ψλ‖L2(0,1),

diam(suppψλ) = 5 · 2−|λ|,
‖ψλ‖L2(0,1) = [4|λ|‖ψ′‖2

L2(R)/‖ψ‖2
L2(R) + 1]−1,

3.4 NUMERICAL EXPERIMENT 57

where ψ is the “mother wavelet”, #{λ : |λ| = k} = 2k, and infp∈P2 ‖f1 −
p‖L∞(suppψλ) ≤ (π

4
diam(suppψλ))

3‖f ′′′1 ‖L∞(0,1)/3! (Jackson estimate), we find an

upper bound for the error
√∑

|λ|>`1(ε) |〈ψλ, f1〉L2|2 which is h 2−4`1(ε). Setting

this upper bound equal to ε/2, and solving for `1(ε) gives an approximation for
f1 of length h 2`1(ε) h ε−1/4. Note that in view of the admissibility assumption
we made on f , a vector length h ε−1/2 would have been sufficient. Such a length
would have been found with wavelets that have 1 vanishing moment.

From

|〈ψλ, f2〉| ≤ (4 + ‖g − f1‖L1(suppψλ))‖ψλ‖L∞(0,1),

‖g − f1‖L1(suppψλ) ≤ 5 · 2−|λ|,
‖ψλ‖L∞(0,1) = [2|λ|/2‖ψ‖L∞(R)/‖ψ‖L2(R)]‖ψλ‖L2(0,1),

#{|λ| = k :1
2

is an interior point of suppψλ} = 9,

and the fact that 〈ψλ, f2〉 vanishes when λ is not in any of these sets, we find

an upper bound for the error
√∑

|λ|>`2(ε) |〈ψλ, f2〉|2 which is h 2−`2(ε)/2. Setting

this upper bound equal to ε/2 and solving for `2(ε) gives an approximation for
f2 of length ≤ 9(`2(ε) + 1) = O(| log(ε)|+ 1), which is asymptotically even much
smaller than the bound we found in the f1 case. Since each entry of f can be
computed in O(1) operations, in view of Definition 2.7.4 on page 30, we conclude
that f is s∗-admissible with s∗ = 4.

We will compare the results of Algorithm 3.3.4 with those of Algorithm 2.6.7
on page 28 that uses the subroutine RICHARDSON from Algorithm 2.7.6 on
page 31 as ITERATE, which we refer to as being the CDD2 method.

We tested our Algorithm 3.3.4 or CDD2 with parameters α = 0.4, δ =
0.012618, and γ = 0.009581, or K = 5 and θ = 2.5, respectively. Inside the
ranges where the methods are proven to be of optimal computational complexity,
these parameters are close to the values that give the best quantitative results.
Actually, since these ranges result from a succession of worst case analyses, we
may expect that outside them, i.e., concerning Algorithm 3.3.4 for larger α, δ
and γ, more efficient algorithms are obtained. The numerical results, given in
Figure 3.2 on the next page, illustrate the optimal computational complexity of
both Algorithm 3.3.4 and CDD2. Note that the time measurements do not start
at zero, but after 100 = 1 second. The results show that in this example the
new method needs less than a factor 1

10
in computing time to achieve the same

accuracy.

58 ADAPTIVE GALERKIN METHODS 3.4

100 101 102 103

10!3

10!2

10!1

100

101

1

2

wall clock time

no
rm

 o
f r

es
id

ua
l

CDD2
New method

Figure 3.2: Convergence histories

Chapter 4
Using polynomial preconditioners

4.1 Introduction
In this chapter, we carry on with considering the linear equation

Au = f , (4.1.1)

where A : `2 → `2 is an SPD matrix and f ∈ `2. As we saw in the foregoing
chapters, the quantitative properties of the adaptive algorithms for solving this
system depend on the condition number κ(A) := ‖A‖‖A−1‖, which in turn
depends on the underlying wavelet basis. While constructing a wavelet basis
with favourable quantitative properties is a rather delicate task, preconditioning
the equation (4.1.1) without any reference to the original continuous problem
seems an attractive possibility to improve the conditioning of the system. In this
chapter, with a preconditioner S : `2 → `2 such that κ(SA) < κ(A), instead of
(4.1.1) we will consider the following linear equation,

SAu = Sf . (4.1.2)

Apart from the diagonal one, perhaps the simplest preconditioner is the inverse
of a finite section of the stiffness matrix A. One could use the LU -decomposition
to preserve the symmetry. For instance, when the coarsest level functions of
the wavelet basis adversely affect the condition of the system harmfully, one can
invert the stiffness matrix restricted to the coarsest level and use the inverse as
a preconditioner. Since we can approximate the action of the stiffness matrix,
the next idea would be to use polynomial preconditioners. In this chapter, we
investigate the use of polynomial preconditioners.

This chapter is organized as follows. In the next section, we recall some
results on polynomial preconditioners and put forward ways to use them in our

59

60 USING POLYNOMIAL PRECONDITIONERS 4.2

setting. Then in Section 4.3, we show that the adaptive wavelet algorithms with
polynomial preconditioners are again of optimal computational complexity.

4.2 Polynomial preconditioners
In the context of linear algebraic equations, polynomial preconditioners have been
studied extensively, see e.g. [1, 58, 70]. In this section, we recall some of the
results regarding common polynomial preconditioners and analyze them in our
setting.

Now the preconditioning matrix S is a polynomial in A, namely, we assume
that S = p(A) for some polynomial p of degree k ≥ 0. p(A) commutes A, thus
p(A)A is symmetric. Moreover, if p is positive on the spectrum of A, p(A)A is
positive definite. To be more practical, if

‖I− p(A)A‖ ≤ ρ for some ρ < 1, (4.2.1)

then p(A)A is positive definite, and we have the bound

κ[p(A)A] ≤ 1 + ρ

1− ρ
. (4.2.2)

Neumann series polynomials

A simple choice for p is a polynomial based on Neumann series. With some
ω ∈ (0, 2

‖A‖) and N := I− ωA, we have

(ωA)−1 = I + N + N2 + . . . ,

and truncating this series we define a polynomial preconditioner

pk(A) := ω(I + N + . . .+ Nk). (4.2.3)

One easily identifies the application of pk(A) with k iterations of a damped
Richardson method. As for (4.2.1), we have

‖I− pk(A)A‖ = ‖ω(Nk+1 + Nk+2 + . . .)A‖ = ‖Nk+1‖ ≤ ‖N‖k+1.

Min-max polynomials

If the coefficients of the preconditioning polynomial p are given, in general the
action of p(A) is computed using k applications of A. Therefore we shall try to

4.2 POLYNOMIAL PRECONDITIONERS 61

minimize the condition number (4.2.2) keeping k as small as possible. By first
complexifying `2 and then applying the spectral theorem, cf. [69], we have

‖p(A)Ax‖2 =

∫
σ(A)

[p(λ)λ]2dEx,x(λ) ≤ ‖x‖2 · max
λ∈σ(A)

[p(λ)λ]2, (4.2.4)

where σ(A) is the spectrum and E is the spectral decomposition of A. This
immediately implies ‖p(A)A‖ ≤ max

λ∈σ(A)
|p(λ)λ|. Similarly, we can estimate

‖[p(A)A]−1‖ ≤ max
λ∈σ(A)

∣∣[p(λ)λ]−1
∣∣ =

(
min
λ∈σ(A)

|p(λ)λ|
)−1

,

where we assumed that p is nonzero on the spectrum of A. Now let σ(A) ⊂ [c, d]
with c, d > 0. Then we have

κ[p(A)A] ≤
maxλ∈[c,d] |p(λ)λ|
minλ∈[c,d] |p(λ)λ|

for p nonzero on [c, d]. (4.2.5)

We consider the problem of minimizing the above upper bound over the polyno-
mials of degree k. Recall the following result from [1, 58].

Lemma 4.2.1. Let pk be the polynomial defined by

pk(λ)λ = 1−
Ck(

d+c−2λ
d−c)

Ck(
d+c
d−c)

, (4.2.6)

where Ck is the k-th Chebyshev polynomial of the first kind. Then

maxλ∈[c,d] |pk(λ)λ|
minλ∈[c,d] |pk(λ)λ|

=
|Ck(d+cd−c)|+ 1

|Ck(d+cd−c)| − 1
≤

maxλ∈[c,d] |q(λ)λ|
minλ∈[c,d] |q(λ)λ|

for all q ∈ Pk[c, d], with equality if and only if q is a scalar multiple of pk.

With [c, d] as above, estimating the norm in (4.2.1) as in (4.2.4), we get

‖I− p(A)A‖ ≤ max
λ∈[c,d]

|1− p(λ)λ|. (4.2.7)

It turns out that the same polynomial pk from (4.2.6) minimizes the upper bound
(4.2.7) over Pk[c, d], and these polynomials are called the min-max polynomi-
als. Furthermore, with the min-max polynomial pk we have ‖I − pk(A)A‖ ≤
|Ck(d+cd−c)|

−1 < 1 for k ≥ 0, ensuring the positive definiteness of pk(A)A.
For min-max polynomials, the application of pk(A) is equivalent to k iterations

of the Chebyshev method. In light of this fact, the coefficients of the polynomial
pk can be computed, e.g. using three term recurrences.

62 USING POLYNOMIAL PRECONDITIONERS 4.2

Least-squares polynomials

An alternative family of preconditioning polynomials can be obtained by mini-
mizing some quadratic norm of 1−p(λ)λ instead of the uniform norm, cf. (4.2.7).
With a positive weight function w : [c, d] → R>0, we consider the following mini-
mization problem∫ d

c

|1− p(λ)λ|2w(λ)dλ→ min over p ∈ Pk[c, d]. (4.2.8)

We call the solution of this problem a least-squares polynomial. Unlike the min-
max polynomial, the least-square polynomial is biased in its suppression of the
eigenvalues of A. For example, when w ≡ 1, the larger eigenvalues are mapped
closer to 1 than the small ones. If the eigenvalue distribution of A were known,
one could choose w to emphasize the dense parts of the spectrum.

We recall the following result from [58].

Lemma 4.2.2. Let si ∈ Pk+1[c, d], 0 ≤ i ≤ k+ 1, be orthonormal with respect to
the weight function w, normalized so that si(0) > 0 for 0 ≤ i ≤ k + 1. Assume
that each si, 0 ≤ i ≤ k + 1, obtains its maximum on [c, d] at c. Then with
Jk+1(µ, λ) :=

∑k+1
j=0 sj(µ)sj(λ), the solution pk to the problem (4.2.8) is given by

pk(λ)λ = 1− Jk+1(0, λ)

Jk+1(0, 0)
, (4.2.9)

and pk(λ) > 0 for λ ∈ [c, d].

This lemma is applicable to a wide range of weights, including the Jacobi
weights

wα,β(λ) = (d− λ)α(λ− c)β,

when α, β ≥ −1
2
. In this case, the function Jk+1(0, ·) is a shifted and scaled Jacobi

polynomial, cf. [1]. Since the polynomial is known explicitly, the norm (4.2.1)
can be estimated by using e.g. the estimate (4.2.7).

Approximate preconditioning

Since it is not possible to compute the application of A exactly, the action of
the polynomial preconditioner p(A) must be approximated. For the approximate
application of an s∗-computable matrix A with s∗ > 0, we distinguish between
two possibilities: (a) we can use the subroutine APPLY; or (b) we can apply
some approximation Aj as in Definition 2.7.8. Let pk be the polynomial given

4.2 POLYNOMIAL PRECONDITIONERS 63

by pk(λ) = a0 + a1λ + . . . + akλ
k and let S = pk(A). We consider the following

algorithm which implements possibility (a).

Algorithm 4.2.3 Polynomial preconditioner PRECa[r, ξ] → d

Parameters: Let εi, i = 1, . . . , k, be such that
∑k

i=1 εi‖A‖i−1 ≤ ξ‖r‖ and εi &
ξ‖r‖.

Input: Let r ∈ P and ξ > 0.
Output: d ∈ P and ‖Sr− d‖ ≤ ξ‖r‖.
1: b̃k := akr;
2: for i = k, . . . , 1 do
3: b̃k−1 := ai−1r + APPLY[A, b̃i, εi];
4: end for
5: d := b̃0.

Correspondingly, possibility (b) suggests the following algorithm.

Algorithm 4.2.4 Polynomial preconditioner PRECb[r, ξ] → d

Parameters: Let J satisfy ‖A −AJ‖
∑k

i=1 i|ai|‖A‖i−1 ≤ ξ and 2J . ξ−1/s, for
some s > 0, with AJ a compressed matrix as in Definition 2.7.8.

Input: Let r ∈ P and ξ > 0.
Output: d ∈ P and ‖Sr− d‖ ≤ ξ‖r‖.
1: b̃k := akr;
2: for i = k, . . . , 1 do
3: b̃k−1 := ai−1r + AJ b̃i;
4: end for
5: d := b̃0.

Definition 4.2.5. A subroutine PREC[r, ξ] → d is said to have linear complex-
ity when for any ξ > 0 and a finite dimensional vector r ∈ `2, d := PREC[r, ξ]
terminates with ‖Sr − d‖ ≤ ξ‖r‖, and for a non-increasing function c : R>0 →
R>0, #suppd . c(ξ)#supp r and the number of arithmetic operations and stor-
age locations required by the call being bounded by an absolute multiple of
c(ξ)#supp r + 1. �

Proposition 4.2.6. Let A be s∗-computable with some s∗ > 0. Then the sub-
routines PRECa[r, ξ] and PRECb[r, ξ] are both of linear complexity.

Proof. For the subroutine PRECa, the choice εi = ξ‖r‖
k‖A‖i−1 , 1 ≤ i ≤ k, satisfies

the assumptions on the parameters εi. For the subroutine PRECb, we can choose
J satisfying the first condition and ‖A−AJ‖ & ξ. Choosing s such that s < s∗,

64 USING POLYNOMIAL PRECONDITIONERS 4.2

we have 2−Js & ξ, thus J satisfies the second condition. With bk := akr, define
bi−1 := ai−1r + Abi recursively for i = k, . . . , 1. Note that Sr = b0.

We consider PRECa first. From

b̃i−1 − bi−1 = APPLY[A, b̃i, εi]−Abi

= APPLY[A, b̃i, εi]−Ab̃i + A(b̃i − bi),

we have
‖b̃i−1 − bi−1‖ ≤ εi + ‖A‖‖b̃i − bi‖ for i = 1, . . . , k,

giving ‖d− Sr‖ = ‖b̃0 − b0‖ ≤
∑k

i=1 εi‖A‖i−1 ≤ ξ‖r‖.
Taking into account that ‖APPLY[A, ·, ε]‖ ≤ ‖A‖‖ · ‖+ ε for any ε > 0, and

εi . ξ‖r‖, we can derive that ‖b̃i‖ . ‖r‖ where the constant absorbed by ”.”
possibly depends on ξ. For any x ∈ As, from (2.3.3) we have

|x|As = sup
N
N s‖x− BN(x)‖ ≤ (# suppx)s‖x‖.

Accordingly, we infer

supp b̃i−1 . # supp r + ε
−1/s
i |b̃i|1/sAs . # supp r + ε

−1/s
i ‖b̃i‖1/s(# suppbi),

for i = 1, . . . , k. Employing this bound for i = k, . . . , 1, we obtain

suppd = # supp b̃0

. # supp r
(
1 + ε

−1/s
1 ‖r‖1/s + . . .+ ε

−1/s
1 . . . ε

−1/s
k ‖r‖k/s

)
.

We employ the assumption εi & ξ‖r‖ or ε−1
i ‖r‖ . ξ−1 to conclude the first part

of the proof.
Now we turn to the subroutine PRECb. We have for i = 0, . . . , k − 1

‖b̃i‖ ≤ |ai|‖r‖+ ‖AJ‖‖b̃i+1‖ ≤ |ai|‖r‖+ ‖A‖‖b̃i+1‖,

or ‖b̃i‖ ≤ ‖r‖
∑k

j=i |aj|‖A‖j−i. On the other hand, we have for i = 1, . . . , k

‖b̃i−1 − bi−1‖ = ‖AJ b̃i −Abi‖ ≤ ‖AJ −A‖‖b̃i‖+ ‖A‖‖b̃i − bi‖
≤ ‖AJ −A‖‖r‖

∑k
j=i |aj|‖A‖j−i + ‖A‖‖b̃i − bi‖.

This yields

‖d− Sr‖ = ‖b̃0 − b0‖ ≤ ‖AJ −A‖‖r‖
k∑
i=1

‖A‖i−1

k∑
j=i

|aj|‖A‖j−i

≤ ‖AJ −A‖‖r‖
k∑
j=1

j∑
i=1

|aj|‖A‖j−1 ≤ ‖AJ −A‖‖r‖
k∑
j=1

j|aj|‖A‖j−1,

4.3 PRECONDITIONED ADAPTIVE ALGORITHM 65

where by assumption the last expression is bounded by ξ‖r‖.
For the support size, we have # suppbi−1 . # supp r + 2J# suppbi, giving

that

suppd = # suppb0 . (1 + 2J + . . .+ 2Jk)# supp r . 2Jk# supp r.

Finally, we use the assumption 2J . ξ−1/s to complete the proof.

4.3 Preconditioned adaptive algorithm
Throughout this section, we assume that pk is a polynomial of degree k such that
S = pk(A) is positive definite and PREC[r, ξ] → d is an algorithm of linear
complexity to approximate the action of S. We analyze here the preconditioning
of the algorithm from the preceding chapter. First we define the routine for
approximately solving the preconditioned Galerkin system PΛSAuΛ = PΛSf ,
with Λ ⊂ ∇.

Algorithm 4.3.1 Galerkin system solver GALSOLVE[Λ,vΛ, ν, η, ε] → wΛ

Parameters: Let A be s∗-computable for some s∗ > 0. With Aj the compressed
matrices from Definition 2.7.8, let J be such that

% := ‖SA− pk(AJ)AJ‖‖(SA)−1‖ ≤ α%ε

η+(1−α%)ε
.

Let αd, αr, αg, α% > 0 be constants such that αd+αr+αg+α% = 1 and α% ≤ 1
2
.

Input: Let Λ ⊂ ∇, #Λ < ∞, vΛ ∈ `2(Λ), ε > 0, ν ≥ ‖f − AvΛ‖ and η ≥
‖PΛS(f −AvΛ)‖.

Output: wΛ ∈ `2(Λ) and ‖PΛS(f −AwΛ)‖ ≤ ε.
1: B := PΛ

1
2
[pk(AJ)AJ + pk(A

∗
J)A

∗
J] IΛ;

2: r̃ := RHS[f , εr

2
]−APPLY[A,vΛ,

εr

2
] with εr := αrνε

αdε+ν‖S‖
;

3: d̃ := PΛ

(
PREC[r̃, αdε

ν
]
)
;

4: To find an x̃ with ‖d̃ − Bx̃‖ ≤ αgε, apply a suitable iterative method for
solving Bx = d̃, e.g., Conjugate Gradients or Conjugate Residuals;

5: wΛ := vΛ + x̃.

Proposition 4.3.2. Let A be s∗-computable, and let f be s∗-admissible for some
s∗ > 0. Then wΛ := GALSOLVE[Λ,vΛ, ν, η, ε] terminates with ‖PΛS(f −
AwΛ)‖ ≤ ε, and for any s < s∗, the number of arithmetic operations and storage

locations required by the call is bounded by an absolute multiple of ε−1/s(|vΛ|1/sAs +

|u|1/sAs) + c(η/ε)#Λ, with c : R>0 → R>0 being some non-decreasing function.

66 USING POLYNOMIAL PRECONDITIONERS 4.3

Proof. Since the proof of Proposition 3.2.4 works for this proposition with slight
adjustments, we comment here only on some points. From ‖SA− pk(AJ)AJ‖ ≤
%‖(SA)−1‖−1, we imply that B is SPD, and that κ(B) . 1 uniformly in η and ε.
To prove the first claim of the theorem, one can use

‖PΛS(f −Aw)− d‖ = ‖PΛS(f −Aw − r̃) + PΛSr̃− d‖ ≤ ‖S‖εr + ξ‖r̃‖,

and ‖r̃‖ ≤ ν + εr. B is sparse, and thus the work bound follows.

Algorithm 4.3.3 Preconditioned adaptive method SOLVE[ν0, ε] → vi

Parameters: Let α, δ, and ξ be some positive constants such that with δ̃ :=
δ‖S‖+ξ

‖S−1‖−1−ξ , 0 < δ̃ < α < 1 and α+δ̃
1−δ̃ < κ(SA)−

1
2 . Let 0 < γ < 1

3
κ(SA)−

1
2 (α− δ̃)

and θ > 0 be constants.
Input: Let ν0 & ε > 0.
Output: vi ∈ P and ‖f −Avi‖ ≤ νi ≤ ε.
1: i := 0, v1 := 0;
2: loop
3: i := i+ 1;
4: [r̃i, νi] := RES[vi, θνi−1, δ, ε];
5: if νi ≤ ε then
6: Terminate the subroutine.
7: end if
8: d̃i := PREC[r̃i, ξ];
9: Λi+1 := RESTRICT[suppvi, d̃i, α];

10: ηi := ‖d̃i‖+ (ξ + δ‖S‖)‖r̃i‖;
11: vi+1 := GALSOLVE[Λi+1,vi, νi, ηi, γ‖d̃i‖];
12: end loop

We now define the preconditioned adaptive wavelet solver.

Theorem 4.3.4. Let A be s∗-computable, and let f be s∗-admissible for some
s∗ > 0. Then uε := SOLVE[ν0, ε] terminates with ‖f −Auε‖ ≤ ε. Moreover, if

ν0 h ‖f‖ & ε, and for some s < s∗, u ∈ As, then # suppuε . ε−1/s|u|1/sAs and
the number of arithmetic operations and storage locations required by the call is
bounded by some absolute multiple of the same expression.

Proof. From the properties of RES, for any vi determined inside the loop, with
ri := f − Avi, we have νi ≥ ‖ri‖, and either νi ≤ ε or ‖ri − r̃i‖ ≤ δ‖r̃i‖.
Moreover, we have νi & min{θνi−1, ε} & ε for i ≥ 1. Now suppose that for an
i > 0, RES terminates with νi > ε and thus with ‖ri − r̃i‖ ≤ δ‖r̃i‖. Then from

4.3 PRECONDITIONED ADAPTIVE ALGORITHM 67

(1− δ)‖r̃i‖ ≤ ‖ri‖ ≤ (1 + δ)‖r̃i‖ and νi ≤ (1 + δ)‖r̃i‖, we have νi h ‖r̃i‖ h ‖ri‖,
and

‖Sri − d̃i‖ = ‖S(ri − r̃i) + Sr̃i − d̃i‖ ≤ ‖S‖δ‖r̃i‖+ ξ‖r̃i‖,

so ηi is an upper bound on ‖Sri‖. Furthermore, we have

‖r̃i‖ ≤ ‖S−1‖‖Sr̃i‖ ≤ ‖S−1‖
(
‖d̃i‖+ ξ‖r̃i‖

)
,

implying that ‖Sri − d̃i‖ ≤ δ̃‖d̃i‖ and ηi ≤ (1 + δ̃)‖d̃i‖. Similarly to the above
case with νi, we now infer ηi h ‖d̃i‖ h ‖Sri‖, and since ‖Sri‖ h ‖ri‖, we have

ηi h νi. With the norm |||·||| := 〈SA·, ·〉 1
2 which is equivalent to the standard norm

‖·‖ on `2, Proposition 3.2.2 shows that |||u−vi+1||| ≤ ρ|||u−vi||| for some ρ ∈ [0, 1),
or νi+1 . ρi−kνk for 0 ≤ k ≤ i+ 1. This proves that the loop terminates after a
finite number of iterations, say directly after the K-the call of RES.

Since PREC is of linear complexity we have # supp d̃i . # supp r̃i, and the
cost of the i-th call of PREC is of order # supp r̃i + 1. The rest of the proof is
completely analogous to the analysis in the proof of Theorem 3.3.5.

68 USING POLYNOMIAL PRECONDITIONERS 4.3

Chapter 5
Adaptive algorithm for nonsymmetric and
indefinite elliptic problems

5.1 Introduction
Let H be a real Hilbert space and let H′ denote its dual. Given a boundedly
invertible linear operator L : H → H′ and a linear functional f ∈ H′, we consider
the problem of finding u ∈ H such that

Lu = f.

As an example of H one can think of the Sobolev space H t on a domain or
manifold, possibly incorporating essential boundary conditions. Then the weak
formulation of (scalar) linear differential or integral equations of order 2t leads to
the above type of equations.

Let Ψ = {ψλ ∈ H : λ ∈ ∇} be a Riesz basis of wavelet type for H with a
countable index set ∇. We consider Ψ formally as a column vector whose entries
are elements of H. Let u = uTΨ with u a column vector in `2 := `2(∇). Then, as
we already have seen, the above problem is equivalent to finding u ∈ `2 satisfying
the infinite matrix-vector system

Lu = f , (5.1.1)

where L := 〈ψλ, Lψµ〉λ,µ∈∇ : `2 → `2 is boundedly invertible and f := 〈f, ψλ〉λ∈∇ ∈
`2. Here 〈·, ·〉 denotes the duality product on H×H′.

In the foregoing chapters, we have encountered a number of adaptive methods
for solving the above type of equations. The methods apply under the condition
that L is symmetric, positive definite (SPD), which is equivalent to 〈Lv,w〉 =
〈v, Lw〉, v, w ∈ H, and 〈Lv, v〉 & ‖v‖2

H, v ∈ H, i.e., that L is self-adjoint and

69

70 EXTENSION TO STRONGLY ELLIPTIC OPERATOR EQUATIONS 5.2

H-elliptic. For the case that L does not have both properties, as was suggested
in [18], one can reformulate Lu = f as an equivalent well-posed infinite matrix-
vector problem with a symmetric, positive definite system matrix, as via the
normal equations, or, in case the equation represents a saddle point problem, by
using the reformulation as a positive definite system introduced in [10].

Throughout this chapter, we will consider the operators of type L = A + B
where A is self-adjoint and H-elliptic, and B is compact. Now in general L is
no longer SPD, hence the above mentioned adaptive wavelet methods cannot
be applied directly. One can consider the normal equation LTLu = LT f ; how-
ever, the main disadvantage of this approach is that the condition number of
the system is squared, while the quantitative properties of the methods depend
sensitively on the conditioning of the system. In this chapter, we will modify
the adaptive wavelet algorithm from Chapter 3 so that it applies directly to the
system Lu = f , avoiding the normal equations. The analysis in Chapter 3 ex-
tensively uses the Galerkin orthogonality, which in the present case has to be
replaced by only a quasi-orthogonality property. It should be mentioned that this
quasi-orthogonality property has been used in [62] in a convergence proof of an
adaptive finite element method. By proving the quasi-orthogonality property for
the present general setting and extending the complexity analysis in Chapter 3,
we will show that our algorithm has optimal computational complexity.

This chapter is organized as follows. In the following section, we derive results
on Ritz-Galerkin approximations to the exact solution, and in the last section,
the adaptive wavelet algorithm is constructed and analyzed.

5.2 Ritz-Galerkin approximations
Let H ↪→ Y be separable real Hilbert spaces with compact embedding, and let
a : H×H → R and b : Y ×H → R be bounded bilinear forms. We assume that
the bilinear form a is symmetric and elliptic, which implies that ||| · ||| := a(·, ·) 1

2

is an equivalent norm on H, i.e.,

|||v||| h ‖v‖H v ∈ H. (5.2.1)

In particular, the operator A : H → H′ defined by 〈Av,w〉 = a(v, w) for v, w ∈ H,
is boundedly invertible. Moreover, since B : H → H′ defined by 〈Bv,w〉 = b(v, w)
for v, w ∈ H, is compact, the linear operator L := A+B is a Fredholm operator
of index zero. Therefore, assuming that L is injective, L : H → H′ is boundedly
invertible, in particular meaning that the linear operator equation

Lu = f, (5.2.2)

has a unique solution for f ∈ H′.

5.2 RITZ-GALERKIN APPROXIMATIONS 71

For our analysis we will need the following mild regularity assumption on the
adjoint L′ of L: There is a Hilbert space X ↪→ H with compact embedding, such
that (L′)−1 : Y ′ → X is bounded. The following lemma gives a means to check
this assumption.

Lemma 5.2.1. Let either A−1 : Y ′ → X or L−1 : Y ′ → X be bounded. Then
(L′)−1 : Y ′ → X is bounded.

Proof. We treat the first case only. The other case is analogous. The operator
B extends to a bounded mapping from Y to H′. So L′ = A + B′ : X → Y ′ is
bounded. Now consider the equation L′u = f . We know that there exists a unique
solution u ∈ H with ‖u‖H . ‖f‖H′ and thus ‖B′u‖Y ′ . ‖u‖H . ‖f‖H′ . ‖f‖Y ′ .
From Au = f −B′u, we now infer that ‖u‖X . ‖f‖Y ′ .

Example 5.2.2. For some Lipschitz domain Ω ⊂ Rn, with H := H1
0 (Ω) let

L : H → H′ be defined by

〈Lv,w〉 = −
n∑

j,k=1

〈ajk∂kv, ∂jw〉L2 +
n∑
k=1

〈bk∂kv, w〉L2 + 〈cv, w〉L2 v, w ∈ H.

If the coefficients satisfy ajk, bk, c ∈ L∞ then L : H → H′ is bounded. Moreover,
if the matrix [ajk] is symmetric and uniformly positive definite a.e. in Ω, then the
bilinear form a(·, ·) := −

∑n
j,k=1〈ajk∂k·, ∂j·〉L2 is symmetric and satisfies (5.2.1).

If either bk = 0, 1 ≤ k ≤ n and c ≥ 0 a.e. or c ≥ β > 0 a.e., then the generalized
maximum principle implies that L is injective, cf. [81]. Also if L = A − η2

for a constant η ∈ R, then the injectivity is guaranteed as long as η2 is not
an eigenvalue of A. With Yσ := (L2(Ω), H1

0 (Ω))1−σ,2 for some σ ∈ (0, 1], where
(X, Y)θ,p denotes the intermediate space between X and Y obtained by the real
interpolation method, the bilinear form b(·, ·) :=

∑n
k=1〈bk∂k·, ·〉L2 + 〈c·, ·〉L2 :

Yσ ×H → R is bounded for any σ ∈ (0, 1]. If the coefficients ajk, 1 ≤ j, k ≤ n,
are Lipschitz continuous, then with Xσ := (H1

0 (Ω), H2(Ω)∩H1
0 (Ω))σ,2 it is known

that A−1 : Y ′
σ → Xσ is bounded for any σ ∈ (0, 1

2
), cf. [75]. Furthermore, the

embeddings Xσ ↪→ H ↪→ Yσ are compact. From Lemma 5.2.1 we conclude that
all aforementioned conditions are satisfied. �

Example 5.2.3. Let L be the operator considered in the above example. We
assume that the domain Ω is Lipschitz, the coefficients ajk, bk, c are constant and
that the matrix [ajk] is symmetric and positive definite. Then the single layer
and hypersingular boundary integral operators corresponding to the differential
operator L can be written as the sum of a boundedH-elliptic operatorA : H → H′

and a compact operator B : H → H′, see [23]. With Γ being the boundary of the
underlying domain Ω, here the energy space is H = H t(Γ) with t = −1

2
for the

72 EXTENSION TO STRONGLY ELLIPTIC OPERATOR EQUATIONS 5.2

single layer operator and t = 1
2

for the hypersingular integral operator. A close
inspection of the proofs of [24, Theorem 3.9] and [23, Theorem 2] reveals that in
both cases, the operator A is self-adjoint and that with Yσ := H t−σ(Γ) where t
has the appropriate value depending on the case, the operator B can be extended
to a bounded operator Yσ → H′ for any σ ∈ (0, 1

2
]. Assuming the injectivity

of L : H → H′, in [23] it is shown that with Xσ := H t+σ(Γ), L−1 : Y ′
σ → Xσ

is bounded for any σ ∈ [0, 1
2
]. The injectivity depends on the particular case at

hand, see [61] for some important cases. �

We consider a sequence of finite dimensional closed subspaces V0 ⊂ V1 ⊂ . . . ⊂
H satisfying

inf
vj∈Vj

‖v − vj‖H ≤ αj‖v‖X v ∈ X , (5.2.3)

with limj→∞ αj = 0.

Remark 5.2.4. Such a sequence exists since the embedding X ↪→ H is compact,
cf. [77].

Example 5.2.5. Let H = H t and X = H t+σ. Then for standard finite element
or spline spaces Vj subordinate to dyadic subdivisions of an initial mesh, the
approximation property (5.2.3) is satisfied with αj h 2−jσ, for any t < γ and
σ ≤ d − t, where d is the polynomial order of the spaces Vj, and γ = supj{s :
Vj ⊂ Hs}, see e.g. [64]. �

For a finite dimensional closed subspace S ⊂ H such that Vj ⊆ S for some j,
we consider the Ritz-Galerkin problem

〈LuS, vS〉 = 〈f, vS〉 for all vS ∈ S. (5.2.4)

It is well known that for j being sufficiently large, a unique solution uS to
the above problem exists, and that uS is a near best approximation to u in the
energy norm ||| · |||. In the weaker norm ‖ · ‖Y , convergence of higher order than
(5.2.3) can be obtained via an Aubin-Nitsche duality argument, cf. [76]. These
results are recalled in the following lemma, where for convenience we also include
a proof.

Lemma 5.2.6. There is an absolute constant j0 ∈ N0 (not depending on S) such
that for all j ≥ j0, (5.2.4) has a unique solution with

|||u− uS||| ≤ [1 +O(αj)] inf
v∈S

|||u− v|||. (5.2.5)

Moreover, for j ≥ j0 we have

‖u− uS‖Y ≤ O(αj)|||u− uS|||. (5.2.6)

5.2 RITZ-GALERKIN APPROXIMATIONS 73

Proof. Suppose that a solution uS to (5.2.4) exists. Then we trivially have

〈L(u− uS), vS〉 = 0 ∀vS ∈ S. (5.2.7)

Using this and the boundedness of b : Y ×H → R, for arbitrary vS ∈ S we get

|||u− uS|||2 = 〈L(u− uS), u− uS〉 − b(u− uS, u− uS)

= 〈L(u− uS), u− vS〉 − b(u− uS, u− uS)

= a(u− uS, u− vS) + b(u− uS, uS − vS)

≤ |||u− uS||||||u− vS|||+O(1)‖u− uS‖Y‖uS − vS‖H.

(5.2.8)

We estimate ‖u − uS‖Y by an Aubin-Nitsche duality argument. For w ∈ Y ′ we
infer that

〈u− uS, w〉 = 〈L(u− uS), (L
′)−1w − wS〉

≤ ‖L‖H→H′‖u− uS‖H‖(L′)−1w − wS‖H
≤ ‖L‖H→H′‖u− uS‖Hαj‖(L′)−1w‖X
≤ ‖L‖H→H′‖u− uS‖Hαj‖(L′)−1‖Y ′→X‖w‖Y ′ ,

where we used (5.2.7), (5.2.3) and the boundedness of (L′)−1 : Y ′ → X . We have

‖u− uS‖Y = sup
w∈Y ′

〈u− uS, w〉
‖w‖Y ′

,

and subsequently using (5.2.1) we arrive at (5.2.6). Substituting (5.2.6) into
(5.2.8), we get

|||u− uS||| ≤ |||u− vS|||+O(αj)‖uS − vS‖H.

For the last term, from the triangle inequality and (5.2.1), we have

‖v − uS‖H . |||u− uS|||+ |||u− vS|||.

Now choosing j0 sufficiently large, we finally obtain (5.2.5).
Since (5.2.4) is a finite dimensional system, existence and uniqueness are

equivalent. To see the uniqueness, it is sufficient to prove that f = 0 implies
uS = 0. By linearity and invertibility of L, we have u = 0 if f = 0, and so (5.2.5)
implies that uS = 0. The proof is completed.

The following observation concerning quasi-orthogonality is an easy general-
ization of [62, Lemma 2.1].

74 EXTENSION TO STRONGLY ELLIPTIC OPERATOR EQUATIONS 5.2

Lemma 5.2.7. For some j ≥ j0 with j0 being the absolute constant from Lemma
5.2.6, let S0 ⊂ S1 ⊂ H be finite dimensional subspaces satisfying Vj ⊆ S0. Let
u0 ∈ S0 and u1 ∈ S1 be the solutions to the Galerkin problems 〈Lu0, v〉 = 〈f, v〉
∀v ∈ S0 and 〈Lu1, v〉 = 〈f, v〉 ∀v ∈ S1, respectively. Then we have∣∣|||u− u0|||2 − |||u− u1|||2 − |||u1 − u0|||2

∣∣ ≤ O(αj)
(
|||u− u0|||2 + |||u− u1|||2

)
.

(5.2.9)

Proof. We have |||u− u0|||2 = |||u− u1|||2 + |||u1 − u0|||2 + 2a(u− u1, u1 − u0). Using
(5.2.7), boundedness of b : Y ×H → R, and the triangle inequality, we estimate
the absolute value of the last term as

|2a(u− u1, u1 − u0)| = |2b(u− u1, u1 − u0)|
. ‖u− u1‖Y‖u1 − u0‖H
≤ ‖u− u1‖Y (‖u− u1‖H + ‖u− u0‖H)

Now using (5.2.6), and applying the inequality 2ab ≤ a2+b2, a, b ∈ R, we conclude
the proof by

|2a(u− u1, u1 − u0)| ≤ O(αj)
(
|||u− u1|||2 + |||u− u1||||||u− u0|||

)
≤ O(αj)

(
|||u− u1|||2 + |||u− u0|||2

)
.

Using a Riesz basis for H, we will now transform (5.2.2) into an equivalent
infinite matrix-vector system in `2. Let Ψ = {ψλ : λ ∈ ∇} be a Riesz basis for
H of wavelet type. We assume that for some ∇0 ⊂ ∇1 ⊂ . . . ⊂ ∇, the subspaces
defined by Vj = span{ψλ : λ ∈ ∇j}, j ∈ N0, satisfies (5.2.3) with limj→∞ αj = 0.

Example 5.2.8. With the spaces Vj described in Example 5.2.5, wavelet bases
satisfying the above condition have been constructed e.g. in [14, 22, 33, 34, 56,
85]. �

Writing u = uTΨ for some u ∈ `2, u satisfies

Lu = f , (5.2.10)

where L := 〈ψλ, Lψµ〉λ,µ∈∇ : `2 → `2 is boundedly invertible and f := 〈f, ψλ〉λ∈∇ ∈
`2. Similarly to L, we define also the matrices

A := 〈ψλ, Aψµ〉λ,µ∈∇ = a(ψµ, ψλ)λ,µ∈∇ and

B := 〈ψλ, Bψµ〉λ,µ∈∇ = b(ψµ, ψλ)λ,µ∈∇,

so that L = A + B. The matrix A is symmetric positive definite, so 〈A·, ·〉 is an
inner product on `2, and the induced norm ||| · ||| satisfies

|||v|||2 := 〈Av,v〉 = a(vTΨ,vTΨ) = |||vTΨ|||2 v ∈ `2.

5.2 RITZ-GALERKIN APPROXIMATIONS 75

Furthermore, one can verify that for any v ∈ `2, Λ ⊆ ∇, vΛ ∈ `2(Λ),

‖Av‖ ≤ ‖A‖
1
2 |||v||| ≤ ‖A‖‖v‖, |||vΛ||| ≤ ‖A−1‖

1
2‖PΛAIΛvΛ‖, (5.2.11)

where PΛ : `2 → `2(Λ) is the orthogonal projector onto `2(Λ), and IΛ de-
notes the trivial inclusion `2(Λ) → `2. For any v,w ∈ `2, we have 〈Bv,w〉 =
b(vTΨ,wTΨ) . ‖vTΨ‖Y‖wTΨ‖H . ‖vTΨ‖Y‖w‖, implying the following esti-
mate which will be used often in the rest of this section.

‖Bv‖ = sup
0 6=w∈`2

〈Bv,w〉
‖w‖

. ‖vTΨ‖Y v ∈ `2. (5.2.12)

For some Λ ⊂ ∇, let S = span{ψλ : λ ∈ Λ} ⊂ H. Then uS = (IΛuΛ)TΨ ∈ S
is the solution to the Galerkin problem (5.2.4) if and only if uΛ ∈ `2(Λ) satisfies

PΛLIΛuΛ = PΛf . (5.2.13)

In the following, we will refer to uΛ as the Galerkin solution with respect to the
index set Λ. From Lemma 5.2.6 we know that this solution exists and is unique
when ∇j ⊆ Λ for some j ≥ j0.

Lemma 5.2.9. Let PΛ and IΛ be as above. Then for any Λ ⊇ ∇j for some
j ≥ j0 we have

‖(PΛLIΛ)−1‖ ≤ ‖A−1‖
[
1 + ‖BL−1‖+O(αj)

]
.

Proof. Recalling that L(u− uΛ) ⊥ `2(Λ) and that A = L−B, we have

‖uΛ‖2 ≤ ‖A−1‖|||uΛ|||2 = ‖A−1‖ [〈LuΛ,uΛ〉 − 〈BuΛ,uΛ〉]
= ‖A−1‖ [〈Lu,uΛ〉 − 〈Bu,uΛ〉+ 〈B(u− uΛ),uΛ〉] .

Here and in the following, we write uΛ to mean IΛuΛ as well, i.e., uΛ is extended by
zeros outside the index set Λ. Now applying the Cauchy-Bunyakowsky-Schwarz
inequality gives

‖uΛ‖ ≤ ‖A−1‖ [‖Lu‖+ ‖Bu‖+ ‖B(u− uΛ)‖] . (5.2.14)

For the last term in the brackets, using the estimates (5.2.12), (5.2.6) and (5.2.5),
we have

‖B(u− uΛ)‖ . ‖u− uTΛΨ‖Y ≤ O(αj)|||u− uTΛΨ|||
≤ O(αj) inf

v∈`2(Λ)
|||u− v||| ≤ O(αj)‖u‖.

76 EXTENSION TO STRONGLY ELLIPTIC OPERATOR EQUATIONS 5.2

We substitute it into (5.2.14) to get

‖uΛ‖ ≤ ‖A−1‖ [‖Lu‖+ ‖Bu‖+O(αj)‖u‖]
≤ ‖A−1‖

[
1 + ‖BL−1‖+O(αj)‖L−1‖

]
‖f‖.

Since this estimate holds in particular for arbitrary f = PΛf , taking into account
that uΛ = (PΛLIΛ)−1PΛf the proof is completed.

The following lemma generalizes Lemma 3.2.1 to the present case of nonsym-
metric and indefinite operators, and provides a way to extend a given set Λ0 ⊂ ∇
such that the error of the Galerkin solution with respect to the extended set is
reduced by a constant factor.

Lemma 5.2.10. Suppose that u0 ∈ `2(Λ0) is the solution to PΛ0LIΛ0u0 = PΛ0f
with Λ0 ⊇ ∇j for j sufficiently large. For a constant µ ∈ (0, 1), let ∇ ⊃ Λ1 ⊃ Λ0

be such that
‖PΛ1(f − Lu0)‖ ≥ µ‖f − Lu0‖. (5.2.15)

Then, for u1 ∈ `2(Λ1) being the solution to PΛ1LIΛ1u1 = PΛ1f , it holds that

|||u− u1||| ≤
[
1− κ(A)−1µ2 +O(αj)

] 1
2 |||u− u0|||.

Proof. In this proof, we use the notations u0 = uT0 Ψ and u1 = uT1 Ψ. We have

‖L(u1 − u0)‖2 = ‖A(u1 − u0)‖2 + 2〈A(u1 − u0),B(u1 − u0)〉+ ‖B(u1 − u0)‖2.

The first term on the right hand side is bounded from above by using the first
inequality from (5.2.11). We estimate the second term by using (5.2.12) as

|2〈A(u1 − u0),B(u1 − u0)〉| ≤ 2‖A(u1 − u0)‖‖B(u1 − u0)‖
. |||u1 − u0|||‖u1 − u0‖Y .

For the third term we have ‖B(u1 − u0)‖2 . ‖u1 − u0‖2
Y . Combining these

estimates, and taking into account (5.2.6), we conclude that

‖L(u1 − u0)‖2 ≤ ‖A‖|||u1 − u0|||2 +O(1)|||u1 − u0|||‖u1 − u0‖Y (5.2.16)

≤ ‖A‖|||u1 − u0|||2 +O(αj)
(
|||u− u0|||2 + |||u− u1|||2

)
.

On the other hand, we have

‖L(u− u0)‖2 = ‖A(u− u0)‖2 + 2〈A(u− u0),B(u− u0)〉+ ‖B(u− u0)‖2.

5.2 RITZ-GALERKIN APPROXIMATIONS 77

The first term can be bounded from below by using the last inequality in (5.2.11)
with Λ = ∇. By using (5.2.12) and (5.2.6), we bound the second term as

|2〈A(u− u0),B(u− u0)〉| . |||u− u0|||‖u− u0‖Y ≤ O(αj)|||u− u0|||2. (5.2.17)

Estimating the third term by zero, we infer

‖L(u− u0)‖2 ≥ ‖A−1‖−1|||u− u0|||2 −O(αj)|||u− u0|||2. (5.2.18)

By hypothesis we have ‖L(u1−u0)‖ ≥ ‖PΛ1L(u1−u0)‖ = ‖PΛ1(f −Lu0)‖ ≥
µ‖L(u− u0)‖. Combining this with (5.2.16) and (5.2.18), we get

‖A‖|||u1 − u0|||2 +O(αj)|||u− u1|||2

≥ µ2‖A−1‖−1|||u− u0|||2 −O(αj)|||u− u0|||2.

Now by using that |||u1 − u0||| ≤ |||u− u0|||2 − |||u− u1|||2 + O(αj)(|||u− u0|||2 +
|||u− u1|||2) by (5.2.9), and choosing j sufficiently large we finish the proof.

In the following lemma it is shown that for sufficiently small µ and u ∈ As,
for a set Λ1 as in Lemma 5.2.10 that has minimal cardinality, #(Λ1\Λ0) can be
bounded in terms of ‖f − Lu0‖ and |u|As only, cf. Lemma 3.3.1.

Lemma 5.2.11. For some s > 0 let u ∈ As, and let µ ∈ (0, κ(A)−
1
2). Assume

that u0 ∈ `2(Λ0) is the solution to PΛ0LIΛ0u0 = PΛ0f with Λ0 ⊇ ∇j for a
sufficiently large j. Then, the smallest set Λ1 ⊃ Λ0 with

‖PΛ1(f − Lu0)‖ ≥ µ‖f − Lu0‖

satisfies
#(Λ1\Λ0) . ‖f − Lu0‖−1/s|u|1/sAs .

Proof. With a constant λ > 0 to be chosen later, let N be such that a best
N -term approximation uN for u satisfies ‖u − uN‖ ≤ λ|||u − u0|||. Since L is
boundedly invertible we have |||u− u0||| & ‖f −Lu0‖ and thus, in view of (2.3.3),

N . ‖f − Lu0‖−1/s|u|1/sAs . Let Λ := Λ0 ∪ suppuN ⊃ Λ0. We are going to show
that for a suitable λ, and j sufficiently large, ‖PΛ(f−Lu0)‖ ≥ µ‖f−Lu0‖. Then
by definition of Λ1 we may conclude that

#(Λ1\Λ0) . #(Λ\Λ0) ≤ N . ‖f − Lu0‖−1/s|u|1/sAs .

Now we will show that the above claim is valid. The solution to the equation
PΛLIΛuΛ = PΛf satisfies

|||u− uΛ||| ≤ [1 +O(αj)]|||u− uN ||| ≤ [1 +O(αj)]‖A‖
1
2‖u− uN‖

≤ λ[1 +O(αj)]‖A‖
1
2 |||u− u0|||,

(5.2.19)

78 EXTENSION TO STRONGLY ELLIPTIC OPERATOR EQUATIONS 5.3

where we have used (5.2.5) and the second inequality from (5.2.11). We have

‖PΛL(uΛ − u0)‖2 ≥ ‖PΛA(uΛ − u0)‖2 + 2〈PΛA(uΛ − u0),B(uΛ − u0)〉.

The first term in the right hand side can be bounded from below by using the
last inequality from (5.2.11). Estimating the second term as

〈PΛA(uΛ − u0),B(uΛ − u0)〉 . |||uΛ − u0|||‖B(uΛ − u0)‖
≤ O(αj)

(
|||u− uΛ|||2 + |||u− u0|||2

)
,

we get

‖PΛL(uΛ − u0)‖2 ≥ ‖A−1‖−1|||uΛ − u0|||2 −O(αj)
(
|||u− uΛ|||2 + |||u− u0|||2

)
.

Now by using that |||uΛ − u0||| ≥ |||u − u0|||2 − |||u − uΛ|||2 − O(αj)(|||u − u0|||2 +
|||u− uΛ|||2) by (5.2.9), and applying (5.2.19), we have

‖PΛL(uΛ − u0)‖2 ≥ [1−O(αj)]‖A−1‖−1|||u− u0|||2

− [1 +O(αj)]‖A−1‖−1|||u− uΛ|||2 −O(αj)
[
|||u− uΛ|||2 + |||u− u0|||2

]
≥ [1−O(αj)] ‖A−1‖−1|||u− u0|||2 − [1 +O(αj)] ‖A−1‖−1|||u− uΛ|||2

≥
[
1− λ2‖A‖ −O(αj)

]
‖A−1‖−1|||u− u0|||2.

On the other hand, we have

‖L(u− u0)‖2 ≤ [1 +O(αj)] ‖A‖|||u− u0|||2.

Combining the last two estimates we infer

‖PΛ(f − Lu0)‖2 ≥ κ(A)−1
[
1− λ2‖A‖ −O(αj)

]
‖f − Lu0‖2.

Choose a value of the constant λ > 0 such that κ(A)−
1
2 (1− λ2‖A‖) 1

2 > µ. Then
for j sufficiently large, we have ‖PΛ(f − Lu0)‖ ≥ µ‖f − Lu0‖, thus completing
the proof.

5.3 Adaptive algorithm for nonsymmetric and indefinite el-
liptic problems

In this section, we will formulate an adaptive wavelet algorithm for solving (5.1.1)
and analyse its convergence behaviour. To give a rough idea before going through
the rigorous treatment, the algorithm starts with an initial index set Λ and com-
putes an approximate residual of the exact Galerkin solution with respect to the

5.3 ADAPTIVE GALERKIN ALGORITHM 79

index set Λ. Having computed the approximate residual, we use Lemma 5.2.10
and Lemma 5.2.11 to extend the set Λ such that the error in the new Galerkin
solution is a constant factor smaller where the cardinality of the extention is up
to a constant factor minimal, and this process is repeated until the computed
residual is satisfactorily small.

We need to choose a way to compute the Galerkin solution uΛ on a given finite
set Λ. Computing the Galerkin solution requires inverting the system (5.2.13).
In view of obtaining a method of optimal complexity, we will solve the system
approximately using an iterative method. Here we formulate a subroutine to
solve the Galerkin system (5.2.13) approximately.

Algorithm 5.3.1 Galerkin system solver GALSOLVE[Λ,vΛ, ν, ε] → wΛ

Parameters: Let L be s∗-computable and let f be s∗-admissible for some s∗ > 0.
With Lj the compressed matrices from Definition 2.7.8, let J be such that

% := ‖L− LJ‖‖A−1‖
[
2 + ‖BL−1‖

]
≤ ε

4ε+4ν
.

Input: Λ ⊂ ∇, #Λ <∞, vΛ ∈ `2(Λ), ε > 0, and ν ≥ ‖PΛ(f − LvΛ)‖.
Output: wΛ ∈ `2(Λ) and ‖PΛ(f − LwΛ)‖ ≤ ε.
1: L̃Λ := PΛLJIΛ;
2: r̃Λ := PΛ(RHS[f , ε

4
]−APPLY[L,vΛ,

ε
4
]);

3: To find an x̃ with ‖r̃Λ − L̃Λx̃‖ ≤ ε
4
, apply a suitable iterative method for

solving L̃Λx = r̃Λ, e.g., Conjugate Gradients to the Normal Equations;
4: wΛ := vΛ + x̃.

Proposition 5.3.2. Let L be s∗-computable and let f be s∗-admissible for some
s∗ > 0. Then, if Λ ⊇ ∇j with j sufficiently large, wΛ := GALSOLVE[Λ,vΛ, δ, ε]
satisfies ‖PΛ(f − LwΛ)‖ ≤ ε, and for any s < s∗, the number of arithmetic
operations and storage locations required by the call is bounded by some absolute
multiple of ε−1/s(|vΛ|1/sAs + |u|1/sAs) + c(ν/ε)#Λ, with c : R>0 → R>0 being some
non-decreasing function.

Proof. In this proof, j is assumed to be sufficiently large whenever needed. With
the shorthand notation LΛ = PΛLIΛ, using Lemma 5.2.9 and estimating 1 +
O(αj) ≤ 2, we have

‖L−1
Λ (L̃Λ − LΛ)‖ ≤ ‖L−1

Λ ‖‖LJ − L‖
≤ ‖A−1‖

[
1 + ‖BL−1‖+O(αj)

]
‖LJ − L‖ ≤ % < 1.

This implies that I+L−1
Λ (L̃Λ−LΛ) is invertible with ‖(I+L−1

Λ (L̃Λ−LΛ))−1‖ ≤ 1
1−% .

Now writing L̃Λ = LΛ(I + L−1
Λ (L̃Λ − LΛ)) and using Lemma 5.2.9 again, we

80 EXTENSION TO STRONGLY ELLIPTIC OPERATOR EQUATIONS 5.3

conclude that L̃Λ is invertible with

‖L̃−1
Λ ‖ ≤ 1

1− %
‖L−1

Λ ‖ ≤ 1

1− %
‖A−1‖

[
2 + ‖BL−1‖

]
. (5.3.1)

We have

‖L̃Λ − LΛ‖‖L̃−1
Λ ‖ ≤ ‖LJ − L‖ 1

1− %
‖A−1‖

[
2 + ‖BL−1‖

]
≤ %

1− %
,

and ‖r̃Λ‖ ≤ ‖PΛ(f − LvΛ)‖ + ‖PΛ(f − LvΛ) − r̃Λ‖ ≤ ν + ε
2
. Setting rΛ :=

PΛ(f − LvΛ) and writing

PΛ(f − LwΛ) = rΛ −PΛLx̃

= (rΛ − r̃Λ) + (r̃Λ − L̃Λx̃) + (L̃Λ −PΛL)L̃−1
Λ (r̃Λ + L̃Λx̃− r̃Λ),

we find
‖PΛ(f − LwΛ)‖ ≤ ε

2
+ ε

4
+ %

1−%(ν + ε
2

+ ε
4
) ≤ ε.

The properties of APPLY and RHS show that the cost of the computation of
r̃Λ is bounded by some multiple of ε−1/s(|vΛ|1/sAs + |u|1/sAs). We know that ‖L̃Λ‖ . 1
uniformly in ε and ν. So taking into account (5.3.1) we have κ(L̃Λ) . 1 uniformly
in ε and δ. Since L̃Λ is sparse and can be constructed in O(#Λ) operations, where
the proportionality coefficient is only dependent on an upper bound for ν/ε, and
the required number of iterations of the iterative method is bounded, the proof
is completed.

Remark 5.3.3. If the symmetric part of L is positive definite, then the spectrum
of L̃Λ lies in the open right half of the complex plane, and so one can use the
GMRES method for the solution of the linear system in GALSOLVE, cf. [40,
71]. In this case, the proof of the preceding theorem works verbatim.

Next, we combine the above subroutines into an algorithm which approx-
imately computes the residual f − LuΛ for a given set Λ ⊂ ∇. We get an
approximate Galerkin solution as a byproduct because we use GALSOLVE to
approximate the Galerkin solution uΛ.

5.3 ADAPTIVE GALERKIN ALGORITHM 81

Algorithm 5.3.4 Galerkin residual GALRES[Λ,w0, ρ0, ε] → [rk,wk, ρk]

Parameters: Let δ, γ ∈ (0, 1) and θ > 0 be constants.
Input: ρ0 ≥ ‖f − Lw0‖ .
Output: ‖f − Lwk‖ ≤ ρ, and either ρ ≤ ε or ‖f − LuΛ − rk‖ ≤ δ‖rk‖.
1: k := 0, ζ0 := θρ0, ν0 := ρ0;
2: repeat
3: k := k + 1, ζk := ζk−1/2;

4: νk := γζk
(
‖L‖‖A−1‖

[
2 + ‖BL−1‖

])−1
;

5: wk := GALSOLVE[Λ,wk−1, νk−1, νk];
6: rk := RHS[(1− γ)ζk/2]−APPLY[wk, (1− γ)ζk/2];
7: νk := min{νk−1, νk};
8: until ρk := ‖rk‖+ (1− γ)ζk ≤ ε or ζk ≤ δ‖rk‖.

Remark 5.3.5. In the above algorithm, as opposed to Algorithm 3.2.5, we are
forced to place the Galerkin solver inside the loop that computes the current
residual with a sufficient accuracy. The reason is that in Lemma 5.2.10 and
Lemma 5.2.11 the vector u0 must be the Galerkin solution on its support, whereas
in the corresponding Lemma 3.2.1 and Lemma 3.3.1 this vector could be arbitrary.

Remark 5.3.6. In view of Remark 2.8.3, taking into account that ρ0 is an upper
bound on the residual of w0, a reasonable choice for the value of θ is θ ≈ 2ω

(1+ω)(1−γ) .

Proposition 5.3.7. Let L be s∗-computable and let f be s∗-admissible for some
s∗ > 0. Then, if Λ ⊇ ∇j for some sufficiently large j, then the outputs of
[r,w, ρ] := GALRES[Λ,w0, ρ0, ε] satisfy ‖f−Lw‖ ≤ ρ, and either ρ ≤ ε or ‖f−
LuΛ−r‖ ≤ δ‖r‖. Furthermore, under the same condition we have ρ & min{ρ0, ε}.
In addition, if for some s < s∗, u ∈ As, then # supp r . ρ−1/s|u|1/sAs +(ρ0/ρ)

1/s#Λ
and the number of arithmetic operations and storage locations required by the call
is bounded by some absolute multiple of ρ−1/s|u|1/sAs + (ρ0/ρ)

1/s(#Λ + 1).

Proof. If at evaluation of the until-clause for the k-th iteration, ζk > δ‖rk‖, then
ρk = ‖rk‖+ (1− γ)ζk < (δ−1 + 1− γ)ζk. Since ζk is halved in each iteration, we
infer that, if not by ζk ≤ δ‖rk‖, the inner loop will terminate by ρk ≤ ε.

Let K be the value of k at the termination of the loop. First we will show
ρ & min{ρ0, ε}. When the loop terminates in the first iteration, i.e., when K = 1,
we have ρ1 = ‖r1‖+ (1− γ)ζ1 & ρ0. In the case the loop terminates with ρK ≤ ε
we have ‖rK−1‖+ 2(1− γ)ζK > ε and 2ζK > δ‖rK−1‖, so we conclude

ρK ≥ (1− γ)ζK >
(1− γ)δ(‖rK−1‖+ 2(1− γ)ζK)

2 + 2δ(1− γ)
>

(1− γ)δε

2 + 2δ(1− γ)
.

82 EXTENSION TO STRONGLY ELLIPTIC OPERATOR EQUATIONS 5.3

Since after any evaluation of rk inside the algorithm, ‖rk − (f − Lwk)‖ ≤
(1−γ)ζk, for any 1 ≤ k ≤ K, ρk is an upper bound on ‖f −Lwk‖. Together with
the condition on ρ0 this guarantees that the subroutine GALSOLVE is called
with a valid parameter νk−1. By applying Lemma 5.2.9 for sufficiently large j,
we have

‖rk − (f − LuΛ)‖ ≤ ‖rk − (f − Lwk)‖+ ‖L(uΛ −wk)‖
≤ (1− γ)ζk + ‖L‖‖(PΛLIΛ)−1‖‖PΛ(f − Lwk)‖
≤ (1− γ)ζk + ‖L‖‖A−1‖[1 + ‖BL−1‖+O(αj)]νk ≤ ζk,

and therefore the condition ζk ≤ δ‖rk‖ implies ‖rk − (f − LuΛ)‖ ≤ δ‖rk‖. This
proves the first part of the theorem.

The properties of RHS, APPLY and GALSOLVE imply that the cost of k-
th iteration can be bounded by some multiple of ζ

−1/s
k (|wk−1|1/sAs +|u|1/sAs +|wk|1/sAs)+

c(νk−1

νk
)#Λ + #Λ + 1, where c(·) is the non-decreasing function from Proposition

5.3.2. Since any vector wk determined inside the algorithm satisfies ‖u−wk‖ .
ρ0, from |wk|As . |u|As +(#suppwk)

s‖wk−u‖ (Proposition 2.3.6), we infer that
|wk|As . |u|As + (#Λ)sρ0. At any iteration the ratio νk−1

νk
can be bounded by a

multiple of max{ν0
ν1
, 2} . ρ0

ζ1
+ 1 . 1. By the geometric decrease of ζk inside the

loop, the above considerations imply that the total cost of the algorithm can be
bounded by some multiple of ζ

−1/s
K (|u|1/sAs + ρ

1/s
0 #Λ) + K(#Λ + 1). Taking into

account the value of ζ0, and the geometric decrease of ζi inside the loop, we have
K(#Λ + 1) = Kρ

−1/s
0 ρ

1/s
0 (#Λ + 1) . ζ

−1/s
K ρ

1/s
0 (#Λ + 1). The number of nonzero

coefficients in rK is bounded by an absolute multiple of ζ
−1/s
K (|u|1/sAs + ρ

1/s
0 #Λ) so

the theorem is proven upon showing that ζK & ρK . When the loop terminates in
the first iteration, i.e., when K = 1, we have ρ1 = ‖r1‖+(1−γ)ζ1 ≤ ‖f−Lw0‖+
2(1−γ)ζ1 . ρ0+ζ1 . ζ1, and when the loop terminates with ζK ≥ δ‖rK‖, we have
ρK = ‖rK‖+(1−γ)ζK ≤ (1

δ
+1−γ)ζK . In the other case, we have δ‖rK−1‖ ≤ 2ζK ,

and so from ‖rK−rK−1‖ ≤ ζK +2ζK , we infer ‖rK‖ ≤ ‖rK−1‖+3ζK ≤ (2
δ
+3)ζK ,

so that ρK ≤ (2
δ

+ 4− γ)ζK .

5.3 ADAPTIVE GALERKIN ALGORITHM 83

We now define our adaptive wavelet solver.

Algorithm 5.3.8 Adaptive Galerkin method SOLVE[ε] → wk

Parameters: Let j be a sufficiently large fixed integer, let ρ0 ≥ ‖f‖, and α ∈
(0, 1) be constants.

Input: ε > 0.
Output: wk ∈ P and ‖f − Lwk‖ ≤ ε.
1: k := 0, w0 := 0, Λ1 := ∇j;
2: loop
3: k := k + 1;
4: [rk,wk, ρk] :=GALRES[Λk,wk−1, ρk−1, ε];
5: if ρk ≤ ε then
6: Terminate the subroutine.
7: end if
8: Λk+1 := RESTRICT[Λk, rk, α];
9: end loop

Theorem 5.3.9. Let L be s∗-computable and let f be s∗-admissible with some
s∗ > 0. Then w := SOLVE[ε] terminates with ‖f − Lw‖ ≤ ε. In addition, let
the parameters α and ρ0 in SOLVE, and δ in GALRES, be selected such that
α+δ
1−δ < κ(A)−

1
2 , α < δ, and ρ0 . ‖f‖, and let ε . ‖f‖. Then, if for some s < s∗,

u ∈ As, we have # suppw . ε−1/s|u|1/sAs and the number of arithmetic operations
and storage locations required by the call is bounded by some absolute multiple of
the same expression.

Proof. Before we come to the actual proof, first we indicate the need for the
conditions involving ρ0, ‖f‖ and ε. If ρ0 6. ‖f‖ we cannot bound the cost of the

first call of GALRES. If ε 6. ‖f‖, then ε−1/s|u|1/sAs might be arbitrarily small,
whereas SOLVE takes in any case some arithmetic operations.

Abbreviating PΛk
as Pk, let uk ∈ `2(Λk) be the solution of the Galerkin

system PkLuk = Pkf . Assume that the k-th call of GALRES terminates with
ρk > ε and thus with ‖f − Luk − rk‖ ≤ δ‖rk‖. Then we have

α‖rk‖ ≤ ‖Pk+1rk‖ = ‖Pk+1[rk − (f − Luk) + (f − Luk)]‖
≤ δ‖rk‖+ ‖Pk+1(f − Luk)‖,

giving ‖Pk+1(f −Luk)‖ ≥ (α− δ)‖rk‖. Defining νk := ‖rk‖+ ‖f −Luk − rk‖ we
have ‖f − Luk‖ ≤ νk ≤ (1 + δ)‖rk‖, and using this we obtain

‖Pk+1(f − Luk)‖ ≥ α−δ
1+δ

νk ≥ α−δ
1+δ

‖f − Luk‖,

84 EXTENSION TO STRONGLY ELLIPTIC OPERATOR EQUATIONS 5.3

so that Lemma 5.2.10 shows that

|||u− uk+1||| ≤ [1− κ(A)−1(α−δ
1+δ

)2 +O(αj)
] 1

2 |||u− uk|||.

Taking into account that νk ≤ (1 + δ)‖rk‖ < (1 + δ)ρk and that ‖f − Luk‖ ≥
‖Pk+1(f − Luk)‖ & νk, we have ρk h νk h ‖f − Luk‖ h |||u − uk||| as long as
ρk > ε. By the conditions that α > δ and that j is sufficiently large, it holds that
ρk . ξk−1ρ1 for certain ξ < 1, so that SOLVE terminates, say directly after the
K-th iteration. This proves the first part of the theorem.

With µ = α+δ
1−δ , for 1 ≤ k < K let ∇ ⊃ Λ ⊃ Λk be the smallest set with

‖PΛ(f − Luk)‖ ≥ µ‖f − Luk‖.

Since µ < κ(A)
1
2 by the condition on δ and α, and ‖f−Luk‖ ≤ νk, an application

of Lemma 5.2.11 shows that #(Λ\Λk) . ν
−1/s
k |u|1/sAs . On the other hand, using

Proposition 5.3.7 twice we have µ‖rk‖ ≤ µ‖f−Luk‖+µδ‖rk‖ ≤ ‖PΛ(f−Luk)‖+
µδ‖rk‖ ≤ ‖PΛrk‖ + (1 + µ)δ‖rk‖ or ‖PΛrk‖ ≥ α‖rk‖. Thus by construction of
Λk+1 we conclude that

#(Λk+1\Λk) . #(Λ\Λk) . ν
−1/s
k |u|1/sAs . ρ

−1/s
k |u|1/sAs for 1 ≤ k < K.

Since Λ1 . 1 . ρ
−1/s
0 |u|1/sAs by ρ0 . ‖f‖ . |u|As , with Λ0 := ∅ we have for

1 ≤ k ≤ K,

#Λk =
k−1∑
i=0

#(Λi+1\Λi) . (
k−1∑
i=0

ρ
−1/s
i)|u|1/sAs . ρ

−1/s
k−1 |u|

1/s
As . (5.3.2)

In view of Lemma 3.3.3, we infer that the cost of determining the set Λk+1

is of order #Λk + # supp rk + 1. From Proposition 5.3.7, we have #supp rk .
ρ
−1/s
k |u|1/s`wτ

+ (ρk−1/ρk)
1/s#Λk and that the cost of the k-th call of GALRES is

of order ρ
−1/s
k |u|1/sAs + (ρk−1/ρk)

1/s(#Λk + 1), implying that the cost of the k-th

iteration of SOLVE can be bounded by an absolute multiple of ρ
−1/s
k |u|1/sAs +

(ρk−1/ρk)
1/s(#Λk + 1) + #Λk + 1. Now by using (5.3.2) and 1 . ρ

−1/s
0 |u|1/sAs , and

taking into account the geometric decrease of ρk we conclude that the total cost
of the algorithm can be bounded by an absolute multiple of ρ

−1/s
K |u|1/sAs . From

Proposition 5.3.7 we have ρK & min{ρK−1, ε} & ε, where the second inequality
follows from ρK−1 > ε when K > 1 and by assumption when K = 1. This
completes the proof.

Chapter 6
Adaptive algorithm with truncated
residuals

6.1 Introduction

In this chapter, we return to the equation (2.4.3) on page 21, which is recalled
here for convenience:

Au = f , (6.1.1)

where A : `2 → `2 is an SPD matrix, and f ∈ `2.
In Chapter 3, we presented Algorithm 3.3.4 on page 54 for solving (6.1.1). The

algorithm consists of a loop over the following steps: For a given iterand v ∈ P ,
compute the residual r := f−Av approximately, and then with a constant α from
a suitable range, choose an index set Λ ⊃ suppv with (nearly) minimal cardinality
such that ‖PΛr‖ ≥ α‖r‖ with r replaced by the approximately computed residual.
The next iterand of the iteration is determined by an inexact solution of the
Galerkin system on `2(Λ). Optimality of the adaptive algorithm was proven in
Theorem 3.3.5 on page 54.

In the approximate computation of the residual r := f − Av, among other
things, one uses the subroutine APPLY as in Algorithm 2.7.9 on page 33. The
subroutine APPLY employs columns of a compressed matrix Aj with increasing
accuracy (thus with increasing j) as the corresponding entry of v gets large in
absolute value. As indicated in Remark 2.7.13 on page 34 (see also Theorems
7.3.3 and 8.2.4), when j increases, the compressed matrix Aj involves blocks
of A corresponding to the interactions between wavelets with level difference
proportional to j. As a result, it becomes possible that the difference between
the highest levels of wavelets that are used in the approximate residual and that
are used in the iterand (i.e. v) grows when the iteration proceeds. This makes

85

86 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 6.2

very deep refinements feasible but also leads to serious obstacles in practical
implementations of the algorithm. Moreover, numerical experiments show that
in terms of cardinality, only a tiny part of the support of the approximately
computed residual constitutes the index set Λ for the next iterand.

An alternative approach would be to simply compute the “truncated” resid-
ual r? := PΛ?r for some index set Λ?, and choose an index set Λ ⊃ suppv with
(nearly) minimal cardinality such that ‖PΛr?‖ ≥ α‖r?‖. Of course, the point
is that one has to choose the “activable” set Λ? appropriately. To our knowl-
edge, this approach was first suggested in [54] in the context of adaptive wavelet
Galerkin BEM. In [5], the same idea was applied for designing adaptive wavelet
algorithms for solving elliptic boundary value problems. Numerical experiments
in both papers show relatively good performances. In this chapter, we analyze
adaptive wavelet algorithms of the above discussed type, i.e., adaptive algorithms
with truncated residuals.

Throughout foregoing chapters, we have been considering approximations for
u from `2(Λ), where Λ can be any finite subset of ∇. In this chapter, a slightly re-
stricted type of wavelet approximation is employed, in the sense that only sets Λ
are considered that are trees, roughly meaning that if λ ∈ Λ, then for any λ′ ∈ ∇
with suppψλ ⊂ suppψλ′ , also λ′ ∈ Λ. From the purpose of constructing the ac-
tivable sets efficiently, tree approximation arises almost naturally. In the context
of adaptive wavelet algorithms, tree approximation is often used, cf. [19, 20, 30].
It is claimed that working with trees has advantages in view of obtaining an
efficient implementation, whereas, on the other hand, best tree N -term approxi-
mations converge towards u with a rate N−s under regularity conditions that are
only slightly stronger than that for unrestricted best N -term approximations.

This chapter is organized as follows. In the next section, we recall some
relevant facts on best N -term approximations with tree constraints. An adaptive
algorithm with truncated residuals is proposed and proven to be optimal under
some assumptions in Section 6.3. Then Section 6.4 provides a way to verify these
assumptions for second order elliptic boundary value problems. In the last section
we extend a certain result on completion of trees to graded trees, which is often
used in Section 6.4. Since this result concerns general trees and it can be used
not only in a wavelet context, we presented it such that it stands on its own
independently of other sections in this chapter.

6.2 Tree approximations
We assume that a parent-child relation is defined on the index set ∇. We assume
that every element λ ∈ ∇ has a uniformly bounded number of children, and has
at most one parent. We say that λ ∈ ∇ is a descendant of µ ∈ ∇ and write λ � µ

6.2 TREE APPROXIMATIONS 87

if λ is a child of a descendant of µ or is a child of µ. The relations ≺ (ascendant
of), � (descendant of or equal to), and � (ascendant of or equal to) are defined
accordingly. The level or generation of an element λ ∈ ∇, denoted by |λ| ∈ N0,
is the number of its ascendants. Obviously, λ � µ implies |λ| > |µ|. We call the
set ∇0 := {λ ∈ ∇ : |λ| = 0} the set of root, and assume that #∇0 <∞.

A subset Λ ⊆ ∇ is said to be a tree if with every member λ ∈ Λ all its
ascendants are included in Λ. For a tree Λ, those λ ∈ Λ whose children are not
contained in Λ are called leaves of Λ, and the set of all leaves of Λ is denoted by
∂Λ. Similarly, those λ /∈ Λ whose parent belongs to Λ are called outer leaves of
Λ and the set of all outer leaves of Λ is denoted by L(Λ).

For N ∈ N0, we collect all trees with at most N elements in the set

TN := {Λ ⊂ ∇ : #Λ ≤ N, Λ is a tree},

and collect all the elements of `2 whose support is a tree with cardinality N in

XN := {v ∈ `2 : v ∈ `2(Λ) for some Λ ∈ TN}. (6.2.1)

Obviously, we have T0 = ∅, TN ⊂ TN+1 andXN ⊂ XN+1. The set of all finite trees
is denoted by T := ∪N∈N0TN . We will consider here approximations of elements
of `2 from the subsets XN . The subset XN is not a linear space, meaning that
we deal with a nonlinear approximation. For v ∈ `2 and N ∈ N0, we define the
best approximation error when approximating v from XN by

EN(v) := dist(v, XN) = inf
vN∈XN

‖v − vN‖. (6.2.2)

Any element vN ∈ XN that achieves this error is called a best tree N-term approx-
imation of v. For any N ∈ N0 a best tree N -term approximation exists since XN

is a finite union of linear spaces. In particular, with PΛ : `2 → `2(Λ) being the
`2-orthogonal projector onto `2(Λ), a best tree N -term approximation of v ∈ `2
is equal to PΛv for some Λ ∈ TN .

The following functional can be shown to be a quasi-norm for s ∈ R

|v|As := ‖v‖+ sup
N∈N

N sEN(v), (6.2.3)

where “quasi-” refers to the fact that it only satisfies a generalized triangle in-
equality, cf. Lemma 2.3.1 on page 14. For s > 0, we define the approximation
space As ⊂ `2 by collecting all the vectors for which the above quasi-norm is
finite. Clearly, it is precisely the set of elements whose best tree N -term approx-
imation error decays like N−s. The space As can be shown to be a quasi-Banach
space with the quasi-norm (6.2.3).

88 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 6.3

Remark 6.2.1. Let Ψ be a suitable wavelet basis with the approximation order
d for the Sobolev space H t defined on a domain Ω ⊆ Rn, possibly incorporating
essential boundary conditions. Then, if 0 < s < d−t

n
and v ∈ Bt+ns

p (Lp) for
p > (1

2
+ s)−1, the vector of expansion coefficients v of v in the basis Ψ satisfies

v ∈ As, cf. [20].

Apart from tree approximations, in the following we will also consider a seem-
ingly general class of approximations. For N ≥ N0 with a constant N0 ∈ N, let
T̃N be a set of subsets of the index set ∇ satisfying

T̃N ⊆ TN ⊂ T̃cN , (6.2.4)

where c ∈ N is a constant. We call an index set Λ ⊂ ∇ a graded tree if Λ ∈ T̃N
for some N . Using this terminology, the condition (6.2.4) can be read as follows:
Any graded tree is a tree, and any tree with cardinality N can be extended to a
graded tree with cardinality at most cN . The set of all graded trees is denoted
by T̃ := ∪N≥N0 T̃N .

Analogously to the above lines, by using T̃N we define the spaces X̃N , the best
approximation error ẼN(·) from X̃N , and the approximation spaces Ãs. Now we
call a best approximation from X̃N a best graded tree N-term approximation.
The condition (6.2.4) implies X̃N ⊂ XN ⊂ X̃cN , and from this we have ẼN(v) ≥
EN(v) ≥ ẼcN(v) for N ≥ N0. Finally, since N sEN(v) . ‖v‖ for N < N0, we
conclude that Ãs = As with | · |Ãs h | · |As .

The following result is a trivial adaptation of Proposition 2.3.6 to tree approx-
imations, which will be often used in the sequel.

Remark 6.2.2. Let s > 0. Then for any v ∈ As and z ∈ `2(Λ) with Λ being a
finite tree, we have |z|As . |v|As + (#Λ)s‖v − z‖.

6.3 Adaptive algorithm with truncated residuals

6.3.1 The basic scheme
For a given index set Λ ⊆ ∇, the Galerkin approximation uΛ from `2(Λ) to the
solution of (6.1.1) is the solution of the Galerkin system

AΛuΛ = fΛ, (6.3.1)

where, recalling that PΛ : `2 → `2(Λ) is the `2-orthogonal projector onto `2(Λ),
fΛ := PΛf , and AΛ := PΛAIΛ : `2(Λ) → `2(Λ) with IΛ := P∗

Λ : `2(Λ) → `2 being
the trivial inclusion. The Galerkin approximation uΛ is the best approximation
from `2(Λ) to u in the energy norm ||| · ||| := 〈A·, ·〉 1

2 . Here and in the following,

6.3 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 89

for any Σ1 ⊂ Σ2 ⊆ ∇, we consider `2(Σ1) as a subspace of `2(Σ2), implicitly
identifying v ∈ `2(Σ1) with PΣ2IΣ1v.

Let v ∈ `2(Λ) be some specified approximation (possibly v = uΛ) to u, and
let Λ̆ ⊃ Λ. Then Lemma 3.2.1 on page 45 provides a way to guarantee that uΛ̆

has an error that is a constant factor smaller than the error in v. We recall this
lemma in the following, adjusting to the case when the index sets are trees.

Lemma 6.3.1. Let α ∈ (0, 1], v ∈ `2(Λ) and Λ̆ ⊃ Λ, where Λ and Λ̆ are trees,
such that

‖PΛ̆(f −Av)‖ ≥ α‖f −Av‖.

Then, for uΛ̆ ∈ `2(Λ̆) being the Galerkin approximation to u from `2(Λ̆), and with
κ(A) := ‖A‖‖A−1‖, we have

|||u− uΛ̆||| ≤ [1− κ(A)−1α2]
1
2 |||u− v|||.

In Chapter 3, the above result was used to construct a convergent algorithm
consisting of a loop over the following two steps: Compute the residual r := f−Av
approximately, and then choose Λ̆ such that ‖PΛ̆r‖ ≥ α‖r‖ with r replaced by
the approximately computed residual. For the sake of efficiency one evidently
has to choose the set Λ̆ with minimal or nearly minimal cardinality. An optimal
convergence rate was proven in Theorem 3.2.7 on page 49 when a coarsening step
is applied after each fixed number of iterations, which removes small entries from
the current approximation. Later in Theorem 3.3.5 on page 54, by using Lemma
3.3.1 on page 52, it was shown that this coarsening step is unnecessary to get an
optimal convergence rate.

Although the latter algorithm was proven to have an optimal convergence
rate, there are reasons to expect the algorithm can be quantitatively improved.
As we discussed in the introduction, at least with the current approaches of
approximating the residual, it is possible that the difference between the highest
levels of wavelets that are used in the approximate residual and that are used
in the iterand (i.e. v) grows when the iteration proceeds. This leads to serious
obstacles in practical implementations of the algorithm. Moreover, the above
lemma requires the parameter α to be small, meaning that a small fraction of
the residual is actually captured by the set Λ̆. Numerical experiments show that
in terms of cardinality, only a tiny part of the support of the approximately
computed residual is used to expand the current index set. Taking into account
that finding the smallest set Λ̆ involves finding the biggest entries in r, it appears
that one might be able to save a considerable amount of resources if one knows
where to look for the biggest entries in r. This is the basic motivation behind the
development in this chapter, which is more explicitly expressed in the following.

90 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 6.3

Suppose that for any finite tree Λ ⊂ ∇ and any v ∈ `2(Λ), prior to computing
the residual r = f −Av, we know how to find a tree Λ? ⊃ Λ such that ‖PΛ?r‖ ≥
η‖r‖ with an absolute constant η > 0. Then, by only computing the part rΛ? :=
PΛ?r of the residual, and choosing a tree Λ̆, with the smallest possible support,
such that ‖PΛ̆rΛ?‖ ≥ α‖rΛ?‖ for some α ∈ (0, 1], we can guarantee that ‖PΛ̆r‖ ≥
αη‖r‖. Therefore, employing Lemma 6.3.1 we obtain convergence.

As for the convergence rate, a straightforward adaptation of Lemma 3.3.1 does
not give a bound on #(Λ̆ \ Λ) that is independent of |v|As . Yet, the following
modification offers such a bound, which result can be thought of as being an
analogy to [88, Lemma 5.1] in the adaptive finite element setting.

Lemma 6.3.2. Let be given a map V that sends trees Λ ⊂ Λ̄ to a tree Λ? =
V(Λ, Λ̄) such that

|||uΛ? − uΛ||| ≥ η|||uΛ̄ − uΛ|||, (6.3.2)

where η > 0 is a constant, and uΛ?, uΛ̄, and uΛ are the Galerkin approximations
to u from the corresponding subspaces. Assume that V is such that for any trees
Λ ⊂ Λ̄,

Λ ⊂ V(Λ, Λ̄) ⊆ V(Λ,∇), #V(Λ,∇) . #Λ,

and
#
(
V(Λ, Λ̄) \ Λ

)
. #(Λ̄ \ Λ),

for the latter assuming Λ̄ is finite.
Let α ∈ (0, ηκ(A)−

1
2) be a constant, Λ be a finite tree , and for some s > 0,

let u ∈ As. Then, with Λ? := V(Λ,∇) and rΛ? := PΛ?(f − AuΛ), the smallest
tree Λ̆ ⊃ Λ with

‖PΛ̆rΛ?‖ ≥ α‖rΛ?‖

satisfies

#
(
Λ̆ \ Λ

)
. ‖u− uΛ‖−1/s|u|1/sAs .

Proof. Let λ > 0 be a constant with α = ηκ(A)−
1
2 (1 − ‖A‖λ2)

1
2 . Let Λ′ be a

smallest tree such that ‖u−PΛ′u‖ ≤ λ|||u−uΛ|||. Since |||u−uΛ||| ≥ ‖A−1‖− 1
2‖u−

uΛ‖, we have

#Λ′ . ‖u− uΛ‖−1/s|u|1/sAs .

With Λ̄ := Λ ∪ Λ′, we have

|||u− uΛ̄||| ≤ |||u−PΛ′u||| ≤ ‖A‖
1
2‖u−PΛ′u‖ ≤ ‖A‖

1
2λ|||u− uΛ|||,

6.3 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 91

and so by Galerkin orthogonality, |||uΛ̄−uΛ||| ≥ (1−‖A‖λ2)
1
2 |||u−uΛ|||. Now with

Λ̄? := V(Λ, Λ̄), we infer

‖PΛ̄?rΛ?‖ = ‖PΛ̄?A(uΛ̄? − uΛ)‖ ≥ ‖A−1‖−
1
2 |||uΛ̄? − uΛ|||

≥ ‖A−1‖−
1
2η|||uΛ̄ − uΛ||| ≥ ‖A−1‖−

1
2η(1− ‖A‖λ2)

1
2 |||u− uΛ|||

≥ κ(A)−
1
2η(1− ‖A‖λ2)

1
2‖f −AuΛ‖ ≥ α‖r‖ ≥ α‖rΛ?‖.

Since Λ ⊂ Λ̄? ⊆ Λ?, by definition of Λ̆ we conclude that

#
(
Λ̆\Λ

)
≤ #

(
Λ̄?\Λ

)
. #

(
Λ̄\Λ

)
≤ #Λ′ . ‖u− uΛ‖−1/s|u|1/sAs .

Let a map V satisfying the conditions of the preceding lemma is given. Then
for some constant α ∈ (0, ηκ(A)−

1
2) and for i ∈ N0, we define Λ?

i := V(Λi,∇),
where Λ0 := ∇0 and Λi+1 is a smallest tree with ‖PΛi+1

r?i ‖ ≥ α‖r?i ‖, where
r?i := fΛ?

i
− AΛ?

i
uΛi

. From the property (6.3.2), using the estimates (2.4.5) on
page 22, we get

‖r?i ‖ = ‖PΛ?
i
A(uΛ?

i
− uΛi

)‖ ≥ ‖A−1‖−
1
2 |||uΛ?

i
− uΛi

|||

≥ η‖A−1‖−
1
2 |||u− uΛi

||| ≥ ηκ(A)−
1
2‖f −AuΛi

‖,

so by Lemma 6.3.1 we have a fixed error reduction: |||u − uΛi+1
||| ≤ ρ|||u − uΛi

|||
with a constant ρ < 1. Now assuming that u ∈ As with some s > 0, by the
preceding lemma and the geometric decrease of ‖f − AuΛi

‖ h |||u − uΛi
|||, for

i ∈ N0 we have

#Λk =
∑k−1

i=0 #(Λi+1 \ Λi) .
∑k−1

i=0 ‖f −AuΛi
‖−1/s|u|1/sAs

. ‖f −AuΛk−1
‖−1/s|u|1/sAs ,

or, ‖u − uΛk
‖ . (#Λk)

−s|u|As , which, in view of the assumption u ∈ As, is
modulo some constant factor the best possible bound on the error.

Unfortunately, for a general right hand side f , a mapping V as in Lemma
6.3.2 does not exist since for any trees Λ ⊂ Λ?, and for any f ∈ `2 with f |Λ?\Λ =
(AuΛ)|Λ?\Λ, we have uΛ? = uΛ. However, by using techniques from the theory of
adaptive finite element methods, we realized a mapping V satisfying somewhat
weaker conditions than those in Lemma 6.3.2, which are nevertheless sufficient
conditions for showing optimality of suitable adaptive wavelet algorithms.

6.3.2 The main result
Before stating our main result, we need to introduce a number of technical as-
sumptions and definitions. The first assumption basically assumes the existence
of the map V , which will be confirmed for second order elliptic partial differential
operators in the next section.

92 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 6.3

Assumption 6.3.3. There exist

• a subspace Y ⊆ `2(∇),

• a function % : T × Y → [0,∞) with %(Λ̃, ·) ≤ %(Λ, ·) for Λ̃ ⊃ Λ,

• a map V : (Λ, Λ̄) 7→ Λ? ∈ T̃ where Λ ∈ T̃ and Λ̄ ⊃ Λ is a tree,

• and an absolute constant η > 0,

such that for any g ∈ Y , Λ ∈ T̃ , and a tree Λ̄ ⊃ Λ, with Λ? := V(Λ, Λ̄),
vΛ := A−1

Λ PΛg, vΛ̄ := A−1
Λ̄

PΛ̄g, and vΛ? := A−1
Λ? PΛ?g, it holds that

|||vΛ? − vΛ||| ≥ η|||vΛ̄ − vΛ||| − %(Λ,g). (6.3.3)

Moreover, we assume that the map V is such that for any graded tree Λ and a
tree Λ ⊂ Λ̄,

Λ ⊂ V(Λ, Λ̄) ⊆ V(Λ,∇), #V(Λ,∇) . #Λ,

and
#
(
V(Λ, Λ̄) \ Λ

)
. #(Λ̄ \ Λ),

for the latter assuming Λ̄ is finite. Finally, for any graded tree Λ, with Λ? :=
V(Λ,∇), we assume that the minimum level difference between any index from
Λ? and its ancestor from Λ is uniformly bounded, and that Λ? can be determined
by spending a number arithmetic operations and storage locations of order #Λ.�

From now on in this section we will assume Assumption 6.3.3. In Section 6.4,
we will verify this assumption in the case of second order elliptic boundary value
problems.

The next proposition is a generalization of Lemma 6.3.2 on page 90. In par-
ticular, we use an approximate residual and inexact solution of the Galerkin
systems.

Proposition 6.3.4. With Λ a graded tree, let Λ? := V(Λ,∇), and with a con-

stant α ∈ (0, ηκ(A)−
1
2), let δ, δ′, δ% > 0 be sufficiently small constants such that

α+δ+2δ′η+δ%‖A−1‖−
1
2

1−δ < ηκ(A)−
1
2 . Moreover, let g ∈ Y and r̃? ∈ `2(Λ

?) be such
that %(Λ,g) ≤ δ%‖r̃?‖ and ‖r? − r̃?‖ ≤ δ‖r̃?‖, where r? := PΛ?(g − AvΛ) and
vΛ := A−1

Λ PΛg, and let ṽΛ ∈ `2(Λ) be such that ‖PΛ(g−AṽΛ)‖+‖f−g‖ ≤ δ′‖r̃?‖.
Then, whenever u ∈ As for some s > 0, a smallest tree Λ̆ ⊃ Λ with

‖PΛ̆r̃?‖ ≥ α‖r̃?‖

6.3 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 93

satisfies

#
(
Λ̆ \ Λ

)
. ‖u− ṽΛ‖−1/s|u|1/sAs .

Proof. Let λ > 0 be a constant whose value will be specified later, and let Λ′

be a smallest tree such that ‖u − PΛ′u‖ ≤ λ|||u − ṽΛ|||. Since |||u − ṽΛ||| ≥
‖A−1‖− 1

2‖u− ṽΛ‖, we have

#Λ′ . ‖u− ṽΛ‖−1/s|u|1/sAs .

For any tree Σ ⊃ Λ, with vΣ := A−1
Σ PΣg and uΣ := A−1

Σ PΣf , we have

|||(vΣ − vΛ)− (uΣ − ṽΛ)||| ≤ ‖A−1‖
1
2 (‖PΣ(f − g)‖+ ‖PΛ(g −AṽΛ)‖)

≤ δ′‖A−1‖
1
2‖r̃?‖. (6.3.4)

Using this, with Λ̄ := Λ ∪ Λ′ and Λ̄? := V(Λ, Λ̄), we infer

‖PΛ̄? r̃?‖ ≥ ‖PΛ̄?r?‖ − δ‖r̃?‖ ≥ ‖A−1‖−
1
2 |||vΛ̄? − vΛ||| − δ‖r̃?‖

≥ ‖A−1‖−
1
2η|||vΛ̄ − vΛ||| − ‖A−1‖−

1
2%(Λ,g)− δ‖r̃?‖

≥ ‖A−1‖−
1
2η|||uΛ̄ − ṽΛ||| − (δ′η + δ%‖A−1‖−

1
2 + δ)‖r̃?‖.

We have |||u − uΛ̄||| ≤ |||u − PΛ′u||| ≤ ‖A‖ 1
2‖u − PΛ′u‖ ≤ ‖A‖ 1

2λ|||u − ṽΛ|||, and

so by Galerkin orthogonality, |||uΛ̄− ṽΛ||| ≥ (1−‖A‖λ2)
1
2 |||u− ṽΛ|||. On the other

hand, by using (6.3.4), we have

|||u− ṽΛ||| ≥ |||v − ṽΛ||| − δ′‖A−1‖
1
2‖r̃?‖

≥ ‖A‖−
1
2‖g −AvΛ‖ − δ′‖A−1‖

1
2‖r̃?‖

≥ ‖A‖−
1
2‖r?‖ − δ′‖A−1‖

1
2‖r̃?‖.

Combining all these estimates and using ‖r?‖ ≥ (1− δ)‖r̃?‖, we deduce that

‖PΛ̄? r̃?‖

≥
{

(1− ‖A‖λ2)
1
2η[κ(A)−

1
2 (1− δ)− δ′]− δ′η − δ%‖A−1‖−

1
2 − δ

}
‖r̃?‖,

and choosing a value of λ so that the expression between the curly brackets is at
least α, which is possible by hypothesis, we have ‖PΛ̄? r̃?‖ ≥ α‖r̃?‖.

Since Λ ⊂ Λ̄? ⊆ Λ?, by definition of Λ̆ we conclude that

#
(
Λ̆\Λ

)
≤ #

(
Λ̄?\Λ

)
. #

(
Λ̄\Λ

)
≤ #Λ′ . ‖u− ṽΛ‖−1/s|u|1/sAs .

94 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 6.3

The following proposition extends Lemma 6.3.1 on page 89 in that approxi-
mate residuals and inexact solution of the Galerkin systems are allowed.

Proposition 6.3.5. With Λ a graded tree, let Λ? := V(Λ,∇), and let 0 < δ <
α < 1, 0 < δ′ < α−δ

1+3κ(A)
1
2
, and δ% > 0 be constants. Moreover, let g ∈ Y

and r̃? ∈ `2(Λ
?) be such that %(Λ,g) ≤ δ%‖r̃?‖ and ‖r? − r̃?‖ ≤ δ‖r̃?‖, where

r? := PΛ?(g−AvΛ) and vΛ := A−1
Λ PΛg, and let ṽΛ ∈ `2(Λ) be such that ‖PΛ(g−

AṽΛ)‖ + ‖f − g‖ ≤ δ′‖r̃?‖. Then, with Λ̆ ⊃ Λ being a graded tree such that
‖PΛ̆r̃?‖ ≥ α‖r̃?‖, and ṽΛ̆ ∈ `2(Λ̆) satisfying ‖PΛ̆(f −AṽΛ̆)‖ ≤ δ′‖r̃?‖, we have

|||u− ṽΛ̆||| ≤
(
1− (1− β)(1− 3β)ξ2

) 1
2 |||u− ṽΛ|||,

where β := δ′κ(A)
1
2

α−δ−δ′ and ξ := (α−δ)κ(A)−
1
2−δ′

1+δ+δ′η+δ%‖A−1‖−
1
2
η. Note that 3β, ξ ∈ (0, 1) by the

conditions on the constants.

Proof. From (6.3.4) with Σ := Λ̆, we have

|||uΛ̆ − ṽΛ||| ≥ |||vΛ̆ − vΛ||| − δ′‖A−1‖
1
2‖r̃?‖

≥ ‖A‖−
1
2‖PΛ̆(g −AvΛ)‖ − δ′‖A−1‖

1
2‖r̃?‖

≥ ‖A‖−
1
2‖PΛ̆r̃?‖ − (δ‖A‖−

1
2 + δ′‖A−1‖

1
2)‖r̃?‖

≥ α‖A‖−
1
2‖r̃?‖ − (δ‖A‖−

1
2 + δ′‖A−1‖

1
2)‖r̃?‖.

Now combining the estimates ‖r̃?‖ ≥ ‖r?‖ − δ‖r̃?‖, and

‖r?‖ ≥ ‖A−1‖−
1
2 |||vΛ? − vΛ||| ≥ ‖A−1‖−

1
2η|||v − vΛ||| − ‖A−1‖−

1
2%(Λ,g)

≥ ‖A−1‖−
1
2η|||u− ṽΛ||| − δη‖r̃?‖ − δ%‖A−1‖−

1
2‖r̃?‖,

we get ‖A−1‖− 1
2η|||u− ṽΛ||| ≤ (1+ δ+ δ′η+ δ%‖A−1‖− 1

2)‖r̃?‖. In view of (37), this
gives |||uΛ̆ − ṽΛ||| ≥ ξ|||u − ṽΛ|||, and by Galerkin orthogonality, we conclude that

|||u− uΛ̆||| ≤ (1− ξ2)
1
2 |||u− ṽΛ|||.

One can simply estimate |||u − ṽΛ̆||| ≤ |||u − uΛ̆||| + |||uΛ̆ − ṽΛ̆|||, but a sharper

result can be derived by using that u−ṽΛ̆ is nearly 〈〈·, ·〉〉-orthogonal to `2(Λ̆), with

〈〈·, ·〉〉 := 〈A·, ·〉. We have |||uΛ̆− ṽΛ̆||| ≤ ‖A−1‖ 1
2‖PΛ̆(fΛ−AṽΛ̆)‖ ≤ ‖A−1‖ 1

2 δ′‖r̃?‖,
and

α‖r̃?‖ ≤ ‖PΛ̆r̃?‖ ≤ ‖PΛ̆r?‖+ δ‖r̃?‖ ≤ ‖PΛ̆(f −AvΛ)‖+ (δ′ + δ)‖r̃?‖,

so that |||uΛ̆ − ṽΛ̆||| ≤ β|||uΛ̆ − ṽΛ|||.

6.3 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 95

The rest of the proof is equivalent to the corresponding part in the proof of
Proposition 3.2.2 on page 46, but we reproduce it here for the reader’s conve-
nience. Using the Galerkin orthogonality u− uΛ̆ ⊥〈〈 , 〉〉 `2(Λ̆), we have

〈〈u− ṽΛ̆, ṽΛ̆ − ṽΛ〉〉 = 〈〈uΛ̆ − ṽΛ̆, ṽΛ̆ − ṽΛ〉〉
≤ |||uΛ̆ − ṽΛ̆||||||ṽΛ̆ − ṽΛ||| ≤ β|||uΛ̆ − ṽΛ||||||ṽΛ̆ − ṽΛ|||.

Now by writing

|||u− ṽΛ|||2 = |||u− ṽΛ̆|||
2 + |||ṽΛ̆ − ṽΛ|||2 + 2〈〈u− ṽΛ̆, ṽΛ̆ − ṽΛ〉〉,

and, for obtaining the second line in the following multi-line formula, twice ap-
plying

|||ṽΛ̆ − ṽΛ||| ≥ |||uΛ̆ − ṽΛ||| − |||ṽΛ̆ − uΛ̆||| ≥ (1− β)|||uΛ̆ − ṽΛ|||,

and for the third line, using |||uΛ̆ − ṽΛ||| ≥ ξ|||u− ṽΛ|||, we find that

|||u− ṽΛ|||2 ≥ |||u− ṽΛ̆|||
2 + |||ṽΛ̆ − ṽΛ|||

(
|||ṽΛ̆ − ṽΛ||| − 2β|||uΛ̆ − ṽΛ|||

)
≥ |||u− ṽΛ̆|||

2 + (1− β)(1− 3β)|||uΛ̆ − ṽΛ|||2

≥ |||u− ṽΛ̆|||
2 + (1− β)(1− 3β)ξ2|||u− ṽΛ|||2,

which completes the proof.

Now we will assume the availability of some subroutines, from which we will
assemble our adaptive wavelet solver. In conjunction with formulating the re-
quirements for those subroutines conveniently, we state the following assumption.

Assumption 6.3.6. It holds that u ∈ As for some s > 0.

The following subroutine provides a means to extract information from the
right hand side f . The availability of this subroutine requires that the subspace
Y is dense in `2, and that for g ∈ Y , %(Λ,g) can be made arbitrarily small by
choosing Λ sufficiently large.

Algorithm 6.3.7 Algorithm template TRHS[Λ, ε] → [g, Λ̆]

Input: Λ ∈ T and ε > 0.
Output: g ∈ Y , Λ ⊆ Λ̆ ∈ T , such that ‖f−g‖+%(Λ̆,g) ≤ ε. Moreover, we have

#Λ̆−#Λ . ε−1/scf for some constant cf only dependent of f , and the number of
arithmetic operations required for this call is bounded by an absolute multiple
of #Λ̆. Furthermore, for any Λ̃ ∈ T̃ , the computation of PΛ̃g takes the order
of #Λ̃ arithmetic operations.

96 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 6.3

Analogously to the above, the following subroutine will be the device with
which the solver will perceive the matrix A. Note that, with the subroutine
APPLY from Algorithm 2.7.9 on page 33, PΛ̃ (APPLY[A,v, ε]) has all the
required properties, thus defining a valid routine.

Algorithm 6.3.8 Algorithm template TAPPLY[Λ̃,v, ε] → wΛ̃

Input: ε > 0, and v ∈ `2(Λ) with Λ, Λ̃ ∈ T̃ , Λ ⊆ Λ̃, and #Λ̃ . #Λ.
Output: wΛ̃ ∈ `2(Λ̃) and ‖AΛ̃v − wΛ̃‖ ≤ ε. Moreover, the number of arith-

metic operations and storage locations required by the call is bounded by some
absolute multiple of ε−1/s|v|1/sAs + #Λ + 1.

For Λ ∈ T̃ and gΛ ∈ `2(Λ), we will use the following subroutine to ap-
proximately solve the Galerkin system AΛvΛ = gΛ. Note that the subroutine
GALSOLVE from Algorithm 3.2.3 on page 47 defines a valid routine.

Algorithm 6.3.9 Algorithm template TGALSOLVE[Λ,gΛ,vΛ, ν, ε] → wΛ

Input: ε > 0, Λ ∈ T̃ , and gΛ,vΛ ∈ `2(Λ) such that ‖gΛ −AΛvΛ‖ ≤ ν.
Output: wΛ ∈ `2(Λ) and ‖gΛ−AΛwΛ‖ ≤ ε. Moreover, the number of arithmetic

operations and storage locations required by the call is bounded by some abso-
lute multiple of ε−1/s|vΛ|1/sAs +c(ε−1‖gΛ−AΛvΛ‖)#Λ}, where c : [0,∞) → [1,∞)
is some non-decreasing function.

In view of (6.2.4) on page 88, we assume the following subroutine.

Algorithm 6.3.10 Algorithm template COMPLETE[Λ] → Λ̃

Input: Let Λ ∈ T .
Output: Λ ⊆ Λ̃ ∈ T̃ with #Λ̃ . #Λ. The number of arithmetic operations

and storage locations required by this call is bounded by an absolute multiple
of #Λ̃. Moreover, for the inputs Λ1 ⊂ Λ2, the corresponding outputs satisfy
Λ̃1 ⊂ Λ̃2.

6.3 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 97

Now in view of Propositions 6.3.4 and 6.3.5 on pages 92–94, by using the above
subroutines and the map V from Assumption 6.3.3, we construct a subroutine that
approximates the residual of a Galerkin solution.

Algorithm 6.3.11 Computation of truncated Galerkin residual
TGALRES[Λ0,w0, ν0, ε] → [rk,Λk, Λ̃k,wk, νk]

Parameters: Let ω, γ, γr, γa > 0, and θ > 0 be constants with (γr + γ)ω < 1.
Input: Let Λ0 ∈ T , w0 ∈ `2(Λ0), ν0 ≥ ‖f −Aw0‖, and ε > 0.
Output: Λk ∈ T , Λ̃k ∈ T̃ , wk ∈ `2(Λ̃k) with ‖f −Awk‖ ≤ νk, and rk ∈ P .
1: k := 0, ζ0 := θν0;
2: repeat
3: k := k + 1, ζk := ζk−1/2;
4: [gk,Λk] := TRHS[Λk−1, γrζk];
5: Λ̃k := COMPLETE[Λk];
6: wk := TGALSOLVE[Λ̃k,PΛ̃k

gk,wk−1, νk−1 + γrζk, γζk];

7: Λ?
k := V(Λ̃k,∇);

8: rk := PΛ?
k
gk −TAPPLY[Λ?

k,wk, γaζk];

9: until νk := κ(A)
1
2 [η−1‖rk‖+ (η−1(γr + γa) + γr + γ) ζk] ≤ ε or ζk ≤ ω‖rk‖.

Proposition 6.3.12. With valid inputs, the subroutine [r, Λ̄, Λ̃,w, ν] :=
TGALRES[Λ,w0, ν0, ε] terminates with w ∈ `2(Λ̃), ‖f−Aw‖ ≤ ν, and ‖PΛ̃(f−
Aw)‖ ≤ ν0θ(γ + γr)/2. Moreover, we have ν & min{ν0, ε}, Λ̄ ∈ T , Λ̃ ∈ T̃ ,
#Λ̃ . #Λ̄, and #Λ̄−#Λ . cfν

−1/s.
If the subroutine terminates with ν > ε, then ν . ‖f −Aw‖, and with Λ? :=

V(Λ̃,∇), r ∈ `2(Λ?), there exists g ∈ Y such that

‖f − g‖+ %(g, Λ̄) ≤ γrω‖r‖, (6.3.5)

‖PΛ̃(g −Aw)‖ ≤ γω‖r‖. (6.3.6)

and with vΛ̃ := A−1

Λ̃
g,

‖PΛ?(g −AvΛ̃)− r‖ ≤ [γa + γκ(A)
1
2]ω‖r‖, (6.3.7)

Furthermore, the number of arithmetic operations and storage locations re-
quired by the call is bounded by some absolute multiple of

ν−1/s(|u|1/sAs + cf) + (ν0/ν)
1/s(#Λ + 1).

Proof. If at evaluation of the until-clause for the k-th iteration, ζk > ω‖rk‖, then
ρk = ‖rk‖+ (γr + γa)ζk < (ω−1 + γr + γa)ζk. Since ζk is halved in each iteration,
we infer that, if not by ζk ≤ ω‖rk‖, the loop will terminate by νk ≤ ε.

98 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 6.3

Let K be the value of k at the termination of the loop. Then for 1 ≤ k ≤ K,
we have

‖PΛ̃k
(f −Awk)‖ ≤ ‖PΛ̃k

(gi −Awk)‖+ ‖f − gk‖
≤ (γ + γr)ζk ≤ ζ1 = ν0θ(γ + γr)/2.

Let 1 ≤ k ≤ K, and assume that νk−1 ≥ ‖f −Awk−1‖, which is true for k = 1
by the condition on the inputs. Then it holds that

‖PΛ̃k
(gk −Awk−1)‖ ≤ ‖f − g‖+ ‖f −Awk−1‖ ≤ γrζk + νk−1,

meaning that in the k-th iteration, the subroutine TGALSOLVE is called with
a valid parameter. With vk := A−1

Λ̃k
gk and v?k := A−1

Λ?
k
gk, we have

‖PΛ?
k
(gk −Av)‖ ≥ ‖A−1‖−

1
2 |||v?k − vk|||

≥ η‖A−1‖−
1
2 |||A−1gk − vk||| − ‖A−1‖−

1
2%(Λ̃k,gk)

≥ η‖A−1‖−
1
2 |||u−wk||| − (γr + γ)ηζk

≥ ηκ(A)−
1
2‖f −Awk‖ − (γr + γ)ηζk,

where in the third line we used the first inequality in 6.3.4 on page 93 with Σ = ∇.
Now using that ‖PΛ?

k
(f −Awk)− rk‖ ≤ (γr + γ)ζk, we infer νk ≥ ‖f −Awk‖.

If the loop terminates in the first iteration, or terminates with νK > ε, then
νK & min{ν0, ε}. In the other case, we have A‖rK−1‖+BζK > ε with some fixed

constants A,B > 0, and 2ζK > ω‖rK−1‖, so that νK & ζK > A‖rK−1‖+BζK
2A/ω+B

& ε.

From ζK ≤ ω‖rK‖ and the definition of νK we have νK . ‖rK‖ and ‖rK‖ ≤
‖f −AwK‖+ (γr + γ)ω‖rK‖, so that νK . ‖f −AwK‖ by (γr + γ)ω < 1.

From the properties of COMPLETE we have #Λ̃K . #ΛK , and from the
properties of TRHS and geometric decrease of ζk, we infer that #ΛK −#Λ0 .
cfζ

−1/s
K . Now we will show that ζK & νK . For 1 ≤ k ≤ K, we have

‖A(wk −wk−1)‖ ≤ ‖A‖
1
2 |||wk −wk−1||| ≤ κ(A)

1
2‖PΛ̃k

A(wk −wk−1)‖

≤ κ(A)
1
2‖PΛ̃k

(gk −Awk)‖+ κ(A)
1
2‖PΛ̃k

(gk −Awk−1)‖

≤ κ(A)
1
2γζk + κ(A)

1
2‖gk −Awk−1‖,

and ‖gk −Awk−1‖ ≤ νk−1 + γrζk. Using these estimates, we infer

‖gk −Awk‖ ≤ ‖gk −Awk−1‖+ ‖A(wk −wk−1)‖ . νk−1 + ζk,

implying that

νk . ‖rk‖+ ζk ≤ ‖PΛ?
k
(gk −Awk)‖+ γaζk + ζk . νk−1 + ζk.

6.3 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 99

We have ν0 = ζ0, and for k > 1, νk−1 . ζk−1 by ω‖rk−1‖ > ζk−1, so νk .
νk−1 + ζk . ζk−1 + ζk . ζk, proving the first part of the proposition.

The inequalities (6.3.6) and (6.3.7) are immediate consequences of the prop-
erties of TRHS and TGALSOLVE, and the condition ζK ≤ ω‖rK‖. One can
prove (6.3.5) by using

‖PΛ?
K
(gK −AwK)‖ ≤ ‖A‖

1
2 |||vK −wK ||| ≤ κ(A)

1
2γζK .

The properties of the subroutines and the map V imply that the cost of k-
th iteration can be bounded by some multiple of ζ

−1/s
k (|wk|1/sAs + |wk−1|1/sAs) +

c(νk−1

ζk
)#Λk + #Λk + 1, where c(·) is the non-decreasing function as described in

the subroutine TGALSOLVE (Algorithm 6.3.9 on page 96). Since any vector wk

determined inside the algorithm satisfies ‖u−wk‖ . νk, from Remark 6.2.2, we
infer that |wk|As . |u|As +(#Λk)

sνk. At any iteration the ratio νk−1

ζk
is uniformly

bounded, and νk−1 . ζk−1 . ζk, so the cost of k-th iteration can be bounded

by some multiple of ζ
−1/s
k |u|1/sAs + #Λk + 1. Moreover, we have #Λk . #Λ0 +

ζ
−1/s
k cf . By the geometric decrease of ζk inside the loop, the above considerations

imply that the total cost of the algorithm can be bounded by some multiple of
ζ
−1/s
K (|u|1/sAs + cf) + K(#Λ0 + 1). Taking into account the value of ζ0, and the

geometric decrease of ζk inside the loop, we haveK(#Λ0+1) = Kν
−1/s
0 ν

1/s
0 (#Λ0+

1) . ζ
−1/s
K ν

1/s
0 (#Λ0 + 1), and the proof is completed by ζK & νK .

Finally, we are ready to present our adaptive wavelet solver. Note that we
employ the subroutine RESTRICT as in Algorithm 3.3.2 on page 53.

Algorithm 6.3.13 Adaptive Galerkin method SOLVE[ε] → wi

Parameters: Let α ∈ (0, 1) be a constant.
Input: ε > 0.
Output: wi ∈ P such that ‖f −Awi‖ ≤ ε.
1: i := 0, w0 := 0, ν0 := ‖f‖, Λ1 := ∇0;
2: loop
3: i := i+ 1;
4: [ri, Λ̄i, Λ̃i,wi, νi] := TGALRES[Λi,wi−1, νi−1, ε];
5: if νi ≤ ε then
6: Terminate the routine.
7: end if
8: Λi+1 := RESTRICT[Λ̃i, ri, α];
9: Complete Λi+1 to a tree by iteratively adding the parents of the indices

whose parent is not in Λi+1;
10: end loop

100 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 6.3

We need the following assumption on the subroutine COMPLETE to prove
the optimality of the adaptive algorithm. This assumption will be verified for
some important examples, cf. Example 6.4.2 on page 103.

Assumption 6.3.14. Let Λ̃0 := ∇0, and for i ∈ N, let Λi ⊃ Λ̃i−1 be a tree, and
let Λ̃i := COMPLETE[Λi]. Then for k ∈ N, we have

#Λ̃k −#∇0 .
k−1∑
i=0

#Λi+1 −#Λ̃i.

Theorem 6.3.15. Inside SOLVE and TGALRES, let the products γω, γrω,

and γaω be small enough such that (γr + γ)ω < α−(γa+γκ(A)
1
2)ω

1+3κ(A)
1
2

, and let θ be such

that θ ≤ 2ω

κ(A)
1
2 [η−1+(η−1(γr+γa)+γr+γ)ω]

. Then uε := SOLVE[ε] terminates with

‖f −Auε‖ ≤ ε. In addition, let α ∈ (0, ηκ(A)−
1
2), let the products γω, γrω, and

γaω be small enough such that

α+[γa+γκ(A)
1
2]ω+2η(γr+γ)ω+γr‖A−1‖−

1
2 ω

1−(γa+γκ(A)
1
2)ω

< ηκ(A)−
1
2 ,

and let ε . ‖f‖. Then, we have # suppuε . ε−1/s(cf + |u|1/sAs) and the number
of arithmetic operations and storage locations required by the call is bounded by
some absolute multiple of the same expression.

Proof. Taking into account the conditions on the parameters, from Propositions
6.3.5 and 6.3.12, it is immediate that as long as νi > ε, |||u−wi+1||| ≤ ρ|||u−wi|||
with some fixed constant ρ < 1. Therefore the loop terminates say, directly after
the K-th call of TGALRES.

By Assumption 6.3.14, for 1 ≤ k ≤ K we have

#Λ̃k −#∇0 . #Λ̄1 −#∇0 +
k−1∑
i=1

#Λ̄i+1 −#Λ̃i

.
k∑
i=1

#Λ̄i −#Λi +
k−1∑
i=1

#Λi+1 −#Λ̃i

.
k∑
i=1

cfν
−1/s
i +

k−1∑
i=1

‖f −Awi‖−1/s|u|1/sAs

. ν
−1/s
k (cf + |u|1/sAs).

From ‖f‖ ≤ |f |As . |u|As and νk . ν0 = ‖f‖, we have ∇0 . 1 . ν
−1/s
k |u|1/sAs ,

implying that
#Λk . ν

−1/s
k (cf + |u|1/sAs). (6.3.8)

6.4 ELLIPTIC BOUNDARY VALUE PROBLEMS 101

We have νK & min{νK−1, ε} & ε, so the bound on # suppw follows.
By Proposition 6.3.12, and Lemma 3.3.3 on page 53, the cost of the i-th

iteration can be bounded by an absolute multiple of

ν
−1/s
i (|u|1/sAs + cf) + (νi−1/νi)

1/s(#Λi + 1) + #Λ̃i + # supp ri + 1

. ν
−1/s
i (|u|1/sAs + cf) + (νi−1/νi)

1/s(#Λi + 1).

We have 1 . ν
−1/s
i−1 |u|

1/s
As , and

#Λi = #Λ̃i−1 + #Λi −#Λ̃i−1 . ν
−1/s
i−1 (cf + |u|1/sAs) + ν

−1/s
i−1 |u|

1/s
As .

Taking into account these bounds, by geometric decrease of νi inside the loop and
νK & ε, we complete the proof.

6.4 Elliptic boundary value problems
In this section, we will verify Assumptions 6.3.3 and 6.3.14 for the case of second
order elliptic boundary value problems.

6.4.1 The wavelet setting
Let Ω ⊂ Rn be a bounded Lipschitz domain and let Ψ be a Riesz basis for
H := H1

0 (Ω) of wavelet type. Let 〈·, ·〉∗ be an inner product on L2(Ω) such that

〈v, w〉∗ . ‖v‖L2(suppw)‖w‖L2 for v, w∈L2(Ω).

We embed L2(Ω) into H ′ by using this inner product: g ∈ L2(Ω) is identified
with the functional 〈g, ·〉∗ in H ′. We assume that the dual basis Ψ̃ (cf. §2.2) of
Ψ is in L2(Ω). Moreover, we assume that the both bases are local, i.e., with
Ωλ := suppψλ and Ω̃λ := supp ψ̃λ,

diam Ωλ, diam Ω̃λ . 2−|λ|, λ ∈ ∇,

and

sup
x∈Ω,j∈N0

#{|λ| = j : B(x, 2−j) ∩ Ωλ 6= ∅} <∞,

where B(x, r) is the n-ball with radius r > 0 and centered at x ∈ Rn. We also
assume that Ωλ contains a ball B(x, r) with r & 2−|λ| and that for s ∈ {0, 1},

‖ψλ‖Hs . 2|λ|(s−1), and ‖ψ̃λ‖L2 . 2|λ|, λ ∈ ∇. (6.4.1)

102 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 6.4

For j ∈ N0, let Xj := span{ψλ : λ ∈ ∇j} and X̃j := span{ψ̃λ : λ ∈ ∇j} with
∇j := {λ ∈ ∇ : |λ| ≤ j}. Then we assume the existence of biorthogonal bases,
called single scale bases, Φj = {φj,λ : λ ∈ ∇j} and Φ̃j = {φ̃j,λ : λ ∈ ∇j} of Xj

and X̃j, respectively. Moreover, we assume that the bases are local in the sense
that

diam(suppφj,λ), diam(supp φ̃j,λ) . 2−j, λ ∈ ∇j, j ∈ N0,

and
sup

x∈Ω,j∈N0

#{λ ∈ ∇j : B(x, 2−j) ∩ suppφj,λ 6= ∅} <∞.

We also assume that for s ∈ {0, 1},

‖φj,λ‖Hs . 2j(s−1), and ‖φ̃j,λ‖L2 . 2j, λ ∈ ∇j, j ∈ N0. (6.4.2)

It is obvious that Xj ⊂ Xj+1 for j ∈ N0. In addition, we assume that there
exists a subspace Π ⊆ X0 such that for any non-degenerate star-shaped domain
D ⊆ Ω,

inf
q∈Π

‖v − q‖L2(D) . (diamD)‖v‖H1
0,∂D∩∂Ω(D) v ∈ H1(D). (6.4.3)

Remark 6.4.1. An example of wavelets satisfying all these assumptions is locally
supported, piecewise polynomial biorthogonal wavelets on finite element meshes,
from [84]. Another example is given by wavelets constructed via domain decom-
position into smooth parametric images of cubes and tensor products of locally
supported biorthogonal spline wavelets on interval, e.g. from [14, 33, 55, 56, 85].
Note that the condition (6.4.3) is satisfied when the space Π ⊆ X0 contains all
polynomials up to first order or piecewise smooth parametric images of all such
polynomials.

In the following, we introduce a notion of mesh for spaces spanned by wavelets.
For any given finite index set Λ ⊂ ∇, let XΛ := span{ψλ : λ ∈ Λ}, and let DΛ

be a subdivision of Ω such that ∪D∈DΛ
D = Ω, D ∩D′ = ∅ for D,D′ ∈ DΛ with

D 6= D′, and such that for D ∈ DΛ, ∂D is a piecewise smooth manifold, and

XΛ|D ⊂ C1(D).

We assume that for finite subsets Λ ⊆ Λ̃ ⊂ ∇, and for D ∈ DΛ and D̃ ∈ DΛ̃, it
holds that either D ⊇ D̃ or D ∩ D̃ = ∅. Moreover, we assume that the domains
D ∈ DΛ are uniformly Lipschitz and that

diamD . 2−jΛ(D) and volD & 2−njΛ(D) D ∈ DΛ,

6.4 ELLIPTIC BOUNDARY VALUE PROBLEMS 103

where jΛ : DΛ → N0 is defined by

jΛ(D) = max{|λ| : λ ∈ Λ, vol(D ∩ Ωλ) > 0} D ∈ DΛ.

We define the set FΛ by collecting the interiors of all nonempty intersections
∂D ∩ ∂D′ with dimension n − 1 for all D,D′ ∈ DΛ ∪ {Rn \ Ω} with D 6= D′.
We assume that F ∈ FΛ is simply connected. Then one can verify that for finite
subsets Λ ⊆ Λ̃ ⊂ ∇, and for F ∈ FΛ and F̃ ∈ FΛ̃, either F ⊇ F̃ or F ∩ F̃ = ∅.
For F ∈ FΛ, we set DΛ(F) := {D ∈ DΛ : F ∩ D 6= ∅}. It is obvious that
#DΛ(F) ≤ 2 for any F ∈ FΛ, and that diamF . diamD for D ∈ DΛ(F). Then
we assume that each F ∈ FΛ can be extended to the boundary ∂ΩF ⊃ F of
a uniformly Lipschitz domain ΩF such that for some ν̃ ∈ C∞(ΩF ,Rn) with a
uniformly bounded ‖ν̃‖C1 and for a uniformly bounded δ > 0,

ν̃ · ν ≥ δ−1 a.e. on ∂ΩF , (6.4.4)

where ν is the unit outward normal of ∂ΩF and ν̃ ·ν is the canonical scalar product
in Rn, and that

diamF h 2−jΛ(F) F ∈ FΛ,

where jΛ : FΛ → N0 is defined by

jΛ(F) = max{|λ| : λ ∈ Λ, voln−1(F ∩ int Ωλ) > 0} F ∈ FΛ.

Note that jΛ(F) ≤ maxD∈DΛ(F) jΛ(D), since if F intersects with Ωλ then the
union ∪D∈DΛ(F)D also intersects with Ωλ.

Furthermore, we assume that there exists a constant N ∈ N such that if Λ ∈ T̃
is a graded tree and µ ∈ Λ is any of its elements, then, for 0 ≤ j ≤ |µ| −N ,

{λ ∈ ∇j : vol(Ωµ ∩ Ωλ) > 0 or vol(Ωµ ∩ Ω̃λ) > 0} ⊂ Λ. (6.4.5)

In particular, this implies that for any λ ∈ L(Λ), there is no µ ∈ Λ with vol(Ωµ ∩
Ωλ) > 0 and |µ| ≥ |λ|+N . In addition, we assume that for graded trees Λ ∈ T̃ ,
and for domains Ξ such that Ξ = ∪D∈DD with D ⊆ DΛ,

‖w‖H1(Ξ) .

{
min
D∈D

(diamD)

}−1

‖w‖L2(Ξ) w ∈ XΛ. (6.4.6)

Example 6.4.2. Assuming that Ω ⊂ Rn is a polyhedron, let D0 be a conforming
subdivision of Ω into n-simplexes, and for j ∈ N, let Dj be a dyadic refinement
of Dj−1. We define the finite element spaces by

Xj = {v ∈ C(Ω) ∩H : v|D ∈ Pd−1 for D ∈ Dj}, j ∈ N0,

104 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 6.4

where Pd−1 is the space of polynomials with degree less than d. Let Φj be the
standard nodal basis of Xj. Then there exist locally supported wavelet bases
Ψ = {ψλ : λ ∈ ∇} and Ψ̃ = {ψ̃λ : λ ∈ ∇} of H such that 〈Ψ, Ψ̃〉L2 = I, and that
for any j ∈ N0 there exists ∇j ⊂ ∇j+1 ⊂ ∇ such that {ψλ : λ ∈ ∇j} is a basis
of Xj, cf. [84]. Moreover, there exists a locally supported single scale basis Φ̃j

of X̃j = span {ψ̃λ : λ ∈ ∇j} such that 〈Φj, Φ̃j〉L2 = I. The level number for an
index λ ∈ ∇ is given by |λ| = min{j ∈ N0 : λ ∈ ∇j}. For a given finite subset
Λ ⊂ ∇ the subdivision DΛ can be defined by the following process.

• Set DΛ := D0;

• For j = 1, . . ., and for D ∈ DΛ, if there is λ ∈ Λ ∩ ∇j such that vol(D ∩
suppψλ) > 0, then replace D in DΛ by the union of all D′ ∈ Dj that
constitute suppψλ.

It is reasonable to assume the existence of a parent-child relation on ∇ such that
if λ ∈ ∇ is a child of µ ∈ ∇, then |λ| = |µ|+ 1 and suppψλ ⊂ suppψµ. With the
root ∇0 and this parent-child relation we have a notion of tree structure on the
subsets of ∇. Note that for any finite tree Λ, #DΛ . #∂Λ . #Λ. We call a tree
Λ ⊇ ∇0 satisfying (6.4.5) a graded tree. Note that while (6.4.5) is a condition
that should be satisfied for graded trees in the abstract setting, we use (6.4.5) to
define the notion of graded tree itself in the context of this example. For any tree
Λ′ ⊇ ∇0, one can get a graded tree by applying the following algorithm iteratively
for all µ ∈ Λ′ \ ∇0, starting off with Λ = ∇0.

Algorithm 6.4.3 Graded tree node insertion APPEND[Λ, µ] → Λ

Input: Λ is a graded tree and µ ∈ L(Λ).
Output: Λ is a graded tree with µ ∈ Λ.
1: if |µ| < N then
2: Terminate the subroutine.
3: end if
4: for all λ ∈ ∇|µ|−N \ Λ such that vol(Ωλ,Ωµ) > 0 or vol(Ω̃λ ∩ Ωµ) > 0 do
5: Λ := APPEND[Λ, λ];
6: end for
7: Λ := Λ ∪ {µ}.

With µ′ ∈ Λ being the parent of µ, we have Ωµ ⊂ Ωµ′ , therefore the condition
(6.4.5) may be violated only for j = |µ| − N . Each recursive call of APPEND
is called with λ ∈ L(Λ), because the parent λ′ of λ satisfies vol(Ωλ′ ∩ Ωµ′) > 0
and |λ′| = |µ′| − N , meaning that λ′ ∈ Λ. Since the number of iterations in the
for all loop is uniformly bounded and the value of |λ| is reduced by N > 0 in

6.4 ELLIPTIC BOUNDARY VALUE PROBLEMS 105

each recursive call, the algorithm terminates in a finite time. By construction,
the output tree Λ fulfils (6.4.5).

By using the result from Section 6.5, which is independent of any section in
this chapter, we will now verify the condition (6.2.4) on page 88 and Assumption
6.3.14 on page 100 in the setting of this example. The functions d(λ) = diam Ωλ

and d(λ, µ) = dist(Ωλ,Ωµ), λ, µ ∈ ∇, satisfy the conditions (i)-(iv) from Section
6.5, with χ = 1, and the map defined by R(Λ, µ) = APPEND[Λ, µ] \Λ satisfies
(6.5.1) on page 115, with LR = 0. Now Theorem 6.5.5 on page 116 implies that
the above notion of graded tree complies with (6.2.4). Furthermore, the abstract
subroutine COMPLETE that was described in Algorithm 6.3.10 on page 96 can
be realized by employing the subroutine APPEND, and then Theorem 6.5.5
verifies Assumption 6.3.14. �

In the rest of this subsection, we will prove two preliminary lemmata.

Lemma 6.4.4. Let Λ ∈ T̃ be a graded tree. Then, the conditions D,D′ ∈ DΛ

and dist(D,D′) . diamD imply that diamD′ h diamD and so volD′ h volD.

Proof. Recall that for λ ∈ ∇, the support Ωλ contains a ball B(x, r) with
radius r ≥ C2−|λ| with an absolute constant C > 0. In view of (6.4.5), if
dist(D,D′) ≤ C2−` for ` ≤ jΛ(D′)−N , then we have jΛ(D) ≥ `. So dist(D,D′) ≤
C2N+K2−jΛ(D′) with a constant K ≥ 0 implies jΛ(D) ≥ jΛ(D′)−N −K, that is,
diamD . 2K diamD′.

On the other hand, if dist(D,D′) ≤ C2−` for ` ≤ jΛ(D) − N , then we have
jΛ(D′) ≥ `. This implies diamD′ . 2K diamD, and the rest of the proof is
straightforward.

The following lemma shows the existence of a mapping that realizes a quasi-
optimal local polynomial approximation. The proof is inspired by the proof of
[35, Lemma 3.3], and it exploits the gradedness of the index trees and the locality
of the dual wavelets. For a different approach that makes use of special properties
of splines, see [9].

Lemma 6.4.5. In the above setting, for any graded tree Λ ∈ T̃ , there exists a
mapping QΛ : L2(Ω) → XΛ such that for D ∈ DΛ,

‖v −QΛv‖L2(D) . inf
p∈Π

‖v − p‖L2(D∗).

with an n-ball D∗ ⊃ D satisfying diamD∗ . diamD, and for F ∈ FΛ,

‖v −QΛv‖L2(F) . (diamF)−
1
2 inf
p∈Π

‖v − p‖L2(F ∗),

106 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 6.4

with an n-ball F ∗ ⊃ F satisfying diamF ∗ . diamF .

Moreover, for any tree Λ̄ ⊃ Λ and v ∈ XΛ̄, with

DΛ,Λ̄ := {D ∈ DΛ : vol(D ∩ Ωλ) > 0 for some λ ∈ Λ̄ \ Λ},

we have (v −QΛv)|D = 0 when D /∈ DΛ,Λ̄, and with

FΛ,Λ̄ := {F ∈ FΛ : voln−1(F ∩ int Ωλ) > 0 for some λ ∈ Λ̄ \ Λ},

we have (v −QΛv)|F = 0 when F /∈ FΛ,Λ̄.

Proof. Let QΛv :=
∑

λ∈Λ〈v, ψ̃λ〉∗ψλ and let Qj := Q∇j
for j ∈ N0. Then the last

statement of the lemma is trivially true. With j := jΛ(D), we have

(v −QΛv)|D = (v −Qjv)|D +
∑

λ∈Λ−(D)

〈v, ψ̃λ〉∗ψλ, (6.4.7)

with

Λ−(D) := {λ ∈ ∇ \ Λ : |λ| ≤ jΛ(D), vol(D ∩ Ωλ) > 0}.

The condition (6.4.5) immediately implies that #Λ−(D) . 1 and jΛ(D)−|λ| . 1
for λ ∈ Λ−(D). Now we will estimate the L2-norms of the two terms in the right
hand side separately. For the last term we have

|〈v, ψ̃λ〉∗| · ‖ψλ‖L2(D) = |〈v − p, ψ̃λ〉∗| · ‖ψλ‖L2(D)

. ‖v − p‖L2(Ω̃λ)‖ψ̃λ‖L2‖ψλ‖L2 . ‖v − p‖L2(Ω̃λ),

which, together with the condition on Λ−(D), implies that∥∥∥∥∥∥
∑

λ∈Λ−(D)

〈v, ψ̃λ〉∗ψλ

∥∥∥∥∥∥
L2(D)

.
∑

λ∈Λ−(D)

‖v − p‖L2(Ω̃λ) . ‖v − p‖L2(D∗),

where we assumed that ⋃
λ∈Λ−(D)

Ω̃λ ⊆ D∗. (6.4.8)

For the first term in the right hand side of (6.4.7), we have

‖v −Qjv‖L2(D) ≤ ‖v − p‖L2(D) + ‖Qjv − p‖L2(D).

6.4 ELLIPTIC BOUNDARY VALUE PROBLEMS 107

Using the single scale basis, we get

‖Qjv − p‖L2(D) =

∥∥∥∥∥∥
∑

λ∈Λ◦(D)

〈v − p, φ̃j,λ〉∗φj,λ

∥∥∥∥∥∥
L2(D)

≤
∑

λ∈Λ◦(D)

|〈v − p, φ̃j,λ〉∗| · ‖φj,λ‖L2(D) . ‖v − p‖L2(D∗).

with
Λ◦(D) := {λ ∈ Λ ∩∇j, D ∩ suppφj,λ 6= ∅},

and with the assumption ⋃
λ∈Λ◦(D)

suppφ̃j,λ ⊆ D∗. (6.4.9)

By the locality of ψλ and φj,λ, and the properties of Λ−(D), we conclude that
there is a ball D∗ satisfying (6.4.8), (6.4.9) and diamD∗ . diamD.

Now we will prove the second part of the lemma. With j := jΛ(F), similarly
to the previous case, we have

(v −QΛv)|F = (v −Qjv)|F +
∑

λ∈Λ−(F)

〈v, ψ̃λ〉∗ψλ, (6.4.10)

where Λ−(F) := {λ ∈ ∇\Λ : |λ| ≤ jΛ(F), F ∩ int Ωλ 6= ∅}, with int Ωλ denoting
the interior of Ωλ. Since Λ−(F) ⊆ ∪D∈DΛ(F)Λ

−(D), it holds that #Λ−(F) . 1
and that jΛ(F) − |λ| . 1 for λ ∈ Λ−(F). The rest of the proof is completely
analogous to the previous case except we use [50, Theorem 1.5.1.10] with the
help of the assumption (6.4.4) to estimate L2-norms on F . For instance, for the
second term in the right hand side of (6.4.10) we have

|〈v, ψ̃λ〉∗| · ‖ψλ‖L2(F) = |〈v − p, ψ̃λ〉∗|‖ψλ‖L2(F) ≤ |〈v − p, ψ̃λ〉∗|‖ψλ‖L2(∂ΩF)

. ‖v − p‖L2(Ω̃λ)‖ψ̃λ‖L2(Ω̃λ)‖ψλ‖
1/2
L2(ΩF)‖ψλ‖

1/2

H1(ΩF)

. 2|λ|/2‖v − p‖L2(Ω̃λ).

6.4.2 Differential operators
Let

a(v, w) :=

∫
Ω

(∑n
j,k=1 ajk∂kv∂jw +

∑n
j=1 bj∂jvw + cvw

)
, (6.4.11)

108 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 6.4

be bounded and coercive bilinear form on H ×H, i.e., it satisfies

a(v, w) . ‖v‖H‖w‖H and a(v, v) & ‖v‖H v, w ∈ H.

Then the operator A : H → H ′ defined by

〈Av,w〉 := a(v, w) for v, w ∈ H,

is bounded and H-elliptic.

We assume that ajk|D ∈ H1(D) for any D ∈ D∇0 and bj, c ∈ L2(Ω).

6.4.3 Verification of Assumption 6.3.3

Let X ⊆ H be a linear subspace, g ∈ L2(Ω), and let v ∈ X be the solution of the
Galerkin problem

a(v, w) = 〈g, w〉L2 w ∈ X. (6.4.12)

Note that taking X = H yields v = A−1g. We have for ṽ ∈ XΛ and w ∈ X,

a(v − ṽ, w) =

∫
Ω

(
gw −

∑
j,k ajk∂kṽ∂jw −

∑
j bj∂j ṽw − cṽw

)
=
∑
D∈DΛ

{∫
D

(
gw +

∑
j,k ∂jajk∂kṽw −

∑
j bj∂j ṽw − cṽw

)
−
∫
∂D

∑
j,k νjajk∂kṽw

}
=:

∑
D∈DΛ

∫
D

RD(g, ṽ)w +
∑
F∈FΛ

∫
F

RF (ṽ)w, (6.4.13)

where νj is the j-th component of the outward unit normal of ∂D. We have

RF (ṽ) =
∑
j,k

νj(F) {(ajk∂kṽ)+ − (ajk∂kṽ)−} ,

where ν(F) with the components νj(F) is a unit normal of F , and (·)± refers to
the value in the positive (or negative) side of F with respect to ν(F). Note that
RF (ṽ) does not depend on the orientation of ν(F). From the conditions on the
coefficients and because F is piecewise smooth, we infer that RD(g, ṽ) ∈ L2(D)
and RF (ṽ) ∈ L2(F).

For any graded tree Λ ∈ T̃ , a tree Λ̄ ⊃ Λ, and functions g ∈ L2(Ω) and

6.4 ELLIPTIC BOUNDARY VALUE PROBLEMS 109

ṽ ∈ XΛ, we define an error estimator by

EΛ,Λ̄(g, ṽ) :=

 ∑
D∈DΛ,Λ̄

(diamD)2‖RD(g, ṽ)‖2
L2(D)

+
∑

F∈FΛ,Λ̄

(diamF)‖RF (ṽ)‖2
L2(F)


1
2

,

(6.4.14)

where DΛ,Λ̄ and FΛ,Λ̄ are as in Lemma 6.4.5 on page 105.

The following result shows that EΛ,Λ̄(g, vΛ) is an upper bound on the difference
between the Galerkin solutions on XΛ and on XΛ̄. Given the result of Lemma
6.4.5, the proof follows the standard techniques, cf. [89], but we include it here
for the reader’s convenience.

Theorem 6.4.6. Let Λ ∈ T̃ , g ∈ L2(Ω), and let vΛ ∈ XΛ and vΛ̄ ∈ XΛ̄ be the so-
lutions of the Galerkin problem (6.4.12) with X = XΛ and X = XΛ̄, respectively.
Then we have

‖vΛ̄ − vΛ‖H1 . EΛ,Λ̄(g, vΛ).

Proof. Since a(vΛ̄, w) = 〈g, w〉L2 for w ∈ XΛ̄, we have a(vΛ̄ − vΛ, w) = 0 for w ∈
XΛ. Using this, the definition (6.4.13), and applying the Cauchy-Bunyakovsky-
Schwarz (CBS) inequality, Lemma 6.4.5 and (6.4.3) on page 102, and again the
CBS inequality, for w ∈ XΛ̄, we infer

a(vΛ̄ − vΛ, w) = a(vΛ̄ − vΛ, w −QΛw)

=
∑
D∈DΛ

∫
D

RD(g, ṽ)(w −QΛw) +
∑
F∈FΛ

∫
F

RF (ṽ)(w −QΛw)

≤
∑

D∈DΛ,Λ̄

‖RD(g, ṽ)‖L2(D)‖w −QΛw‖L2(D)

+
∑

F∈FΛ,Λ̄

‖RF (ṽ)‖L2(F)‖w −QΛw‖L2(F)

.
∑

D∈DΛ,Λ̄

‖RD(g, ṽ)‖L2(D)(diamD)‖w‖H1(D∗)

+
∑

F∈FΛ,Λ̄

‖RF (ṽ)‖L2(F)(diamF)
1
2‖w‖H1(F ∗)

110 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 6.4

.

 ∑
D∈DΛ,Λ̄

(diamD)2‖RD(g, ṽ)‖2
L2(D)

+
∑

F∈FΛ,Λ̄

(diamF)‖RF (ṽ)‖2
L2(F)


1
2

‖w‖H1(Ω).

Now using that ‖ · ‖H1 . supw∈H
a(·,w)
‖w‖H1

, we finish the proof.

The following result shows that EΛ,Λ̄(g, vΛ) is also a lower bound on the dif-
ference between two Galerkin solutions. Although the proof follows the standard
techniques, cf. [62, 89], we include it here for the reader’s convenience since the
setting here is somewhat different than the usual finite element setting.

Theorem 6.4.7. Let Λ,Λ? ∈ T̃ and Λ̄ ∈ T be such that Λ ⊂ Λ? ⊂ Λ̄ and that

min
{D?∈DΛ? :D?⊆D}

diamD? & diamD D ∈ DΛ,Λ̄.

For D ∈ DΛ,Λ̄, let Π(D) ⊆ L2(D), and let ϑD : Π(D) → XΛ? be uniformly
bounded in the standard metric on L2(D) → L2(D) and such that for p ∈ Π(D)

suppϑDp ⊆ D and ‖p‖2
L2(D) .

∫
D

pϑDp. (6.4.15)

For F ∈ FΛ,Λ̄, let Π(F) ⊆ L2(F), and let ϑF : Π(F) → XΛ? be uniformly bounded
in the standard metric on L2(F) → L2(F) and such that for p ∈ Π(F)

suppϑFp ⊆
⋃

D∈DΛ(F)

D, ‖p‖2
L2(F) .

∫
F

pϑFp (6.4.16)

and
‖ϑFp‖L2(D) . (diamF)

1
2‖p‖L2(F). (6.4.17)

Moreover, let g ∈ L2(Ω), and let vΛ ∈ XΛ and vΛ? ∈ XΛ? be the solutions to the
Galerkin problem (6.4.12) with X = XΛ and X = XΛ?, respectively. Then, there
exists a function ρ : T × L2(Ω) → [0,∞) such that

EΛ,Λ̄(g, vΛ) . ‖vΛ? − vΛ‖H1 + ρ(Λ, g)

Proof. For D ∈ DΛ,Λ̄, set RD = RD(g, vΛ) and let RD ∈ Π(D). Then, with

w := ϑDRD ∈ XΛ? , using the second estimate in (6.4.15), taking into account the

6.4 ELLIPTIC BOUNDARY VALUE PROBLEMS 111

definition (6.4.13) and the fact that suppw ⊆ D, and finally applying the CBS
inequality and the inverse inequality (6.4.6), we have

‖RD‖2
L2(D) .

∫
D

RDw = a(vΛ? − vΛ, w) +

∫
D

(RD −RD)w

. ‖vΛ? − vΛ‖H1(D)‖w‖H1(D) + ‖RD −RD‖L2(D)‖w‖L2(D)

.
{
(diamD)−1‖vΛ? − vΛ‖H1(D) + ‖RD −RD‖L2(D)

}
‖w‖L2(D).

Now using the uniform boundedness of ϑD : L2(D) → L2(D) and the triangle
inequality, we infer

‖RD‖L2(D) . (diamD)−1‖vΛ? − vΛ‖H1(D) + ‖RD −RD‖L2(D). (6.4.18)

For F ∈ FΛ,Λ̄, let RF ∈ Π(F) and set w := ϑFRF ∈ XΛ? and RF = RF (vΛ).
Then, similarly to the above, we get

‖RF‖2
L2(F) .

∫
F

RFw

= a(vΛ? − vΛ, w) +

∫
F

(RF −RF)w −
∑

D∈DΛ(F)

∫
D

RDw

.
∑

D∈DΛ(F)

‖vΛ? − vΛ‖H1(D)‖w‖H1(D) + ‖RF −RF‖L2(F)‖w‖L2(F)

+
∑

D∈DΛ(F)

{
(diamD)−1‖vΛ? − vΛ‖H1(D) + ‖RD −RD‖L2(D)

}
‖w‖L2(D)

.
∑

D∈DΛ(F)

{
(diamD)−1‖vΛ? − vΛ‖H1(D) + ‖RD −RD‖L2(D)

}
‖w‖L2(D)

+ ‖RF −RF‖L2(F)‖w‖L2(F),

where we have used (6.4.18) in the third line. By using (6.4.17), the uniform
boundedness of ϑF : L2(F) → L2(F), and the triangle inequality, we have

‖RF‖L2(F) . ‖RF −RF‖L2(F) (6.4.19)

+
∑

D∈DΛ(F)

{
(diamD)−

1
2‖vΛ? − vΛ‖H1(D) + (diamF)

1
2‖RD −RD‖L2(D)

}
.

Whenever F ∈ FΛ,Λ̄ and D ∈ DΛ(F), we have D ∈ DΛ,Λ̄. Then in view of the
definition (6.4.14), the estimates (6.4.18) and (6.4.19) show that[

EΛ,Λ̄(g, vΛ)
]2

.
∑

D∈DΛ,Λ̄

‖vΛ? − vΛ‖2
H1(D)

+
∑

D∈DΛ,Λ̄

(diamD)2‖RD −RD‖2
L2(D) +

∑
F∈FΛ,Λ̄

(diamF)‖RF −RF‖2
L2(F).

112 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 6.4

Now the proof is obtained with the function

ρ(Λ, g) := inf
{RD∈Π(D), RF∈Π(F)}

{∑
D∈DΛ

(diamD)2‖RD −RD‖2
L2(D) (6.4.20)

+
∑
F∈FΛ

(diamF)‖RF −RF‖2
L2(F)

} 1
2

.

Corollary 6.4.8. Let V : (Λ, Λ̄) 7→ Λ? ∈ T̃ be a mapping such that all the
conditions of Theorem 6.4.7 are satisfied for any Λ ∈ T̃ , Λ̄ ⊃ Λ a tree, and
Λ? := V(Λ, Λ̄). Then, the condition (6.3.3) in Assumption 6.3.3 on page 92 is
valid with Y = {g ∈ `2 : gT Ψ̃ ∈ L2(Ω)} and %(Λ,g) h ρ(Λ,gT Ψ̃), where ρ(·, ·) is
as in Theorem 6.4.7.

Example 6.4.9. Here we return to Example 6.4.2 of finite element wavelets. Let
Λ ⊂ Λ′ ⊆ Λ? be graded trees such that each D ∈ DΛ,Λ̄ contains in the interior a
vertex from DΛ′ and each F ∈ FΛ,Λ̄ contains in the interior a vertex from FΛ′ . We
denote these vertices by VD and VF , respectively, and for D ∈ DΛ and F ∈ FΛ,
define the bubble functions bD and bF such that

• both bD and bF are nonnegative and piecewise linear w.r.t. DΛ′ ,

• bD(VD) = 1 and bF (VF) = 1,

• supp bD ⊆ D and supp bF ⊆ ∪{D′∈DΛ:D′∩F 6=∅}D
′.

Then, we take Π(D) := Pd−2(D) for D ∈ DΛ, and Π(F) := Pd−2(F) for F ∈
FΛ, and define ϑD : Π(D) 3 p 7→ bDp and ϑF (p) for p ∈ Π(F) by extending
p constantly along a transversal to F and multiplying it with bF . Here by a
transversal to F we mean a vector whose angle with F is uniformly bounded
away from 0. Now the maps ϑD and ϑF satisfy the conditions of Theorem 6.4.7,
cf. [62], provided that for D ∈ DΛ,Λ̄ and for F ∈ FΛ,Λ̄, the space XΛ? contains
ϑDΠ(D) and ϑFΠ(F), respectively.

In view of the above considerations, we introduce an algorithm for construct-
ing Λ? for given graded tree Λ and tree Λ̄ ⊃ Λ.

6.4 ELLIPTIC BOUNDARY VALUE PROBLEMS 113

Algorithm 6.4.10 Realization of the mapping V : (Λ, Λ̄) 7→ Λ?

Input: Let Λ be a graded tree, and let Λ̄ ⊃ Λ be a tree.
Output: Λ? ∈ T̃ with Λ ⊂ Λ? ⊂ Λ̄.
1: Λ? := Λ;
2: for all E ∈ DΛ,Λ̄ ∪ FΛ,Λ̄ do
3: Λ′ := Λ;
4: Add to Λ′ all necessary indices λ ∈ ∇ \ Λ, so that E contains a vertex VE

from DΛ′ ;
5: Construct the function bE;
6: Add to Λ? all indices λ ∈ ∇ \ Λ? for which supp ψ̃λ intersects with

sing supp bE;
7: Λ? := Λ? ∪ Λ′;
8: end for
9: Complete Λ? to a tree by iteratively adding the parents of the indices whose

parent is not in Λ?;
10: Complete Λ? to a graded tree by iteratively applying APPEND for the

indices in Λ? \ Λ.

Note that the set of vertices of DΛ′ is the same as the set of vertices of FΛ′ .
By the condition (6.4.5) and the locality of the wavelets, the number of indices
added to Λ? in an iteration of the for all loop is uniformly bounded, meaning
that with Λ?

1 denoting the value of Λ? just after this loop, we have #Λ?
1 −#Λ .

#DΛ,Λ̄ + #FΛ,Λ̄ . #DΛ,Λ̄. Moreover, denoting by Λ?
2 the value of Λ? just after

the evaluation of the statement in Line 9, we have #Λ?
2−#Λ . #Λ?

1−#Λ since
the minimum level difference between any index from Λ?

1 and its ancestor from
Λ is uniformly bounded. As noted earlier, the condition (6.4.5) implies that for
any λ ∈ L(Λ), there is no µ ∈ Λ with vol(Ωµ ∩ Ωλ) > 0 and |µ| ≥ |λ| + N .
Since the minimum level difference between any index from Λ?

2 and its ancestor
from Λ is uniformly bounded, each application of APPEND adds a uniformly
bounded number of indices to Λ?, implying that #Λ? − #Λ . #DΛ,Λ̄. It is
obvious that #DΛ,Λ̄ . #Λ. Moreover, we have DΛ,Λ̄ = {D ∈ DΛ : vol(D ∩Ωλ) >
0 for some λ ∈ Λ̄ ∩ L(Λ)}, and for D ∈ DΛ and λ ∈ L(Λ) with vol(D ∩ Ωλ) > 0,
we have vol(D) & 2−n|λ|. We end this example by deducing that, for finite trees
Λ̄, DΛ,Λ̄ . #

(
Λ̄ ∩ L(Λ)

)
. #(Λ̄ \ Λ). �

Remark 6.4.11. For graded trees, one can perform a transformation into a local
scaling function representation in linear time, cf. [35, §5.3]. So since Λ and Λ̃
are graded trees and #Λ̃ . #Λ in TAPPLY (Algorithm 6.3.8 on page 96), we
can design a valid subroutine TAPPLY using these local transforms and the
stiffness matrix in the local scaling function representation, which is sparse for

114 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 6.5

differential operators. We remark that in the truncated residuals approach, at
least for differential operators the compressibility of the infinite stiffness matrix
is not necessary.

6.5 Completion of tree
Let ∇ be a countable set, and let a parent-child relation be defined on ∇. Note
that the main result of this section is independent of the results from the previous
sections, so in particular, the set ∇ is an abstract set, not necessarily being
the index set we considered in the previous sections. We assume that every
element λ ∈ ∇ has a uniformly bounded number of children, and has at most
one parent. We say that λ ∈ ∇ is a descendant of µ ∈ ∇ and write λ � µ if
λ is a child of a descendant of or is a child of µ. The relations ≺ (ascendant
of), � (descendant of or equal to), and � (ascendant of or equal to) are defined
accordingly. The level or generation of an element λ ∈ ∇, denoted by |λ| ∈ N0,
is the number of its ascendants. Obviously, λ � µ implies |λ| > |µ|. We call the
set ∇0 := {λ ∈ ∇ : |λ| = 0} the root, and assume that #∇0 <∞.

A subset Λ ⊆ ∇ is said to be a tree if with every member λ ∈ Λ all its
ascendants are included in Λ. For a tree Λ, those λ ∈ Λ whose children are not
contained in Λ are called leaves of Λ, and the set of all leaves of Λ is denoted by
∂Λ. Similarly, those λ /∈ Λ whose parent belongs to Λ is called outer leaves of Λ
and the set of all outer leaves of Λ is denoted by L(Λ).

We assume that there are functions d : ∇ → R and d : ∇×∇ → R satisfying
the following conditions:

(i) For any λ ∈ ∇, with some absolute constants Cd, χ ≥ 0, it holds that

0 < d(λ) ≤ Cd2
−χ|λ|;

(ii) For any λ, µ ∈ ∇, we have d(λ, µ) = d(µ, λ) ≥ 0, and d(λ, µ) = 0 if λ � µ;

(iii) For any λ, µ, ν ∈ ∇, there holds a triangle inequality:

d(λ, ν) ≤ d(λ, µ) + d(µ) + d(µ, ν);

(iv) Let L ∈ N0 and C > 0 be arbitrary but fixed constants. Then for any fixed
µ ∈ ∇, ` ∈ N0 with ` ≤ |µ| + L, there exists a uniformly bounded number
of λ ∈ ∇ with d(λ, µ) ≤ C2−χ`.

Example 6.5.1. In the situation of Example 6.4.2 on page 103, let d(λ) =
diam Ωλ and d(λ, µ) = dist(Ωλ,Ωµ), λ, µ ∈ ∇. Then these functions satisfy
the above conditions (i)-(iv) with χ = 1. �

6.5 COMPLETION OF TREE 115

Example 6.5.2. Let Ω ⊂ Rn be some polyhedral domain and let it be subdivided
into finitely many pairwise disjoint n-simplices. We denote by ∇0 the set of these
n-simplices, and form the set∇ by collecting all n-simplices created by a (possibly
trivial) finite sequence of dyadic refinements of an initial simplex λ ∈ ∇0. The
parent-child relation on ∇ is defined by saying that λ ∈ ∇ is a child of µ ∈ ∇
if λ is created by one elementary dyadic refinement of µ. Then the functions
d(·) := diam(·) and d(·, ·) := dist(·, ·) satisfy the above conditions with χ = 1. �

Let T denote the set of all finite trees, and let T̃ ⊆ T be a subset such that
∇0 ∈ T̃ . Then we introduce a map R that sends the pair of a tree Λ ∈ T̃ and any
of its outer leaves µ ∈ L(Λ) to a set µ ∈ R(Λ, µ) ⊂ ∇ such that R(Λ, µ)∩Λ = ∅,
and R(Λ, µ)∪Λ is a tree in T̃ . We assume that for any λ ∈ R(Λ, µ) it holds that

d(λ, µ) ≤ CR2−χ|λ|, and |λ| ≤ |µ|+ LR, (6.5.1)

where CR ∈ R+ and LR ∈ N0 are constants.

Example 6.5.3. In the setting of Example 6.4.2 on page 103, let R(Λ, µ) =
APPEND[Λ, µ] \ Λ. Then this map satisfies the above condition (6.5.1) with
χ = 1 and LR = 0. �

We can apply the map R iteratively on some tree Λ ∈ T̃ and get bigger and
bigger trees in T̃ . What is interesting to us here is that choosing the map R (and
so T̃) appropriately we can impose special structures on the resulting tree, while
keeping the size reasonably small. For instance, it is possible to grow any tree to
a graded tree using this approach such that the result is optimal in some sense.
To this end, let us study the following algorithm.

Algorithm 6.5.4 Tree completion
Λ := ∇0;
for i = 1 to K do

Let M̄i ⊆ L(Λ);
for all µ ∈ M̄i do

if µ /∈ Λ then
Λ := Λ ∪R(Λ, µ);

end if
end for

end for.

The following theorem is an easy extension of [87, Theorem 6.1] and [8, The-
orem 2.4], and since the setting here is somewhat more general, we include the
proof for reader’s convenience.

116 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 6.5

Theorem 6.5.5. Let M be the set of elements µ for which the map R is applied
in the above algorithm, which set is thus contained in ∪iM̄i. Then for the output
tree Λ ∈ T̃ we have #(Λ \ ∇0) . #M uniformly in K.

Proof. The proof will closely follow the proof of Theorem 6.1 in [87]. Let a :
N0 ∪ {−1, . . . ,−LR} → (0,∞) and b : N → (1,∞) be some sequences with∑

p a(p) < ∞,
∑

p b(p)2
−χp < ∞, and infp≥1[b(p) − 1]a(p) > 0. For instance,

a(p) = (p+LR + 1)−1 and b(p) = 1 + 2κp with a constant κ ∈ (0, χ) satisfy these
conditions.

With A := CR + (2χCR + 2χCd + Cd)
∑

p b(p)2
−χp, we define the function

f : Λ×M → R by

f(λ, µ) =

{
a(|µ| − |λ|) if d(λ, µ) < A2−χ|λ| and |µ| − |λ| ≥ −LR,
0 otherwise.

From condition (iv), for any µ ∈M we have

∑
λ∈Λ

f(λ, µ) =

|µ|+LR∑
`=0

∑
|λ|=`

f(λ, µ) .
|µ|+LR∑
`=0

a(|µ| − `) ≤
∑
p

a(p) . 1,

implying that
∑

µ∈M
∑

λ∈Λ f(λ, µ) . #M .

We claim that for any λ ∈ Λ \ ∇0,∑
µ∈M

f(λ, µ) & 1,

so that

#(Λ \ ∇0) .
∑

λ∈Λ\∇0

∑
µ∈M

f(λ, µ) ≤
∑
µ∈M

∑
λ∈Λ

f(λ, µ) . #M,

as required. Now we will prove this claim.

The claim is true for λ ∈M since f(λ, λ) = a(0) & 1. Let λ0 ∈ Λ \ (M ∪∇0).
For j ≥ 0, assume that λj has been defined and let λ′j be the parent of λj for
j ≥ 1, and λ′0 := λ0. Then we define λj+1 ∈ M such that λ′j ∈ R(Λ′, λj+1)
with some tree Λ′. Let s be the smallest positive integer such that |λs| ∈ I :=
{|λ0| −LR, . . . , |λ0|}. Note that such an s exists. Indeed, the sequence {λj} ends
with some λJ ∈ L(∇0) thus with |λJ | = 1 ≤ |λ0|, and from the properties of R we
have |λ′j| ≤ |λj+1|+ LR or |λj+1| ≥ |λj| − LR − 1 for j ≥ 1 and |λ1| ≥ |λ0| − LR,
meaning that if not |λ1| ∈ I, we have |λ1| > |λ0|. Therefore the interval I can

6.5 COMPLETION OF TREE 117

not be skipped by j 7→ λj. For 1 ≤ j ≤ s we have

d(λ0, λj) ≤ d(λ0, λ1) + d(λ1) + d(λ1, λj) ≤
j∑

k=1

d(λk−1, λk) +

j−1∑
k=1

d(λk)

≤
j∑

k=1

d(λ′k−1, λk) +

j−1∑
k=1

d(λ′k) + d(λk)

≤ CR2−χ|λ0| + CR

j−1∑
k=1

2−χ|λ
′
k| + Cd

j−1∑
k=1

2−χ|λ
′
k| + 2−χ|λk|

≤ CR2−χ|λ0| + (2χCR + 2χCd + Cd)

j−1∑
k=1

2−χ|λk|

= CR2−χ|λ0| + (2χCR + 2χCd + Cd)
∞∑
p=1

m(p, j)2−χ(|λ0|+p),

where m(p, j) denotes the number of k ∈ {1, . . . , j−1} with |λk| = |λ0|+p. Note
that m(p, 1) = 0 for any p.

In case m(p, s) ≤ b(p) for all p ≥ 1, then by the definition of the constant A
we have d(λ0, λs) < A2−χ|λ0|. Since −LR ≤ |λs| − |λ0| ≤ 0, we have f(λ0, λs) =
a(|λs| − |λ0|) & 1, which proves the claim.

Otherwise, there exist p with m(p, s) > b(p). For each of those p, there exists
a smallest j = j(p) with m(p, j(p)) > b(p) because m(p, j) ≥ m(p, j − 1). With
j∗ := minp≥1 j(p), let p∗ be such that j(p∗) = j∗. So we have m(p, j∗ − 1) ≤ b(p)
for all p ≥ 1, and m(p∗, j∗ − 1) ≥ m(p∗, j∗) − 1 > b(p∗) − 1 > 0. This implies
that j∗ − 1 ≥ 1. As in the above case, we find that for all 1 ≤ k ≤ j∗ − 1,
d(λ0, λk) < A2−χ|λ0| and f(λ0, λk) = a(|λk|−|λ0|). Finally by using the definition
of m(·, ·) we have∑

{1≤k≤j∗−1:|λk|=λ0|+p∗}

f(λ0, λk) = m(p∗, j∗ − 1)a(p∗)

> [b(p∗)− 1]a(p∗) ≥ inf
p≥0

[b(p)− 1]a(p) & 1,

which proves the claim.

118 ADAPTIVE ALGORITHM WITH TRUNCATED RESIDUALS 6.5

Chapter 7
Computability of differential operators

7.1 Introduction

For a boundedly invertible M : `2 → `2, and g ∈ `2, we consider the problem of
finding the solution u ∈ `2 of

Mu = g.

One can apply the adaptive algorithms from the preceding chapters, thereby
e.g. Theorem 5.3.9 and Theorem 3.3.5 now say that if u ∈ As for some s, and
M is s∗-computable for an s∗ > s, then the number of arithmetic operations
and storage locations used by the adaptive wavelet algorithm for computing an
approximation for u within tolerance ε is of the order ε−1/s. Since in view of
(2.3.3) the same order of storage locations is generally needed to approximate u
within this tolerance using best N -term approximations, assuming these would
be available, this result shows that the solution methods achieve the optimal
computational complexity for the given problem.

To conclude optimality of the adaptive wavelet method, it is necessary to show
that M is s∗-computable for some s∗ > d−t

n
, since otherwise for a solution u that

has sufficient Besov regularity, the computability will be the limiting factor. On
the other hand, since, for wavelets of order d, by imposing whatever smoothness
conditions u ∈ As can only be guaranteed for s ≤ d−t

n
, showing s∗-computability

for some s∗ > d−t
n

is also a sufficient condition for optimality of the adaptive
wavelet method.

The work in this chapter is a joint work with Rob Stevenson, see Section 1.2

119

120 COMPUTABILITY OF DIFFERENTIAL OPERATORS 7.2

On the other hand, s∗-compressibility for some s∗ > d−t
n

has been demon-
strated in [86] for both differential and singular integral operators, and piecewise
polynomial wavelets that are sufficiently smooth and have sufficiently many van-
ishing moments.

Only in the special case of a differential operator with constant coefficients, en-
tries of M can be computed exactly, in O(1) operations, so that s∗-compressibility
immediately implies s∗-computability. In general, numerical quadrature is re-
quired to approximate the entries. In this chapter, considering differential op-
erators, we will show that M is s∗-computable for the same value of s∗ as is
was shown to be s∗-compressible. The case of singular integral operators will be
treated in the next chapter. We split the task into two parts. First we derive
a criterion on the accuracy-work balance of a numerical quadrature scheme to
approximate any entry of M, such that, for a suitable choice of the work invested
in approximating the entries of the compressed matrix Mj as function of both
wavelets involved, we obtain an approximation M∗

j of which the computation of
each column requires O(2j) operations, and ‖Mj −M∗

j‖ ≤ 2−js
∗
, meaning that,

on account of Lemma 2.7.12, M is s∗-computable. Second, we show that we can
fulfill above criterion by the application of standard composite quadrature rules
of a fixed, sufficiently high order.

This chapter is organized as follows. We collect some error estimates for
numerical quadrature in Section 7.2. In Section 7.3, assumptions are formu-
lated on the boundary value problem and the wavelets, and the result concerning
s∗-compressibility is recalled from [86]. In Section 7.4, rules for the numerical
approximation of the entries of the stiffness matrix are derived, with which s∗-
computability for some s∗ > d−t

n
will be demonstrated.

At the end of this introduction, we fix a few more notations. A monomial of n
variables is conveniently written using a multi-index α ∈ Nn

0 as xα := xα1
1 . . . xαn

n .
Likewise we write partial differentiation operators, that is, ∂α := ∂α1

1 . . . ∂αn
n . We

set |α| := α1+. . .+αn, and the relation α ≤ β is defined as αi ≤ βi for all i ∈ 1, n.
We have |α± β| = |α| ± |β| provided that α− β ∈ Nn

0 in case of subtraction.

7.2 Error estimates for numerical quadrature

We start with deriving an error bound in L∞-norm for polynomial approximation,
which improves upon available results (e.g. in [38, Theorem 1.1]) in the sense
that our upper bound does not contain an unspecified constant that may vary as
function of the polynomial order p. This latter fact will be particularly important
for analyzing the errors of quadrature schemes with varying orders as we will apply

7.2 ERROR ESTIMATES FOR NUMERICAL QUADRATURE 121

in the next chapter. We define the radius of a star-shaped domain Ω by

rad(Ω) := min
y∈S(Ω)

max
x∈∂Ω

|x− y|, (7.2.1)

where S(Ω) := clos{y ∈ Ω : Ω is star-shaped w.r.t. y}. Apparently, we always
have rad(Ω) ≤ diam(Ω), and the radius of a convex domain equals the radius of
its smallest circumscribed sphere.

Lemma 7.2.1. Let Ω ⊂ Rn be a star-shaped domain and let f ∈ W p
∞(Ω), p ∈ N.

Then there exists a polynomial g ∈ Pp−1 on Ω for which

‖f − g‖L∞(Ω) ≤
np

p!
· rad(Ω)p · |f |W p

∞(Ω). (7.2.2)

Proof. We first assume that f ∈ C∞(Ω)∩W p
∞(Ω). Let a point y ∈ S(Ω) be such

that maxx∈∂Ω |x− y| = rad(Ω). Let g be the Taylor polynomial of order p at the
point y, i.e.,

g(x) =
∑
|α|<p

(x− y)α

α!
(∂αf)(y). (7.2.3)

Then the Taylor remainder is given by

f(x)− g(x) = p
∑
|α|=p

(x− y)α

α!

∫ 1

0

sp−1(∂αf)(x+ (y − x)s)ds.

Using∣∣∣∣∫ 1

0

sp−1(∂αf)(x+ (y − x)s)ds

∣∣∣∣ ≤ ∫ 1

0

sp−1ds · |f |W p
∞(Ω) =

1

p
· |f |W p

∞(Ω),

and

|(x− y)α| = |x1 − y1|α1 . . . |xn − yn|αn ≤ rad(Ω)p,

we have

|f(x)− g(x)| ≤
∑
|α|=p

1

α!
· rad(Ω)p · |f |W p

∞(Ω).

Then by applying the identity ∑
|α|=p

1

α!
=
np

p!

we get (7.2.2) for f ∈ C∞(Ω) ∩W p
∞(Ω).

122 COMPUTABILITY OF DIFFERENTIAL OPERATORS 7.2

To complete the proof we use a density argument that was proven in [12]. For
any f∈W p

∞(Ω), there exist functions fk ∈ C∞(Ω) ∩ W p
∞(Ω), k ∈ N, such that

fk→f in W p−1
∞ (Ω), and ‖fk‖W p

∞(Ω) → ‖f‖W p
∞(Ω) as k →∞. With this result, for

each k ∈ N let us denote by gk∈Pp−1 the Taylor polynomial (7.2.3) corresponding
to fk. Then, since for any k, j ∈ N and |α| < p we have

|(∂αfk)(y)− (∂αfj)(y)| ≤ ‖∂αfk − ∂αfj‖L∞(Ω)

≤ ‖∂αfk − ∂αf‖L∞(Ω) + ‖∂αfj − ∂αf‖L∞(Ω),

where the right-hand side tends to zero as j, k → ∞, we infer that there is a
g∈Pp−1 such that gk→g in L∞(Ω). Writing

‖f − g‖L∞(Ω) ≤ ‖f − fk‖L∞(Ω) + ‖g − gk‖L∞(Ω) + ‖fk − gk‖L∞(Ω),

and by taking the limit k →∞, the proof is completed.

On a star-shaped domain Ω, let us now consider quadrature rules of the form
Q : f 7→

∑
j wjf(xj) to approximate I : f 7→

∫
Ω
f . We will only consider rules

that are internal meaning that all xj ∈ clos Ω. The quadrature error functional
is defined as E := I −Q.

Proposition 7.2.2. For a rule Q of order p, meaning that E(f) = 0 for all
f ∈ Pp−1(Ω), and any f ∈ W p

∞(Ω) we have

|E(f)| ≤
(

1 +

∑
j |wj|

vol(Ω)

)
· n

p

p!
· rad(Ω)p · vol(Ω) · |f |W p

∞(Ω). (7.2.4)

Proof. Taking g as in Lemma 7.2.1, the proof is an easy consequence of that
lemma and the estimate

|I(f)−Q(f)| = |I(f)−Q(f) +Q(g)− I(g)| ≤ |I(f − g)|+ |Q(g − f)| .

Note that for a rule that is positive, meaning that all wj > 0, and that has order

p > 0, we have
P

j |wj |
vol(Ω)

= 1.

Let us now consider a collection O of disjoint star-shaped Lipschitz subdo-
mains Ω′ ⊂ Ω, the latter not necessarily being star-shaped, such that clos Ω =
∪Ω′∈O clos Ω′, which collection we will refer to as being a quadrature mesh. Writ-
ing I(f) as

∑
Ω′∈O

∫
Ω′
f , on each subdomain Ω′ we employ a quadrature rule

QΩ′(f) =
∑

j w
Ω′
j f(xΩ′

j) of order p, defining a composite quadrature rule Q of
rank N := #O (and order p) by Q(f) :=

∑
Ω′∈OQΩ′(f).

7.2 ERROR ESTIMATES FOR NUMERICAL QUADRATURE 123

Proposition 7.2.3. For the error functional E = I−Q of this composite quadra-
ture rule, and f ∈ W p

∞(Ω) we have

|E(f)| ≤

(
1 + sup

Ω′∈O

∑
j |wΩ′

j |
vol(Ω′)

)
· sup

Ω′∈O

(
N1/nrad(Ω′)

diam(Ω)

)p
×N−p/n · n

p

p!
· diam(Ω)p · vol(Ω) · |f |W p

∞(Ω).

Proof. Writing rad(Ω′) = N1/nrad(Ω′)
diam(Ω)

N−1/n diam(Ω), and using that∑
Ω′∈O vol(Ω′) = vol(Ω), the result follows from Proposition 7.2.2.

In view of above estimate, as well as to control the number of function eval-
uations that are required, in this chapter we will consider families (O`)`∈N of
quadrature meshes and corresponding families of composite quadrature rules
Q` : f 7→

∑
Q′∈O`

∑
j w

Ω′
j f(xΩ′

j) of rank N` := #O` and fixed order p that are
admissible meaning that they satisfy

sup
`∈N,Ω′∈O`

max

{∑
j |wΩ′

j |
vol(Ω′)

,
N

1/n
` rad(Ω′)

diam(Ω)
,#xΩ′

j

}
<∞.

Note that the bound on the number of abscissae in each subdomain is reasonable
because the space of polynomials of total degree p − 1 has

(
p−1+n
n

)
≤ pn . 1

degrees of freedom.
Finally in this section, we consider product quadrature rules which are gener-

ally applied on Cartesian product domains. Let A and B be domains of possibly
different dimensions, equipped with the quadrature rules Q(A) : g 7→

∑
j wjg(xj)

and Q(B) : h 7→
∑

k vkh(yk) to approximate I(A) : g 7→
∫
A
g and I(B) : h 7→

∫
B
h,

respectively. For simplicity, in this setting we will always assume that these
rules are positive and have strictly positive orders. Now with the product rule
Q(A) × Q(B) we mean the mapping f 7→

∑
jk wjvkf(xj, yk) to approximate I :

f 7→
∫
A×B f .

Lemma 7.2.4. With error functionals E(A) := I(A) − Q(A) and E(B) := I(B) −
Q(B), the product rule Q := Q(A) ×Q(B) satisfies

|I(f)−Q(f)| ≤ vol(A) sup
x∈A

|E(B)(f(x, ·))|+ vol(B) sup
y∈B

|E(A)(f(·, y))|, (7.2.5)

as long as both E(A)(f(·, y)) and E(B)(f(x, ·)) make sense for all y ∈ B and
x ∈ A, respectively.

124 COMPUTABILITY OF DIFFERENTIAL OPERATORS 7.3

Proof. We have

I(f)−Q(f) =

∫
A×B

f(x, y)dxdy −
∑
j,k

wjvkf(xj, yk)

=

∫
B

(∫
A

f(x, y)dx−
∑
j

wjf(xj, y)

)
dy

+
∑
j

wj

(∫
B

f(xj, y)dy −
∑
k

vkf(xj, yk)

)
.

The proof is completed by taking absolute values and using that
∑

j wj = vol(A).

As an application of this lemma, we have the following result for product
quadrature rules on rectangular domains.

Proposition 7.2.5. Consider the rectangular domain � := (0, l1)× . . .× (0, ln).

For the i-th coordinate direction, let Q
(i)
Ni

be a composite quadrature rule of order p
with respect to a quadrature mesh on (0, li) of Ni equally sized subintervals. Then

for the product quadrature rule Q := Q
(1)
N1
×. . .×Q(n)

Nn
to approximate I : f 7→

∫
� f ,

and f such that ∂pi f ∈ L∞(�), i ∈ 1, n, we have

|I(f)−Q(f)| ≤ 21−p

p!
vol(�) ·

n∑
i=1

lpiN
−p
i ·max

i∈1,n
‖∂pi f‖L∞(�). (7.2.6)

In particular, this quadrature rule is exact on Qp−1(�) := Pp−1(0, l1) × . . . ×
Pp−1(0, ln).

Proof. Using that rad(0, li) = li/2, Proposition 7.2.3 shows that for each i,

|
∫ li

0

g −Q
(i)
Ni

(g)| ≤ 21−p

p!
N−p
i lp+1

i |g|W p
∞(0,li).

Using Lemma 7.2.4 we arrive at the claim by induction.

Corollary 7.2.6. For the special case N1 = . . . = Nn = N1/n, with l := maxi li
we have

|I(f)−Q(f)| ≤ n
21−p

p!
N−p/n · ln+p ·max

i∈1,n
‖∂pi f‖L∞(�). (7.2.7)

7.3 COMPRESSIBILITY 125

7.3 Compressibility
For some domain Ω ⊂ Rn, t ∈ N0 and ΓD ⊂ ∂Ω, possibly with ΓD = ∅, let

H t
0,ΓD(Ω) = closHt(Ω){u ∈ H t(Ω) ∩ C∞(Ω) : suppu ∩ ΓD = ∅},

and let L : H t
0,ΓD(Ω) → (H t

0,ΓD(Ω))′ be defined by

〈u, Lv〉 =
∑

|α|,|β|≤t

〈∂αu, aαβ∂βv〉,

where aαβ ∈ L∞(Ω) so that L is bounded. Obviously L has an extension, that
we will also denote by L, as a bounded operator from H t(Ω) → H−t(Ω). For
completeness, Hs(Ω) for s < 0 denotes the dual of H−s(Ω).

We assume that there exists a σ > 0, such that

L,L′ : H t+σ(Ω) → H−t+σ(Ω) are bounded. (7.3.1)

Sufficient is that for arbitrary ε > 0, and all α, β with min{|α|, |β|} > t − σ, it
holds that

aαβ ∈
{

W
σ−t+min{|α|,|β|}
∞ (Ω) when σ ∈ N,

Cσ−t+min{|α|,|β|}+ε(Ω) when σ 6∈ N.
In addition, we assume that the coefficients aαβ are piecewise smooth, in the
sense that there exist M disjoint Lipschitz domains Ωq, q ∈ 1,M , such that aαβ
is smooth on each Ωq, and clos Ω = ∪q clos Ωq.

Let
Ψ = {ψλ : λ ∈ Λ}

be a Riesz basis for H t
0,ΓD(Ω) of wavelet type. The index λ encodes both the level,

denoted by |λ| ∈ N0, and the location of the wavelet ψλ. We will assume that the
wavelets are local and piecewise smooth with respect to nested subdivisions in the
following sense: We assume that there exists a sequence (O`)`∈N0 of collections
O` = {Ω`

i : i ∈ J `} of disjoint “uniformly” (in i and `) Lipschitz domains Ω`
i ,

with clos Ω = ∪i∈J` clos Ω`
i and

diam(Ω`
i) h 2−` and vol(Ω`

i) h 2−n`, (7.3.2)

where each Ω`
i is contained in some Ωq, and its closure is the union of the closures

of a uniformly bounded number of subdomains from O`+1. We assume that for
each λ ∈ Λ there exists a Jλ ⊂ J |λ| with

sup
λ∈Λ

#Jλ <∞ and sup
`∈N0,i∈J`

#{λ : |λ| = `, i ∈ Jλ} <∞,

126 COMPUTABILITY OF DIFFERENTIAL OPERATORS 7.3

such that suppψλ = ∪i∈Jλ
clos Ω

|λ|
i , being a connected set, and that on each Ω

|λ|
i ,

ψλ is smooth with

sup
x∈Ω

|λ|
i

|∂βψλ(x)| . 2(|β|+n
2
−t)|λ| for β ∈ Nn

0 . (7.3.3)

Examples of such wavelets are (the images under smooth mappings of) tensor
products of univariate spline wavelets, or finite element wavelets subordinate to
a subdivision of the domain into n-simplices.

Remark 7.3.1. Precisely, we call a collection of domains {Aν} ⊂ Rn uniformly
Lipschitz domains when there exist affine mappings Bν with |DBν | . vol(Aν)

−1

and |(DBν)
−1| . vol(Aν) such that the sets Bν(Aν) satisfy the condition of min-

imal smoothness in the sense of Stein (cf. [82, §VI.3]), with uniform parameters
ε, N and M .

A minimally smooth domain in Rn, in the sense of Stein, is an open set for
which there is a number ε > 0 and open sets Ui, i = 1, 2, . . ., such that: (i) for
each x ∈ ∂Ω, the ball B(x, ε) is contained in one of Ui; (ii) a point x ∈ Rn is
in at most N of the sets Ui where N is an absolute constant; (iii) for each i,
Ui ∩ Ω = Ui ∩ Ωi for some domain Ωi which is the rotation of a Lipschitz graph
domain with Lipschitz constant M independent of i. �

Furthermore, we assume that there exist γ > t, d̃ > −t such that for r ∈
[−d̃, γ), s < γ,

‖ · ‖Hr(Ω) . 2`(r−s)‖ · ‖Hs(Ω), on W` := span{ψλ : |λ| = `}. (7.3.4)

For r > s, this is the well-known inverse inequality. For r < s, (7.3.4) is a
consequence of the property of wavelets of having vanishing moments, or, more
generally, cancellation properties.

Remark 7.3.2. It is known that the above wavelet assumptions are satisfied by
biorthogonal wavelets when the primal and dual spaces have regularity indices
γ > t, γ̃ > 0 and orders d > γ, d̃ > γ̃ respectively (cf. [29, 36]), the primal spaces
consist of “piecewise” smooth functions, and finally, no boundary conditions are
imposed on the dual spaces (cf. [32]). In particular, (7.3.4) for r ∈ [−d̃,−γ̃] can
be deduced from the lines following (A.2) in [36]. In case homogeneous boundary
conditions are incorporated in the dual spaces, slightly weaker statements can be
proven, see [86, Remark 2.5].

We recall here the main result on compressibility for differential operators
from [86].

7.4 COMPRESSIBILITY 127

Theorem 7.3.3. Let M = 〈Ψ, LΨ〉. Choose κ satisfying

κ =
1

n− 1
when n > 1, (7.3.5)

κ >
min{t+ d̃, σ}

γ − t
and κ ≥ 1 when n = 1.

For j ∈ N, define the infinite matrix Mj by replacing all entries Mλλ′ = 〈ψλ, Lψλ′〉
by zeros when∣∣|λ| − |λ′|∣∣ > jκ, or (7.3.6)∣∣|λ| − |λ′|∣∣ > j/n and

{
∃i′ ∈ Jλ′ , suppψλ ⊆ clos Ω

|λ′|
i′ when |λ| > |λ′|,

∃i ∈ Jλ, suppψλ′ ⊆ clos Ω
|λ|
i when |λ| < |λ′|.

(7.3.7)

Then the number of non-zero entries in each column of Mj is of order 2j, and
for any

s ≤ min{ t+d̃
n
, σ
n
}, with s < γ−t

n−1
when n > 1,

it holds that ‖M − Mj‖ . 2−js. We conclude that M is s∗-compressible, as

defined in Definition 2.7.11, with s∗ = min{ t+d̃
n
, σ
n
, γ−t
n−1

} when n > 1, and s∗ =

min{t+ d̃, σ} when n = 1.

From this theorem we infer that if d̃ > d − 2t, σ > d − t and, when n > 1,
γ−t
n−1

> d−t
n

, then s∗ > d−t
n

as required. For n > 1, the condition involving γ is

satisfied for instance for spline wavelets, where γ = d− 1
2
, in case d−t

n
> 1

2
.

If each entry of M can be exactly computed in O(1) operations, then s∗-com-
pressibility implies s∗-computability, as defined in Definition 2.7.8, and so, when
indeed s∗ > d−t

n
, it implies the optimal computational complexity of the adaptive

wavelet scheme from the preceding chapters. This assumption on the computation
of the entries is realistic when both the coefficients aαβ of the differential opera-
tor and the wavelets are piecewise polynomials. In general, however, numerical
quadrature will be needed to approximate the entries of Mj. Then the question
arises how to realize a sufficient accuracy of these approximations such that the
additional error has, qualitatively, the same upper bound as ‖M−Mj‖, where in
each column the average work per entry is O(1), in which case s∗-compressibility
implies s∗-computability. In the next section, additionally assuming that the
wavelets are essentially piecewise polynomials, we will see that it is possible to
select quadrature rules with which this is realized.

128 COMPUTABILITY OF DIFFERENTIAL OPERATORS 7.4

7.4 Computability
Let us denote by M∗

j the matrix, with elements M∗
j,λλ′ , obtained by approxi-

mating the entries of Mj using some numerical scheme dependent on j. The
following theorem defines a criterion on the computational cost in relation to the
accuracy for computing individual entries of M so that s∗-compressibility implies
s∗-computability.

Theorem 7.4.1. Let M, Mj and s∗ be as in Theorem 7.3.3. Assume that for
some d∗ ∈ R and p with

p > s∗n+ d∗ and p ≥ s∗n, (7.4.1)

an approximation M∗
λλ′ of Mλλ′ can be computed in O(N) operations, having an

error
|Mλλ′ −M∗

λλ′| . N−p/n2−||λ|−|λ
′||(n/2+p−d∗). (7.4.2)

Then for parameters θ and % with

θ ≤ 1 and s∗n/p ≤ θ ≤ % < 1− d∗/p, (7.4.3)

by spending the number of

Nj,λλ′ h max{1, 2jθ−||λ|−|λ′||n%} (7.4.4)

arithmetical operations to the computation of M∗
j,λλ′, one has ‖Mj−M∗

j‖ . 2−js
∗
,

and the work for computing each column of M∗
j is of order 2j.

Since the conditions (7.4.1) and (7.4.3) define a nonempty set in the θ − %
plane, we conclude that M is s∗-computable.

The proof will use Schur’s lemma that we recall here for the reader’s conve-
nience.

Schur’s lemma. If for a matrix A = (aλ,λ′)λ,λ′∈Λ, there is a sequence ωλ > 0,
λ ∈ Λ, and a constant C such that∑

λ′∈Λ

ω′λ|aλλ′| ≤ ωλC, (λ ∈ Λ), and
∑
λ∈Λ

ωλ|aλλ′| ≤ ω′λC, (λ′ ∈ Λ),

then ‖A‖ ≤ C.

Proof (Proof of Theorem 7.4.1). Denoting the (λ, λ′)-th entry of the error matrix
Mj −M∗

j by εj,λλ′ , from (7.4.2) and (7.4.4) we have

εj,λλ′ . N
−p/n
j,λλ′ 2−||λ|−|λ

′||(n/2+p−d∗)

. 2−||λ|−|λ
′||(n/2+p−%p−d∗)2−jθp/n.

(7.4.5)

7.4 COMPUTABILITY 129

We have σ := n/2+p−%p−d∗ = n/2+p(1−%−d∗/p) > n/2 from (7.4.3). Let λ
be some given index. The locality assumptions on the wavelets show that for fixed
λ ∈ Λ, the number of indices λ′ with fixed |λ′| with vol(suppψλ′ ∩ suppψλ) > 0
is of order max{1, 2(|λ′|−|λ|)n}. With weights ωλ′ = 2−|λ

′|n/2, we find

ω−1
λ

∑
λ′

ωλ′|εj,λλ′| . 2|λ|n/2
∑

0≤|λ′|≤|λ|

2−|λ
′|n/22−(|λ|−|λ′|)σ2−jθp/n · 1

+ 2|λ|n/2
∑

|λ′|>|λ|

2−|λ
′|n/22−(|λ′|−|λ|)σ2−jθp/n · 2(|λ′|−|λ|)n

. 2−jθp/n.

By the symmetry of the estimate (7.4.5) in λ and λ′, from Schur’s lemma we
conclude that

‖Mj −M∗
j‖ . 2−jθp/n ≤ 2−js

∗
,

because θ ≥ s∗n/p.
Denoting by Λj,λ the set of row-indices of nonzero entries in the λ-th column

of Mj, the computational work Wj,λ for this column is

Wj,λ =
∑

λ′∈Λj,λ

Nj,λλ′ .
∑

λ′∈Λj,λ

max{1, 2jθ−||λ|−|λ′||n%}

. 2j +
∑

{λ′∈Λj,λ:||λ|−|λ′||≤j/n}

2jθ−||λ|−|λ
′||n%,

where we used the fact that, since % ≥ θ, 2jθ−||λ|−|λ
′||n% < 1 for ||λ| − |λ′|| > j/n,

and that the number of nonzero entries in each column of Mj is O(2j). The
second term can be bounded by a constant multiple of∑

−j/n≤|λ′|−|λ|≤0

2jθ−(|λ|−|λ′|)n% · 1 +
∑

0<|λ′|−|λ|≤j/n

2jθ−(|λ′|−|λ|)n% · 2(|λ′|−|λ|)n

. 2jθ2jmax{0,1−%}.

From (7.4.3) we have θ ≤ 1 and θ ≤ %, and so 1 − % + θ ≤ 1, from which we
conclude that Wj,λ = O(2j).

By applying the error estimates from Section 7.2, we will now show how
numerical quadrature schemes satisfying (7.4.2) can be realized. An entry of the
matrix can be rewritten as

Mλλ′ =
∑

|α|,|β|≤t

∫
suppψλ∩suppψλ′

aαβ∂
αψλ∂

βψλ′ .

130 COMPUTABILITY OF DIFFERENTIAL OPERATORS 7.4

Without loss of generality, in the remainder of this section we assume that

|λ| ≥ |λ′|.

Then, it is clear that the intersection suppψλ ∩ suppψλ′ is the union of sets Ω
|λ|
i ,

i ∈ Jλλ′ , for some Jλλ′ ⊆ Jλ. Therefore we can expand the integral into integrals
of smooth functions

Mλλ′ =
∑
i∈Jλλ′

Iλλ′,i, (7.4.6)

where

Iλλ′,i :=
∑

|α|,|β|≤t

∫
Ω
|λ|
i

aαβ∂
αψλ∂

βψλ′ . (7.4.7)

Recall that for each ` ∈ N0, i ∈ J `, there is a q = q(`, i) ∈ 1,M with Ω`
i ⊂ Ωq,

and furthermore that all aαβ are smooth on any Ωq. In the following, we assume
that there is a constant e ∈ N, and that there are smooth regular mappings
κq : Rn → Rn, such that for each λ ∈ Λ, i ∈ Jλ, and q = q(|λ|, i),

(ψλ ◦ κq)|κ−1
q (Ω

|λ|
i)

∈ Pe−1. (7.4.8)

With the commonly used approaches to constructed wavelets on non-trivial ge-
ometries via domain decomposition techniques ([14, 22, 33, 34, 85]), above as-
sumption is valid when one starts from a piecewise polynomial multiresolution
analysis on the corresponding reference domain. Note that the smallest e for
which (7.4.8) holds satisfies e ≥ d (≥ t+ 1).

Since by a transformation of coordinates,
∑

|α|,|β|≤t
∫

Ω
|λ|
i
aαβ∂

αψλ∂
βψλ′ can be

written as
∑

|α|,|β|≤t
∫
κ−1

q (Ω
|λ|
i)
ãαβ∂

α(ψλ ◦ κq)∂β(ψλ′ ◦ κq), where, as aαβ, ãαβ is a

function that is smooth, in the following without loss of generality we may assume
that κq = id.

Proposition 7.4.2. Consider a composite quadrature rule from an admissible
family (uniformly in λ ∈ Λ and i ∈ Jλ) of fixed order p and rank N to approximate
each of the integrals from (7.4.7), where ψλ|Ω|λ|i

∈ Pe−1. Then, with

d∗ := e− 1− t, (7.4.9)

the error of this numerical integration is bounded by

|Mλλ′ −M∗
λλ′| . N−p/n2−||λ|−|λ

′||(n/2+p−d∗), (7.4.10)

Taking p > s∗n + d∗, we conclude that the criterion for s∗-computability from
Theorem 7.4.1 is satisfied.

7.4 COMPUTABILITY 131

Proof. In view of Proposition 7.2.3 we have to bound ∂ζ(aαβ∂
αψλ∂

βψλ′) for |ζ| =
p, or ∂ηaαβ∂

α+θψλ∂
β+ξψλ′ for |η+ θ+ ξ| = p. Since aαβ is smooth, |λ| ≥ |λ′|, and

∂α+θψλ vanishes when |α+ θ| ≥ e, by invoking (7.3.3) we see that the worst case
occurs when η = 0, |α+ θ| = r := min{e− 1, |α|+ p}, and thus |ξ| = p− r+ |α|,
yielding

|aαβ∂αψλ∂βψλ′|W p
∞(Ω

|λ|
i)

. 2(r+n/2−t)|λ|2(p−r+|α|+|β|+n/2−t)|λ′|

≤ 2(e−1+n/2−t)|λ|2(p−e+1+|α|+|β|+n/2−t)|λ′|.

Now using that diam(Ω
|λ|
i) h 2−|λ| and |α|, |β| ≤ t, Proposition 7.2.3 shows that

|Mλλ′ −M∗
λλ′| . N−p/n2−|λ|(n+p)2(e−1+n/2−t)|λ|2(p−e+1+t+n/2)|λ′|

= N−p/n2−||λ|−|λ
′||(n/2+p−d∗).

In the case of tensor product constructions yielding wavelets that are piecewise
in Qd−1, the (piecewise) polynomial order e is n(d − 1) + 1, so that d∗ from
Proposition 7.4.2 is equal to n(d−1)− t (≥ (n−1)d). In the next proposition, we
will see that for such wavelets the application of product quadrature rules gives
rise to smaller d∗, and so allows for smaller quadrature orders p.

Proposition 7.4.3. Suppose that Ω
|λ|
i is an n-rectangle, that a product composite

quadrature rule of order p and rank N as in Corollary 7.2.6 is applied to approxi-
mate each of the integrals from (7.4.7), and that ψλ|Ω|λ|i

∈ Qd−1(Ω
|λ|
i). Then, with

d∗ := d− 1, (7.4.11)

the error of the numerical integration is bounded by

|Mλλ′ −M∗
λλ′| . N−p/n2−||λ|−|λ

′||(n/2+p−d∗). (7.4.12)

Taking p > s∗n + d∗, we conclude that the criterion for s∗-computability from
Theorem 7.4.1 is satisfied.

Proof. Without loss of generality, we may assume that the n-rectangle Ω
|λ|
i ⊂

Rn is aligned with the Cartesian coordinates. In view of Corollary 7.2.6, for
any i ∈ 1, n we have to bound ∂pi (aαβ∂

αψλ∂
βψλ′), or ∂ki aαβ∂

l
i∂
αψλ∂

m
i ∂

βψλ′ for
k + l + m = p. Since aαβ is smooth, |λ| ≥ |λ′|, and ∂li∂

αψλ vanishes when
αi + l ≥ d, by invoking (7.3.3) we see that the worst case occurs when k = 0,
αi + l = r := min{d− 1, αi + p}, and thus m = p− r + αi, yielding∣∣∂pi (aαβ∂αψλ∂βψλ′)∣∣ . 2(|α|−αi+r+n/2−t)|λ|2(p−r+αi+|β|+n/2−t)|λ′|

. 2(|α|+d−1+n/2−t)|λ|2(p−d+1+|β|+n/2−t)|λ′|.

132 COMPUTABILITY OF DIFFERENTIAL OPERATORS 7.4

Since diam(Ω
|λ|
i) h 2−|λ| and |α|, |β| ≤ t, an application of Corollary 7.2.6 shows

that

|Mλλ′ −M∗
λλ′| . N−p/n2−|λ|(n+p)2(d−1+n/2)|λ|2(p−d+1+n/2)|λ′|

= N−p/n2−||λ|−|λ
′||(n/2+p−d∗).

Chapter 8
Computability of singular integral
operators

8.1 Introduction
Boundary integral methods reduce elliptic boundary value problems in domains
to integral equations formulated on the boundary of the domain. Although the
dimension of the underlying manifold decreases by one, the finite element dis-
cretization of the resulting boundary integral equations gives densely populated
stiffness matrices, causing serious obstructions to accurate numerical solution
processes. In order to overcome this difficulty, various successful approaches for
approximating the stiffness matrix by sparse ones have been developed, such as
multipole expansions, panel clustering, and wavelet compression, see e.g. [2, 51].
We will restrict ourselves here to the latter approach.

In [7], it was first observed that wavelet bases give rise to almost sparse stiff-
ness matrices for the Galerkin discretization of singular integral operators, mean-
ing that the stiffness matrix has many small entries that can be discarded without
reducing the order of convergence of the resulting solution. This result ignited the
development of efficient compression techniques for boundary integral equations
based upon wavelets. In [37, 67, 78] it was shown that for a wide class of bound-
ary integral operators a wavelet basis can be chosen so that the full accuracy of
the Galerkin discretization can be retained at a computational work of order N
(possibly with a logarithmic factor in some studies), where N is the number of
degrees of freedom used in the discretization. First nontrivial implementations of

The work in this chapter is a joint work with Rob Stevenson, see Section 1.2

133

134 COMPUTABILITY OF SINGULAR INTEGRAL OPERATORS 8.1

these algorithms and performance tests were reported in [53, 59].
The main reason why a stiffness matrix entry is small is that the kernel of the

involved integral operator is increasingly smooth away from its diagonal, and that
the wavelets have vanishing moments, meaning that they are L2-orthogonal to
all polynomials up to a certain degree. Another advantage of a wavelet-Galerkin
discretization is that the diagonally scaled stiffness matrices are well-conditioned
uniformly in their sizes, guaranteeing a uniform convergence rate of iterative
methods for the linear systems. Finally, as we have seen in the foregoing chapters,
recent developments suggest a natural use of wavelets in adaptive discretization
methods that approximate the solution using, up to a constant factor, as few
degrees of freedom as possible.

Let H t(Γ) be the usual Sobolev space defined on a sufficiently smooth n-
dimensional manifold Γ ⊂ Rn+1, and let H−t(Γ) be its dual space. Then we
consider the problem of finding the solution u ∈ H t(Γ) of

Lu = g,

where L : H t(Γ) → H−t(Γ) is a boundedly invertible linear operator, and
g ∈ H−t(Γ). We will think of this problem as being the result of a variational
formulation of a strongly elliptic boundary integral equation of order 2t. With
Ψ being a Riesz basis for H t(Γ), we can transform it into an equivalent infinite
matrix-vector problem

Mu = g,

where M : `2 → `2 is boundedly invertible, and g,u ∈ `2.
Now the discussion in Introduction of the preceding chapter applies: One

requires M to be s∗-computable for some s∗ > d−t
n

.
As we indicated in the preceding chapter, s∗-compressibility for some s∗ > d−t

n

has been demonstrated in [86] for both differential and singular integral opera-
tors, and piecewise polynomial wavelets that are sufficiently smooth and have
sufficiently many vanishing moments.

Only in the special case of a differential operator with constant coefficients, en-
tries of M can be computed exactly, in O(1) operations, so that s∗-compressibility
immediately implies s∗-computability. In general, numerical quadrature is re-
quired to approximate the entries. In the present chapter, considering singular
integral operators resulting from the boundary integral method, we will show
that M is s∗-computable for the same value of s∗ as it was shown to be s∗-
compressible. Summarizing, this result shows that using the routine APPLY as
in Algorithm 2.7.9, the compression rules from [86] (recalled in Theorem 8.2.4),
and the quadrature schemes derived in this paper to approximately compute the
remaining entries, the adaptive wavelet methods from e.g. Chapter 2, 3, and

8.2 COMPRESSIBILITY 135

5 now define fully discrete algorithms that achieve the optimal computational
complexity for the given problem.

We split our task into two parts. First we derive a criterion on the accuracy-
work balance of a numerical quadrature scheme to approximate any entry of
M, such that, for a suitable choice of the work invested in approximating the
entries of the compressed matrix Mj as function of both wavelets involved, we
obtain an approximation M∗

j of which the computation of each column requires
O(jc2j) operations with a fixed constant c, and ‖Mj − M∗

j‖ ≤ 2−js
∗
, meaning

that, on account of Lemma 2.7.12 on page 34 with a slight adjustment, M is
s∗-computable. Second, we show that for any desired s∗ > 0 we can fulfill the
above criterion by the application of certain quadrature rules of variable order.

In view of Proposition 7.2.3 on page 123, as well as to control the number
of function evaluations that are required, in this paper we will consider families
(Qp)p∈N of composite quadrature rules Qp : f 7→

∑
Ω′∈O

∑
j w

p,Ω′

j f(xp,Ω
′

j) of order
p with a fixed mesh O, that are admissible meaning that they satisfy

sup
p∈N,Ω′∈O

max

{∑
j |w

p,Ω′

j |
vol(Ω′)

,
#xp,Ω

′

j

pn

}
<∞.

Note that the bound on the number of abscissae in each subdomain is reasonable
because the space of polynomials of total degree p− 1 has

(
p−1+n
n

)
≤ pn degrees

of freedom. Moreover, for a quadrature mesh O we define the following quantity

CO := sup
Ω′∈O

(#O)1/nrad(Ω′)

diam(Ω)
. (8.1.1)

This chapter is organized as follows. In Section 8.2, assumptions are formu-
lated on the singular integral operator and the wavelets, and the result concerning
s∗-compressibility is recalled from [86]. Then in Section 8.3, rules for the numer-
ical approximation of the entries of the stiffness matrix are derived, with which
s∗-computability for some s∗ > d−t

n
will be demonstrated.

At the end of this introduction, we fix a few more notations. A monomial of n
variables is conveniently written using a multi-index α ∈ Nn

0 as xα := xα1
1 . . . xαn

n .
Likewise we write partial differentiation operators, that is, ∂α := ∂α1

1 . . . ∂αn
n . We

set |α| := α1+. . .+αn, and the relation α ≤ β is defined as αi ≤ βi for all i ∈ 1, n.
We have |α ± β| = |α| ± |β| provided that α − β ∈ Nn

0 in case of subtraction.
Binomial coefficients are naturally defined as

(
α
β

)
:=
(
α1

β1

)
. . .
(
αn

βn

)
.

8.2 Compressibility
For some µ ∈ N, let Γ be a patchwise smooth, compact n-dimensional, globally
Cµ−1,1 manifold in Rn+1. Following [34], we assume that Γ = ∪Mq=1Γq, with

136 COMPUTABILITY OF SINGULAR INTEGRAL OPERATORS 8.2

Γq ∩ Γq′ = ∅ when q 6= q′, and that for each 1 ≤ q ≤M , there exists

• a domain Ωq ⊂ Rn, and a C∞-parametrization κq : Rn → Rn+1 with
Im(κq|Ωq

) = Γq,

• a domain Rn ⊃ Ω̂q ⊃⊃ Ωq, and an extension of κq|Ωq
to a Cµ−1,1 para-

metrization κ̂q : Ω̂q → Im(κ̂q) ⊂ Γ.

3 Compressibility 6

Lemma 2.3. With error functionals E(A) := I(A)−Q(A) and E(B) := I(B)−Q(B), the product
rule Q := Q(A) ×Q(B) satisfies

|I(f)−Q(f)| ≤ vol(A) sup
x∈A

|E(B)(f(x, ·))| + vol(B) sup
y∈B

|E(A)(f(·, y))|, (2.4)

as long as both E(A)(f(·, y)) and E(B)(f(x, ·)) make sense for all y ∈ B and x ∈ A, respec-
tively.

As an application of this lemma, we have the following result for product quadrature rules
on rectangular domains.

Proposition 2.4. Consider the rectangular domain ! := (0, l1) × . . . × (0, ln) and define
l := maxi li. For the i-th coordinate direction, let Q(i)

M be a composite quadrature rule of order
p with respect to a quadrature mesh on (0, li) of M equally sized subintervals. Then for the
product quadrature rule Q := Q(1)

M × . . .×Q(n)
M to approximate I : f %→

∫
! f , and f such that

∂p
i f ∈ L∞(!), i ∈ 1, n, we have

|I(f)−Q(f)| ≤ n
21−p

p!
M−p · ln+p · max

i∈1,n
‖∂p

i f‖L∞(!). (2.5)

In particular, this quadrature rule is exact on Qp−1(!) := Pp−1(0, l1)× . . .× Pp−1(0, ln).

3 Compressibility

For some µ ∈ IN , let Γ be a patchwise smooth, compact n-dimensional, globally Cµ−1,1

manifold in IRn+1. Following [DS99b], we assume that Γ = ∪M
q=1Γq, with Γq ∩ Γq′ = ∅ when

q += q′, and that for each 1 ≤ q ≤ M , there exists

• a domain Ωq ⊂ IRn, and a C∞-parametrization κq : IRn → IRn+1 with Im(κq|Ωq
) = Γq,

• a domain IRn ⊃ Ω̂q ⊃⊃ Ωq, and an extension of κq|Ωq
to a Cµ−1,1 para-metrization

κ̂q : Ω̂q → Im(κ̂q) ⊂ Γ.

κq

Ωq

Γq

Fig. 1: Parametrization of the manifold.

Formally supposing that the domains Ωq are pairwise disjoint, for notational convenience we
introduce the invertible mapping κ : ∪qΩq → ∪qΓq ⊂ Γ via

κ(x) := κq(x) with q such that x ∈ Ωq.

Figure 8.1: Parametrization of the manifold.

Formally supposing that the domains Ωq are pairwise disjoint, for notational
convenience we introduce the invertible mapping κ : ∪qΩq → ∪qΓq ⊂ Γ via

κ(x) := κq(x) with q such that x ∈ Ωq.

For |s| ≤ µ, the Sobolev spaces Hs(Γ) are well-defined, where for s < 0, Hs(Γ) is
the dual of H−s(Γ). Let

Ψ = {ψλ : λ ∈ Λ}

be a Riesz basis for H t(Γ) of wavelet type. The index λ encodes both the level,
denoted by |λ| ∈ N0, and the location of the wavelet ψλ. We will assume that the
wavelets are local and piecewise smooth with respect to nested subdivisions in the
following sense. We assume that there exists a sequence (O`)`∈N0 of collections
O` of disjoint uniformly Lipschitz domains Θ ∈ O`, with

diam(Θ) h 2−` and vol(Θ) h 2−n`, (8.2.1)

and where each Θ ∈ O` is contained in some Ωq, and its closure is the union of
the closures of a uniformly bounded number of subdomains from O`+1. For a
precise definition of a collection of sets to be a collection of uniformly Lipschitz
domains, we refer to Remark 7.3.1. Defining the collections of panels

G` := {κ(Θ) : Θ ∈ O`}, (` ∈ N0),

8.2 COMPRESSIBILITY 137

we assume that Γ = ∪Π∈G`
Π, (` ∈ N0), and that for each λ ∈ Λ there exists a

subcollection Gλ ⊂ G|λ| with

sup
λ∈Λ

#Gλ <∞ and sup
`∈N0,Π∈G`

#{λ : |λ| = `, Π ∈ Gλ} <∞,

such that suppψλ = ∪Π∈Gλ
clos Π, being a connected set, and that on each Θ ∈

κ−1(Gλ), the pull-back ψ̂λ,Θ := (ψλ ◦ κ)|Θ is smooth with

sup
x∈Θ

|∂βψ̂λ,Θ(x)| <∼ 2(|β|+n
2
−t)|λ| for β ∈ Nn

0 . (8.2.2)

We assume that the wavelets have the so-called cancellation property of order
d̃ ∈ N, saying that there exists a constant η > 0, such that for any p ∈ [1,∞], for
all continuous, patchwise smooth functions v and λ ∈ Λ,

|〈v, ψλ〉| <∼ 2−|λ|(
n
2
−n

p
+t+d̃) max

1≤q≤M
|v|W d̃

p (B(suppψλ;2−|λ|η)∩Γq), (8.2.3)

where for A ⊂ Rn+1 and ε > 0, B(A; ε) := {y ∈ Rn+1 : dist(A, y) < ε}.
Furthermore, for some k ∈ N0 ∪ {−1}, with k < µ and

γ := k + 3
2
> t, (8.2.4)

we assume that all ψλ ∈ Ck(Γ), where k = −1 means no global continuity
condition, and that for all r ∈ [−d̃, γ), s < γ, necessarily with |s|, |r| ≤ µ,

‖ · ‖Hr(Γ)
<∼ 2`(r−s)‖ · ‖Hs(Γ) on W` := span{ψλ : |λ| = `}. (8.2.5)

Inside a patch, a similar property can be required for larger ranges: For all
q ∈ 1,M , and r ∈ [−d̃, γ), s < γ, we assume that

‖ · ‖Hr(Γq)
<∼ 2`(r−s)‖ · ‖Hs(Γq) on span{ψλ : |λ| = `, B(suppψλ; 2

−`η) ⊂ Γq}.
(8.2.6)

Remark 8.2.1. Wavelets that satisfy the assumptions in principle for any d, d̃
and smoothness permitted by both d and the regularity of the manifold were
constructed in [34]. Apart from this construction, all known approaches based on
non-overlapping domain decompositions yield wavelets which over the interfaces
between patches are only continuous. With the constructions from [14, 22, 33],
biorthogonality was realized with respect to a modified L2(Γ)-scalar product. As
a consequence, with the interpretation of functions as functionals via the Riesz
mapping with respect to the standard L2(Γ) scalar product, for negative t the
wavelets only generate a Riesz basis for H t(Γ) when t > −1

2
, and likewise wavelets

with supports that extend to more than one patch generally have no cancellation

138 COMPUTABILITY OF SINGULAR INTEGRAL OPERATORS 8.2

properties in the sense of (8.2.3). Recently in [85], this difficulty was overcame,
and wavelets were constructed that all have the cancellation property of the full
order, and that generate Riesz bases for the full range of Sobolev spaces H t(Γ)
that is allowed by continuous gluing of functions over the patch interfaces and
the regularity of the manifold.

For some |t| ≤ µ, let L be a bounded operator from H t(Γ) → H−t(Γ), where
we have in mind a singular integral operator of order 2t. We assume that the
operator L is defined by

Lu(z) =

∫
Γ

K(z, z′)u(z′)dΓz′ , (z ∈ Γ), (8.2.7)

and that its local kernel function

K̂(x, x′) := K(κ(x), κ(x′)) · |∂κ(x)| · |∂κ(x′)|

satisfies for all x, x′ ∈ ∪1≤q≤MΩq, and α, β ∈ Nn
0 ,

|∂αx∂
β
x′K̂(x, x′)| <∼

|α+ β|!
ς |α+β| · dist(κ(x), κ(x′))−(n+2t+|α+β|), (8.2.8)

with a constant ς > 0 (cf. [37, 53]), provided that n + 2t + |α + β| > 0. If the
kernel function K(z, z′) contains non-integrable singularities, the integral (8.2.7)
has to be understood in the finite part sense of Hadamard, see e.g. [73, 80].
Following [37], we emphasize that (8.2.8) requires patchwise smoothness but no
global smoothness of Γ. Only assuming global Lipschitz continuity of Γ, the local
kernel of any standard boundary integral operator of order 2t can be shown to
satisfy (8.2.8).

We assume that for some σ ∈ (0, µ−|t|], both L and its adjoint L′ are bounded
from H t+σ(Γ) → H−t+σ(Γ).

Remark 8.2.2. If Γ is a C∞-manifold, then these boundary integral operators
are known to be pseudo-differential operators, meaning that for any σ ∈ R they
define bounded mappings from H t+σ(Γ) → H−t+σ(Γ). For Γ being only Lipschitz
continuous, for the classical boundary integral equations it is known that L :
H t+σ(Γ) → H−t+σ(Γ) is bounded for the maximum possible value σ = 1 − |t|
(cf. [23]). With increasing smoothness of Γ one may expect this boundedness for
larger values of σ. Results in this direction can be found in [60].

Furthermore, with H̃s(Γq) :=

{
Hs(Γq) when s ≥ 0,
(H−s

0 (Γq))
′ when s < 0,

we assume that

there exists a τ ∈ (0, µ− |t|] such that

L : H t+τ (Γ) → H̃−t+τ (Γq) is bounded for all 1 ≤ q ≤M. (8.2.9)

8.2 COMPRESSIBILITY 139

Remark 8.2.3. Since for any |s| ≤ µ, the restriction of functions on Γ to Γq is a
bounded mapping fromHs(Γ) to H̃s(Γq), from the boundedness of L : H t+σ(Γ) →
H−t+σ(Γ), it follows that in any case (8.2.9) is valid for τ = σ. So for example for
Γ being a C∞-manifold, (8.2.9) is valid for any τ ∈ R. Yet, in particular when
t < 0, for Γ being less smooth it might happen that (8.2.9) is valid for a τ that
is strictly larger than any σ for which L : H t+σ(Γ) → H−t+σ(Γ) is bounded.

In the following theorem, we recall the main result on compressibility for
boundary integral operators from [86].

Theorem 8.2.4. For Ψ being a Riesz basis for H t(Γ) as described above with
t+ d̃ > 0, and d̃ > γ − 2t, let M = 〈Ψ, LΨ〉.

Let α ∈ (1
2
, 1) and bi := (1 + i)−1−ε for some ε > 0. Choose k satisfying

k =
1

n− 1
when n > 1,

k >
min{t+ d̃, τ}

γ − t
and k ≥ max{1, min{t+ d̃, τ}

min{t+ µ, σ}
} when n = 1.

(8.2.10)

We define the infinite matrix Mj for j ∈ N by replacing all entries Mλ,λ′ =
〈ψλ, Lψλ′〉 by zeros when∣∣|λ| − |λ′|∣∣ > jk, or (8.2.11)∣∣|λ| − |λ′|∣∣ ≤ j/n and δ(λ, λ′) ≥ max{3η, 2α(j/n−||λ|−|λ′||)}, or (8.2.12)∣∣|λ| − |λ′|∣∣ > j/n and

δ̃(λ, λ′) ≥ max{2n(j/n−||λ|−|λ′||)b||λ|−|λ′||−j/n, 2η2
−||λ|−|λ′||},

(8.2.13)

where

δ(λ, λ′) := 2min{|λ|,|λ′|} dist(suppψλ, suppψλ′), (8.2.14)

and

δ̃(λ, λ′) := 2min{|λ|,|λ′|} ×

{
dist(suppψλ, sing suppψλ′) when |λ| > |λ′|,
dist(sing suppψλ, suppψλ′) when |λ| < |λ′|,

and η is from (8.2.3).
Then the number of non-zero entries in each column of Mj is of order 2j, and

for any

s ≤ min
{
t+d̃
n
, τ
n

}
, with s < γ−t

n−1
, s ≤ σ

n−1
and s ≤ µ+t

n−1
when n > 1,

it holds that ‖M − Mj‖ <∼ 2−js. We conclude that M is s∗-compressible, as

defined in Definition 2.7.11, with s∗ = min{ t+d̃
n
, τ
n
, σ
n−1

, γ−t
n−1

, µ+t
n−1

} when n > 1,

and s∗ = min{t+ d̃, τ} when n = 1.

140 COMPUTABILITY OF SINGULAR INTEGRAL OPERATORS 8.3

From this theorem we infer that if d̃ > d − 2t, τ > d − t and, when n > 1,
min{γ−t,σ,t+µ}

n−1
> d−t

n
, then s∗ > d−t

n
as required. For n > 1, the condition involving

γ is satisfied for instance for spline wavelets, where γ = d− 1
2
, in case d−t

n
> 1

2
.

If each entry of M can be exactly computed in O(1) operations, then s∗-
compressibility implies s∗-computability, as defined in Definition 2.7.8, and so,
when indeed s∗ > d−t

n
, it implies the optimal computational complexity of the

adaptive wavelet schemes from the earlier chapters. In general, one is not able
to compute the matrix entries exactly. What is more, it is far from obvious
how to compute the entries of Mj sufficiently accurate while keeping the average
computational expense per entry in each column uniformly bounded. In the
next section, additionally assuming that the wavelets are essentially piecewise
polynomials, we will show that it is possible to arrange quadrature schemes which
admit s∗-computability of M.

8.3 Computability
In this section, we will present a numerical integration scheme which computes
an approximation M∗

j of Mj such that, for some specified constant c, by spending
O(jc2j) computational work per column of M∗

j , the approximation error satisfies

‖Mj − M∗
j‖ <∼ 2−js

∗
with s∗ given by Theorem 8.2.4, implying that M is s∗-

computable.
Let us consider the computation of individual entries

Mλ,λ′ =

∫
Γ

ψλ(z)

(∫
Γ

K(z, z′)ψλ′(z
′)dΓz′

)
dΓz (8.3.1)

of M. Unless explicitly stated otherwise, throughout this section we assume that

|λ| ≥ |λ′|.

We start with an assumption.

Assumption 8.3.1. For any Ξ ∈ Gλ, Ξ′ ∈ G|λ| with Ξ′ ⊂ suppψλ′ , in the follow-
ing we assume that the integral∫

Ξ

∫
Ξ′
K(z, z′)ψλ(z)ψλ′(z

′)dΓzdΓz′

is well-defined.

This assumption obviously holds in case of proper or improper integrals. How-
ever, it requires an appropriate interpretation of the integrals in case of strongly-

8.3 COMPUTABILITY 141

or hyper-singular kernels. For strongly singular kernels on surfaces in R3 the
assumption was confirmed in [52].

As a consequence of the assumption, we may write

Mλ,λ′ =
∑
Π∈Gλ

∑
Π′∈Gλ′

Iλλ′(Π,Π
′), (8.3.2)

with, for Π ∈ Gλ and Π′ ∈ Gλ′ ,

Iλλ′(Π,Π
′) :=

∑
{Ξ′∈G|λ|:Ξ′⊂Π′}

∫
Π

∫
Ξ′
K(z, z′)ψλ(z)ψλ′(z

′)dΓzdΓz′ . (8.3.3)

We assume that for each Π ∈ Gλ, Π′ ∈ Gλ′ an approximation of the integral
Iλλ′(Π,Π

′) is obtained by some numerical scheme dependent on j, and using
(8.3.2), that these approximations are used to assemble the matrix M∗

j . The
following theorem defines a criterion on the computational cost in relation to the
accuracy of computing the integrals Iλλ′(Π,Π

′) so that s∗-compressibility implies
s∗-computability.

Theorem 8.3.2. Let s∗ > 0 be any given constant, and M, Mj be as in Theo-
rem 8.2.4. Let σ : ∪`G` → R be some fixed function such that

σ(Ξ) h diam(Ξ) for Ξ ∈ ∪`G`, (8.3.4)

and let d∗, e∗ ∈ R and % > 1 be fixed constants. Assume that for any p ∈ N, an
approximation I∗λλ′(Π,Π

′) of the integral Iλλ′(Π,Π
′) can be computed such that by

spending the number of

W <∼ p2n(1 + ||λ| − |λ′||) (8.3.5)

arithmetical operations, the error satisfies

|Eλλ′(Π,Π′)| <∼ %−p2||λ|−|λ
′||d∗ max

{
1,

dist(Π,Π′)

%max{σ(Π), σ(Π′)}

}e∗−p
. (8.3.6)

Then for any fixed ϑ ≥ 0, and for parameters θ and τ with

θ ≥ s∗/ log2 % and τ > (n/2 + d∗)/ log2 %, (8.3.7)

by choosing p for the computation of I∗λλ′(Π,Π
′) as the smallest positive integer

satisfying
p > e∗ + n and p ≥ jθ + τ ||λ| − |λ′|| − ϑ, (8.3.8)

the so computed approximation M∗
j of Mj satisfies ‖Mj −M∗

j‖ <∼ 2−js
∗
, where

the work for computing each column of M∗
j is O(j2n+12j).

By taking s∗ as given in Theorem 8.2.4, we conclude that the matrix M is
s∗-computable for the same value of s∗ as it was shown to be s∗-compressible.

142 COMPUTABILITY OF SINGULAR INTEGRAL OPERATORS 8.3

The proof will use Schur’s lemma that we recall here for the reader’s conve-
nience.

Schur’s lemma. If for a matrix A = (aλ,λ′)λ,λ′∈Λ, there is a sequence wλ > 0,
λ ∈ Λ, and a constant C such that∑

λ′∈Λ

wλ′|aλλ′| ≤ wλC, (λ ∈ Λ), and
∑
λ∈Λ

wλ|aλλ′| ≤ wλ′C, (λ′ ∈ Λ),

then ‖A‖ ≤ C.

Proof (Proof of Theorem 8.3.2). Since #Gλ, #Gλ′ <∼ 1, it is sufficient to give the
proof pretending that #Gλ = #Gλ′ = 1.

With the matrix (∆λ,λ′)λ,λ′∈Λ defined by

∆λ,λ′ := max

{
1,

dist(Π,Π′)

%max{σ(Π), σ(Π′)}

}
, Π ∈ Gλ, Π′ ∈ Gλ′ ,

for each λ ∈ Λ, `′ ∈ N0, and β > n, we can verify that∑
|λ′|=`′

∆−β
λ,λ′

<∼ 2nmax{0,`′−|λ|}, (8.3.9)

using the locality of the wavelets and the fact that σ(Π′) h diam(Π′) h 2−|λ
′| and

that vol(Π′) h 2−|λ
′|n.

Denoting the entry (λ, λ′) of the error matrix Mj − M∗
j by εj,λλ′ , and by

substituting p ≥ jθ + τ ||λ| − |λ′|| − ϑ into (8.3.6), we infer that

εj,λλ′ . 2−jθ log2 %2−||λ|−|λ
′||(τ log2 %−d∗)∆

−(p−e∗)
λ,λ′ . (8.3.10)

Recall that σ := τ log2 %− d∗ > n/2 and p− e∗ > n. Applying Schur’s lemma to
the error matrix Mj −M∗

j with weights wλ = 2−|λ|n/2, we have

w−1
λ

∑
λ′

wλ′|εj,λλ′| . 2−jθ log2 %2|λ|n/2
∑
`′≥0

2−`
′n/22−(|λ|−`′)σ ·

∑
|λ′|=`′

∆
−(p−e∗)
λ,λ′

. 2−jθ log2 %2|λ|n/2
∑

0≤`′≤|λ|

2−`
′n/22−(|λ|−`′)σ · 1

+ 2−jθ log2 %2|λ|n/2
∑
`′>|λ|

2−`
′n/22−(`′−|λ|)σ · 2(`′−|λ|)n

. 2−jθ log2 %,

where we used (8.3.9) in the second step. Now by the symmetry of the estimate
(8.3.10) in λ and λ′, we conclude that the error in the computed matrix M∗

j

satisfies
‖Mj −M∗

j‖ . 2−jθ log2 % ≤ 2−js
∗
.

8.3 COMPUTABILITY 143

The work for computing the entry (M∗
j)λ,λ′ is of order

p(j, λ, λ′)2n(1 + ||λ| − |λ′||) <∼ (jθ + τ ||λ| − |λ′||)2n(1 + ||λ| − |λ′||).

Since M∗
j contains nonzero entries only for ||λ|−|λ′|| ≤ jk, we can bound the work

for computing each element (M∗
j)λ,λ′ by a constant multiple of j2n+1. Now using

the fact that each column of Mj contains O(2j) nonzero entries, we conclude the
computational work per column is O(j2n+12j).

By applying the error estimates from Section 7.2, we will now show how
numerical quadrature schemes satisfying (8.3.5) and (8.3.6) can be realized. We
will consider variable order quadrature rules, meaning that constants absorbed
by the “<∼” symbol will not depend on the quadrature order. To this end, we
consider a general finite subdivision Υ ⊂ (∪`G`)2 of the integration domain Π×Π′

such that {Ξ × Ξ′ ∈ Υ : dist(Ξ,Ξ′) = 0} ⊂ G2
|λ|. Then in view of Assumption

8.3.1, we can split the integral (8.3.3) as

Iλλ′(Π,Π
′) =

∑
Ξ×Ξ′∈Υ

Iλλ′(Ξ,Ξ
′), (8.3.11)

with

Iλλ′(Ξ,Ξ
′) :=

∫
Ξ

∫
Ξ′
K(z, z′)ψλ(z)ψλ′(z

′)dΓzdΓz′ .

First we will study the numerical evaluation of an individual integral I(Ξ,Ξ′)
for the case that dist(Ξ,Ξ′) > 0. We can write the integral I(Ξ,Ξ′) in local
coordinates

Iλλ′(Ξ,Ξ
′) =

∫
Θ

∫
Θ′
K̂(x, x′)ψ̂λ,κ−1(Π)(x)ψ̂λ′,κ−1(Π′)(x

′)dxdx′, (8.3.12)

where Θ = κ−1(Ξ) and Θ′ = κ−1(Ξ′).

Definition 8.3.3. The wavelet basis Ψ is said to be of P -type of order e when
for all λ ∈ Λ and Θ ∈ O|λ|, ψ̂λ,Θ ∈ Pe−1(Θ). Similarly, Ψ is of Q-type of order e

when for all λ ∈ Λ and Θ ∈ O|λ|, Θ is an n-rectangle and ψ̂λ,Θ ∈ Qe−1(Θ). �

Lemma 8.3.4. Assume that the wavelet basis Ψ is of P -type of order e and
that dist(κ(Θ), κ(Θ′)) > 0. For the domains Θ and Θ′, we employ composite
quadrature rules from admissible families (uniformly in Θ,Θ′) of orders p and
fixed ranks N , and apply the product of these quadrature rules to approximate the
non-singular integral Iλλ′(κ(Θ), κ(Θ′)) from (8.3.12). We define

σ(κ(Θ̃)) :=
nC

ςN1/n
diam(Θ̃) for all Θ̃ ∈ ∪`O`, (8.3.13)

144 COMPUTABILITY OF SINGULAR INTEGRAL OPERATORS 8.3

where ς > 0 is the constant involved in the Calderon-Zygmund estimate (8.2.8),
and C is an upper bound on the quantity (8.1.1) for quadrature meshes on Θ̃ ∈
∪`O`. Then with

ω :=
dist(κ(Θ), κ(Θ′))

max{σ(κ(Θ)), σ(κ(Θ′))}
, (8.3.14)

for any p ≥ max{e− 2t−n, e− 1}, the quadrature error E(κ(Θ), κ(Θ′)) satisfies

|E(Ξ,Ξ′)| <∼ 2||λ|−|λ
′||(n/2−t)ω−(n+p) max{1, ω}e−1

×min{σ(κ(Θ)), σ(κ(Θ′))}n dist(κ(Θ), κ(Θ′))−2t.
(8.3.15)

Proof. Since there will be no risk of confusion, we will write ψ̂λ and ψ̂λ′ instead of
ψ̂λ,κ−1(Π) and ψ̂λ′,κ−1(Π′), respectively. By Lemma 7.2.4, the error of the product
quadrature is

|E(κ(Θ), κ(Θ′))| ≤ vol(Θ′) · sup
x′∈Θ′

|E(x′)|+ vol(Θ) · sup
x∈Θ

|E ′(x)|, (8.3.16)

where we denoted by E(x′) the error of the quadrature over the domain Θ with
the integrand x 7→ K̂(x, x′)ψ̂λ(x)ψ̂λ′(x

′). Analogously E ′(x) denotes the error of
the quadrature over Θ′. Using Proposition 7.2.3 to bound E(x′), we have

|E(x′)| <∼
np

p!
CpN−p/n vol(Θ) · diam(Θ)p · |ψ̂λ′(x′)| · |K̂(·, x′)ψ̂λ|W p

∞(Θ). (8.3.17)

The partial derivatives with |η| = p, satisfy∣∣∣∂ηx (K̂(x, x′)ψ̂λ(x)
)∣∣∣ =

∣∣∣∣∣∑
ξ≤η

(
η

ξ

)
∂η−ξx K̂(x, x′)∂ξxψ̂λ(x)

∣∣∣∣∣
≤

∑
{ξ≤η:|ξ|≤e−1}

(
η

ξ

) ∣∣∣∂η−ξx K̂(x, x′)∂ξxψ̂λ(x)
∣∣∣ ,

since ∂ξψ̂λ can only be nonzero when |ξ| ≤ e − 1 because ψ̂λ ∈ Pe−1. Applying
the estimates (8.2.2) and (8.2.8) we have, with δ := dist(κ(Θ), κ(Θ′))

|K̂(·, x′)ψ̂|W p
∞(Θ)

<∼ max
|η|=p

∑
{ξ≤η:|ξ|≤e−1}

(
η

ξ

)
(p− |ξ|)!
ςp−|ξ|

δ−(n+2t+p−|ξ|)2(|ξ|+n/2−t)|λ|

<∼ 2|λ|(n/2−t)δ−(n+2t+p) max
|η|=p

∑
{ξ≤η:|ξ|≤e−1}

(
η

ξ

)
(p− |ξ|)!
ςp−|ξ|

(
2|λ|δ

)|ξ|
<∼
p!

ςp
· 2|λ|(n/2−t)δ−(n+2t+p) ·max{1, 2|λ|δ}e−1,

8.3 COMPUTABILITY 145

where
(
η
ξ

)
(p−|ξ|)! ≤ p! was used. By substituting this result into (8.3.17), setting

c := nC/(ςN1/n), and using vol(Θ) <∼ diam(Θ)n, vol(Θ′) <∼ diam(Θ′)n, and again
(8.2.2), we get

vol(Θ′) sup
x′∈Θ′

|E(x′)| <∼ diam(Θ′)ncp diam(Θ)n+p · 2(|λ|+|λ′|)(n/2−t)

× δ−(n+2t+p) max{1, 2|λ|δ}e−1

= diam(Θ′)n diam(Θ)n+p · 2(|λ|+|λ′|)(n/2−t)c−nδ−2tω−n−p

×max{diam(Θ), diam(Θ′)}−n−p max{1, 2|λ|δ}e−1

= c−n2(|λ|+|λ′|)(n/2−t)δ−2tω−n−p min{diam(Θ), diam(Θ′)}n

×
(

diam(Θ)

max{diam(Θ), diam(Θ′)}

)p
max{1, 2|λ|δ}e−1,

by definition of ω. For the expression in the last row, employing the inequalities(
diam(Θ)

max{diam(Θ), diam(Θ′)}

)p
≤ 1,

and (
diam(Θ)

max{diam(Θ), diam(Θ′)}

)p (
2|λ|δ

)e−1
=

(
diam(Θ)

2−|λ|

)e−1

×
(

δ

max{diam(Θ), diam(Θ′)}

)e−1(
diam(Θ)

max{diam(Θ), diam(Θ′)}

)p−e+1

<∼ ωe−1,

and taking the maximum over these two, the assertion of the lemma is proven for
the first term in (8.3.16). The remaining second term in (8.3.16) can be estimated
exactly in the same fashion by interchanging the roles of λ and λ′.

Obviously, if Ψ is of Q-type of order e, then it is also of P -type of order
n(e− 1) + 1. In the next lemma, however, we will see that product quadrature
rules are quantitatively more efficient for Q-type wavelets.

Lemma 8.3.5. Assume that the wavelet basis Ψ is of Q-type of order e and that
dist(κ(Θ), κ(Θ′)) > 0. For the domains Θ and Θ′, we employ composite product
quadrature rules of orders p and fixed ranks N as in Corollary 7.2.6, and apply
the product of these quadrature rules to approximate the non-singular integral
Iλλ′(κ(Θ), κ(Θ′)) from (8.3.12). We define

σ(κ(Θ̃)) :=
1

2ςN1/n
l̃ for all Θ̃ ∈ ∪`O`, (8.3.18)

146 COMPUTABILITY OF SINGULAR INTEGRAL OPERATORS 8.3

where l̃ is the maximum edge length of Θ̃, and ς is the constant involved in the
Calderon-Zygmund estimate (8.2.8). Then with

ω :=
dist(κ(Θ), κ(Θ′))

max{σ(κ(Θ)), σ(κ(Θ′))}
, (8.3.19)

for any p ≥ max{e− 2t−n, e− 1}, the quadrature error E(κ(Θ), κ(Θ′)) satisfies

|E(Ξ,Ξ′)| <∼ 2||λ|−|λ
′||(n/2−t)ω−(n+p) max{1, ω}e−1

×min{σ(κ(Θ)), σ(κ(Θ′))}n dist(κ(Θ), κ(Θ′))−2t.
(8.3.20)

Proof. Adopting the notations from the previous proof, we use Corollary 7.2.6 to
estimate E(x′).

|E(x′)| ≤ n
21−p

p!
N−p/nln+p · |ψ̂λ′(x′)| ·max

j=1,n

∥∥∥∂pxj

(
K̂(x, x′)ψ̂λ(x)

)∥∥∥
L∞(Θ)

.

The partial derivative of order p along the j-th coordinate direction satisfies

∣∣∣∂pxj

(
K̂(x, x′)ψ̂λ(x)

)∣∣∣ =

∣∣∣∣∣
p∑

k=0

(
p

k

)
∂p−kxj

K̂(x, x′)∂kxj
ψ̂λ(x)

∣∣∣∣∣
≤

min{p,e−1}∑
k=0

(
p

k

) ∣∣∣∂p−kxj
K̂(x, x′)∂kxj

ψ̂λ(x)
∣∣∣ ,

since ∂kxj
ψ̂λ(x) can only be nonzero when k ≤ e−1 because ψ̂λ ∈ Qe−1. Applying

the estimates (8.2.2) and (8.2.8) we have, with δ := dist(κ(Θ), κ(Θ))

max
j=1,n

‖K̂(·, x′)ψ̂‖L∞(Θ)

<∼ 2|λ|(n/2−t)δ−(n+2t+p)

min{p,e−1}∑
k=0

(
p

k

)
(p− k)!

ςp−k
(
2|λ|δ

)k
<∼
p!

ςp
· 2|λ|(n/2−t)δ−(n+2t+p) ·max{1, 2|λ|δ}e−1.

Further we can proceed as in the preceding proof.

We now turn back to the computation of the integral Iλλ′(Π,Π
′) in (8.3.3).

From Lemmata 8.3.4 and 8.3.5, we see that convergence of the quadrature rule
as a function of the order p depends on the quantity ω, which is in essence the
distance between the panels in terms of the size of the bigger panel. For panels Π
and Π′ that have a sufficiently large mutual distance, namely, when dist(Π,Π′) >

8.3 COMPUTABILITY 147

max{σ(Π), σ(Π′)} and thus ω > 1, it makes sense to apply quadrature directly
on the domain Π× Π′, that is, not to apply a further splitting as in (8.3.11).

For the integrals with 0 < dist(Π,Π′) ≤ max{σ(Π), σ(Π′)}, however, the
subdivision Υ has to be nontrivial. By subdividing the integration domain Π×Π′

in such a way that ω > 1 for all individual integrals Iλλ′(Ξ,Ξ
′), we will ensure

convergence of the numerical integration also for these integrals.
Finally, for the case that dist(Π,Π′) = 0, quadrature methods developed for

standard Galerkin boundary elements cannot be applied directly in the wavelet
setting, because the panels Π and Π′ can have very different sizes. Therefore, our
strategy here will be to split the bigger panel into smaller panels such that the
resulting singular integrals are over panels of the same level, and such that the
nonsingular integrals are arranged so that ω > 1 for each of them. In view of
these considerations, we consider Algorithm 8.3.6 for producing a subdivision of
the product domain Π× Π′.

Algorithm 8.3.6 Nonuniform subdivision of the product domain Π× Π′

Parameters: Let ρ > 0 be given, and σ : ∪lGl → R be a function satisfying

σ(Ξ) h diam(Ξ) uniformly in Ξ ∈ ∪lGl. (8.3.21)

Input: Π ∈ G` and Π′ ∈ G`′ with ` ≥ `′.
Output: Υ ⊂ (∪lGl)2.
1: Set Υ := ∅, Ξ := Π, Ξ′ := Π′, and ˜̀ := `, ˜̀′ := `′;
2: If the pair Ξ and Ξ′ does satisfy one of the conditions

dist(Ξ,Ξ′) ≥ ρ ·max{σ(Ξ), σ(Ξ′)}, (8.3.22)

or
dist(Ξ,Ξ′) = 0 and Ξ = Π, Ξ′ ∈ G`, (8.3.23)

accept the pair: Υ := Υ ∪ {Ξ× Ξ′};If not, go to either step 3 or 4;
3: If ˜̀′ ≤ ˜̀, subdivide Ξ′ into next level elements Ξ′i ∈ G˜̀′+1, and perform step 2

with ˜̀′ = ˜̀′ + 1, Ξ′ = Ξ′i for each Ξ′i;
4: If ˜̀′ > ˜̀, subdivide Ξ into next level elements Ξi ∈ G˜̀+1, and perform step 2

with ˜̀= ˜̀+ 1, Ξ = Ξi for each Ξi.

Remark 8.3.7. Algorithm 8.3.6 can already be found in, e.g., [53, 59, 67] with
σ(Ξ) = 2−` for Ξ ∈ G`. This nonuniform subdivision effectively distributes the
“strength” of the nearly singular behavior of the integrand over individual sub-
domains. In [59, 67] the value of ρ is fixed independent of the user and the
subdivision Υ is of type Υ = Ξ × Υ′, where Υ′ is a subdivision of Ξ′. For the

148 COMPUTABILITY OF SINGULAR INTEGRAL OPERATORS 8.3

algorithm in [53], as is the case for the version herein, the parameter ρ can be
chosen by the user, and therefore the subdivision Υ is needed to be more general.
Later we will see that the parameter ρ can be used to control the convergence rate
of quadrature schemes based on the subdivision generated by Algorithm 8.3.6.

4 Computability 16

2. If the pair Ξ and Ξ′ does satisfy one of the conditions

dist(Ξ, Ξ′) ≥ ρ · max{σ(Ξ),σ(Ξ′)}, (4.22)

or
dist(Ξ, Ξ′) = 0 and Ξ = Π, Ξ′ ∈ G!, (4.23)

accept the pair: Υ := Υ ∪ {Ξ× Ξ′}. If not, go to either step 3 or 4.

3. If #̃′ ≤ #̃, subdivide Ξ′ into next level elements Ξ′i ∈ G!̃′+1, and perform step 2 with
#̃′ = #̃′ + 1, Ξ′ = Ξ′i for each Ξ′i.

4. If #̃′ > #̃, subdivide Ξ into next level elements Ξi ∈ G!̃+1, and perform step 2 with
#̃ = #̃ + 1, Ξ = Ξi for each Ξi.

Remark 4.8. Algorithm 4.7 can already be found in, e.g., [Har01, LS99, vPS97] with σ(Ξ) =
2−! for Ξ ∈ G!. This nonuniform subdivision effectively distributes the “strength” of the
nearly singular behavior of the integrand over individual subdomains. In [LS99, vPS97] the
value of ρ is fixed independent of the user and the subdivision Υ is of type Υ = Ξ×Υ′, where
Υ′ is a subdivision of Ξ′. For the algorithm in [Har01], as is the case for the version herein,
the parameter ρ can be chosen by the user, and therefore the subdivision Υ is needed to be
more general. Later we will see that the parameter ρ can be used to control the convergence
rate of quadrature schemes based on the subdivision generated by Algorithm 4.7.

Π

Π′

Fig. 2: A possible subdivision of Π×Π′ generated by Algorithm 4.7: n = 1, dist(Π, Π′) = 0
and Π ∩Π′ = ∅.

Remark 4.9. Since the manifold is Lipschitz, and the subdivisions are nested and satisfy (3.1),
one can verify that for any pair Ξ, Ξ′ ∈ ∪!G! such that dist(Ξ, Ξ′) > 0,

dist(Ξ, Ξ′) ≥ cΓ min{diamΞ, diamΞ′},

with the constant cΓ depending only on the manifold Γ and its parametrization.

Theorem 4.10. For any Π× Π′ ∈ G! × G!′ with # ≥ #′, Algorithm 4.7 terminates. We have
∪Ξ×Ξ′∈ΥΞ× Ξ′ = Π×Π′ and the number of elements in Υ can be bounded by

#Υ <∼ (ρn + 1)(#− #′) + ρ2n + 1, (4.24)

with the constant absorbed by the “<∼” symbol not depending on Π, Π′, and ρ.

Proof. In each two successive subdivisions the maximum diameter of the “current” panels
decreases by a constant factor, while the minimum distance between the “current” pairs does
not decrease. Furthermore, thinking of a pair of panels that have distance zero, if the panels of
a current pair live on different levels, then the difference in levels is decreased by a subdivision.

Figure 8.2: A possible subdivision of Π × Π′ generated by Algorithm 8.3.6: n = 1,
dist(Π,Π′) = 0 and Π ∩Π′ = ∅.

Remark 8.3.8. Since the manifold is Lipschitz, and the subdivisions are nested
and satisfy (8.2.1), one can verify that for any pair Ξ,Ξ′ ∈ ∪`G` such that
dist(Ξ,Ξ′) > 0,

dist(Ξ,Ξ′) ≥ cΓ min{diam Ξ, diam Ξ′},

with the constant cΓ depending only on the manifold Γ and its parametrization.

Theorem 8.3.9. For any Π× Π′ ∈ G` × G`′ with ` ≥ `′, Algorithm 8.3.6 termi-
nates. We have ∪Ξ×Ξ′∈ΥΞ × Ξ′ = Π × Π′ and the number of elements in Υ can
be bounded by

#Υ <∼ (ρn + 1)(`− `′) + ρ2n + 1, (8.3.24)

with the constant absorbed by the “<∼” symbol not depending on Π, Π′, and ρ.

Proof. In each two successive subdivisions the maximum diameter of the “cur-
rent” panels decreases by a constant factor, while the minimum distance between
the “current” pairs does not decrease. Furthermore, thinking of a pair of panels
that have distance zero, if the panels of a current pair live on different levels, then
the difference in levels is decreased by a subdivision. Therefore the conditions
(8.3.22) or (8.3.23) will eventually be satisfied starting from any pair, implying
that the algorithm will terminate.

To avoid some technicalities, we prove here the estimate (8.3.24) for the simple

case that the manifold Γ is Rn, and that σ(Ξ̃) = diam(Ξ̃) = 2−
˜̀
for all Ξ̃ ∈ G˜̀,

˜̀ ∈ N0. For the general case an analogous proof is obtained by using the fact
that Γ is Lipschitz and that σ(Ξ̃) h diam(Ξ̃) h 2−

˜̀
for all Ξ̃ ∈ G˜̀, ˜̀∈ N0.

Let N˜̀ denote the number of pairs Ξ×Ξ′ ∈ Υ such that Ξ′ ∈ G˜̀. Then we can
estimate the total number of pairs by estimating the numbers N˜̀ and summing

8.3 COMPUTABILITY 149

over all ˜̀. It is obvious that if dist(Π,Π′) > 0, the number of pairs Ξ×Ξ′ ∈ Υ that
satisfy (8.3.23) is zero, and if dist(Π,Π′) = 0, this number is uniformly bounded.
Since in (8.3.24) this number is absorbed by the term 1 at the right hand side, in
the remainder we will only count pairs of type (8.3.22).

In case ˜̀≤ `, we have Ξ = Π for any Ξ′ ∈ G˜̀ with Ξ×Ξ′ ∈ Υ. When, moreover
˜̀ > `′ we have dist(Π,Ξ′) ≤ (2ρ + 2)2−

˜̀
. Indeed, if not, then the “parent”

Ξ′′ ∈ G˜̀−1 of Ξ′ would have satisfied dist(Π,Ξ′′) > 2ρ2−
˜̀

= max{σ(Π), σ(Ξ′′)}
and so Ξ′ would never have been created by the algorithm. We conclude that for

`′ < ˜̀≤ `, N˜̀
<∼
(
(2ρ+ 2)2−

˜̀
+ 2−`

)n
/2−

˜̀n <∼ ρn + 1.

Now we consider Ξ × Ξ′ ∈ Υ with Ξ′ ∈ G˜̀ and ˜̀> ` (and such that Ξ × Ξ′

satisfies (8.3.22)). By construction of the algorithm, we have either Ξ ∈ G˜̀ or
Ξ ∈ G˜̀−1. Similar arguments as have been used above show that for fixed Ξ,
the number of such pairs is bounded by a constant multiple of ρn + 1. Since the
number of such Ξ is bounded by a constant multiple of 2(˜̀−`)n, we conclude that
for ˜̀> `, N˜̀

<∼ (ρn + 1)2(˜̀−`)n.
In light of Remark 8.3.8, it is easy to see that the smallest subelements gener-

ated by this algorithm will belong to the level `max with ρ2−`max >∼ 2−`, implying
that 2(`max−`)n <∼ ρn. Therefore, we conclude that the number of elements in the
subdivision Υ is bounded by a constant multiple of

1 +
`max∑

˜̀=`′+1

N˜̀
<∼ 1 +

∑̀
˜̀=`′+1

(ρn + 1) +
`max∑

˜̀=`+1

(ρn + 1)2(˜̀−`)n

<∼ (ρn + 1)(`− `′) + ρ2n + 1.

From the condition (8.3.23), we have that the singular integrals corresponding
to the subdivision Υ are always over pairs of panels on the same level. In this
paper, we make the following Assumption 8.3.10 on quadrature schemes for com-
puting those singular integrals. For completeness, in Section 8.4 we confirm this
assumption for the simple case of the single layer kernel on polyhedral surfaces in
R3. In any case for weakly- and strongly singular integrals, using the quadrature
schemes from e.g. [72, 74], we expect that Assumption 8.3.10 can be verified
generally.

Assumption 8.3.10. We assume that there exist d∗0 ∈ R and %0 > 1 such that
for any λ, λ′ ∈ Λ with |λ| ≥ |λ′|, Ξ,Ξ′ ∈ G|λ| with dist(Ξ,Ξ′) = 0, and for any
order p ∈ N, an approximation I∗λλ′(Ξ,Ξ

′) of Iλλ′(Ξ,Ξ
′) can be computed within

W <∼ p2n arithmetical operations, having an error

|Iλλ′(Ξ,Ξ′)− I∗λλ′(Ξ,Ξ)′| <∼ %−p0 2||λ|−|λ
′||d∗0 . (8.3.25)

150 COMPUTABILITY OF SINGULAR INTEGRAL OPERATORS 8.3

Now we are ready to present an algorithm how to compute the integral (8.3.11)
with the help of a generally non-uniform subdivision of the integration domain
Π× Π′.

Algorithm 8.3.11 Computation of the integral Iλλ′(Π,Π
′)

Parameters: Let Ψ be of P -type of order e, and let p ∈ N and ρ > 1 be given.
Choose the function σ(·) as in Lemma 8.3.4.

Input: λ, λ′ ∈ Λ, and Π ∈ Gλ, and Π′ ∈ Gλ′ .
Output: I∗λλ′(Π,Π

′) ∈ R.
1: Apply Algorithm 8.3.6 with the above ρ and σ(·) to get the subdivision Υ of

Π× Π′;
2: For each subdomain Ξ×Ξ′ ∈ Υ apply either step 4 or 5; and sum the results

as in (8.3.11), to get I∗λλ′(Π,Π
′);

3: If dist(Ξ,Ξ′) > 0, apply the quadrature scheme of order p from Lemma 8.3.4;
4: If dist(Ξ,Ξ′) = 0, apply the computational scheme of order p from Assump-

tion 8.3.10.

Remark 8.3.12. For Q-type wavelets, Algorithm 8.3.11 can be redefined by re-
placing ”Lemma 8.3.4” by ”Lemma 8.3.5”.

Theorem 8.3.13. Let Ψ be of P -type of order e, and assume that an approxi-
mation I∗λλ′(Π,Π

′) of Iλλ′(Π,Π
′) is computed by using Algorithm 8.3.11. Assume

that n ≥ 2t. Then, in case that

dist(Π,Π′) ≥ ρmax{σ(Π), σ(Π′)}, (8.3.26)

with e∗ = e− 1− 2t− n, the error of the numerical integration satisfies

|Eλλ′(Π,Π′)| <∼ ρ−p2−||λ|−|λ
′||(t+n/2)

(
dist(Π,Π′)

ρmax{σ(Π), σ(Π′)}

)e∗−p
, (8.3.27)

and the work for computing I∗λλ′(Π,Π
′) is bounded by a constant multiple of p2n,

provided that p ≥ max{e− 1, e∗ + 1}. In case that (8.3.26) does not hold, for any
d∗1 ≥ |t| − n/2, with d∗1 > −n/2 when t = 0, the error satisfies

|Eλλ′(Π,Π′)| <∼ ρ−p2||λ|−|λ
′||d∗1 + %−p0 2||λ|−|λ

′||d∗0 , (8.3.28)

and the work is bounded by a constant multiple of p2n(1 + ||λ| − |λ′||), provided
that p ≥ max{e− 1, e∗ +1}. In view of Remark 8.3.12, these results also hold for
Q-type wavelets of order e.

By taking % := min{%0, ρ} and d∗ := max{d∗0, d∗1}, we conclude that the criteria
(8.3.5) and (8.3.6) for s∗-computability from Theorem 8.3.2 are satisfied.

8.3 COMPUTABILITY 151

Proof. Without loss of generality, we assume that |λ| ≥ |λ′|. First, we will
consider the case that (8.3.26) holds. In this case, we have the subdivision Υ =
{Π × Π′}, and so the computational work is of order of p2n. Applying Lemma
8.3.4 with Θ = κ−1(Π) and Θ′ = κ−1(Π′), taking into account the definition of ω,
and using the fact that ω ≥ ρ > 1 and that min{σ(Π), σ(Π′)} <∼ 2−|λ|, we get

|Eλλ′(Π,Π′)| <∼ 2(|λ|−|λ′|)(n/2−t)ω−(n+p) max{1, ω}e−1 min{σ(Π), σ(Π′)}n

× dist(Π,Π′)−2t

<∼ 2−|λ|(t+n/2)+|λ
′|(t−n/2)ωe−1−n−pω−2t max{σ(Π), σ(Π′)}−2t.

Now using the estimate max{σ(Π), σ(Π′)} h 2−|λ
′| and n ≥ 2t, we have

|Eλλ′(Π,Π′)| . 2−(|λ|−|λ′|)(t+n/2)−|λ′|(n−2t)ωe
∗−p

. ρ−p2−(|λ|−|λ′|)(t+n/2)(ω/ρ)e
∗−p,

proving the first part of the theorem.

Let us now consider the case that (8.3.26) does not hold. Since ρ is fixed, the
number of subdomains of the subdivision Υ is of order 1 + ||λ| − |λ′||, and thus
we get the work bound. By Assumption 8.3.10, the sum of the errors made in the
approximations for Iλλ′(Ξ,Ξ

′) with Ξ× Ξ′ ∈ Υ and dist(Ξ,Ξ′) = 0 is responsible
for the last term in (8.3.28).

We need to estimate the portion of the total error Eλλ′(Π,Π
′) that corresponds

to the integrals Iλλ′(Ξ,Ξ
′) with Ξ × Ξ′ ∈ Υ and dist(Ξ,Ξ′) > 0. We denote by

I1 the sum of all these integrals arising from the subdivision Υ, and by I∗1 the
computed approximation for I1. Since by construction for any Ξ × Ξ′ ∈ Υ with
dist(Ξ,Ξ′) > 0 it holds that dist(Ξ,Ξ′)

max{σ(Ξ),σ(Ξ′)} ≥ ρ > 1, Lemma 8.3.4 gives

|I1 − I∗1 | .
∑

{Ξ×Ξ′∈Υ:dist(Ξ,Ξ′)>0}

2(|λ|−|λ′|)(n/2−t)ρe−1−n−p (8.3.29)

×min{σ(Ξ), σ(Ξ′)}n dist(Ξ,Ξ′)−2t

. ρ−p2−|λ|(t+n/2)+|λ
′|(t−n/2)

∑
{Ξ×Ξ′∈Υ:dist(Ξ,Ξ′)>0}

dist(Ξ,Ξ′)−2t,

where we have used that min{σ(Ξ), σ(Ξ′)} <∼ 2−|λ|.

From the proof of Lemma 8.3.9, recall that for the number N˜̀ of Ξ× Ξ′ ∈ Υ
with Ξ′ ∈ G˜̀, we have N˜̀ = 0 for ˜̀ > `max where, since ρ is a fixed constant,

`max − |λ| <∼ 1, and furthermore N˜̀
<∼ 1 for |λ′| ≤ ˜̀≤ `max. Since for Ξ× Ξ′ ∈ Υ

with dist(Ξ,Ξ′) > 0 and Ξ′ ∈ G˜̀, dist(Ξ,Ξ′) h 2−
˜̀
, we may bound the sum in the

152 COMPUTABILITY OF SINGULAR INTEGRAL OPERATORS 8.4

last row of (8.3.29) on a constant multiple of

`max∑
˜̀=|λ′|

2
˜̀·2t <∼


1 + ||λ| − |λ′|| if t = 0,

2|λ
′|·2t if t < 0,

2|λ|·2t if t > 0.

By substituting this result into (8.3.29), the proof is completed.

8.4 Quadrature for singular integrals
In this section, we confirm Assumption 8.3.10 for the simple case of the single
layer kernel on polyhedral surfaces in R3.

We assume that the manifold Γ is the surface of a three dimensional polyhe-
dron, and that the subdivisions G`, (` ∈ N), are generated by dyadic refinements
of G0, being an initial conforming triangulation of Γ.

We take the operator L to be the single layer operator (thus t = −1
2
) having

the kernel

K(z, z′) =
1

4π|z − z′|
z 6= z′, (8.4.1)

and assume that the wavelet basis Ψ is of P -type of order e. Let λ, λ′ ∈ Λ be
indices with |λ| ≥ |λ′|. Then in view of Assumption 8.3.10, we are ultimately
interested in computing the integral

I :=

∫
Ξ

∫
Ξ′
K(z, z′)ψλ(z)ψλ′(z

′)dΓzdΓz′ , (8.4.2)

where Ξ,Ξ′ ∈ G|λ| and dist(Ξ,Ξ′) = 0. With

T := {(x1, x2) ∈ R2 : 0 < x2 < x1 < 1},

we can find affine bijections χΞ : T → Ξ, and χΞ′ : T → Ξ′, thus with Jacobians
JΞ := |∂χΞ| h 2−2|λ|, and JΞ′ := |∂χΞ′| h 2−2|λ|, such that

I =

∫
T

∫
T

g(x, y)

|r(x, y)|
dxdy, (8.4.3)

where g(x, y) := (4π)−1JΞJΞ′ψλ(χΞ(x))ψλ′(χΞ′(y)) and r(x, y) := χΞ′(y)− χΞ(x).
Taking into account that n = 2 and t = −1

2
, from (8.2.2) we derive the following

estimates for β ∈ N2
0

|∂βxg| <∼ 2−
5
2
|λ|+ 3

2
|λ′| and |∂βy g| <∼ 2−

5
2
|λ|+ 3

2
|λ′|2(|λ′|−|λ|)|β|. (8.4.4)

8.4 QUADRATURE FOR SINGULAR INTEGRALS 153

We present here a slight variation of the quadrature scheme developed in e.g.
[67, 72, 74], see also [73]. The idea is to apply a degenerate coordinate transfor-
mation which is a generalization of the so called Duffy’s triangular coordinates,
effectively removing the singularity of the integrand while preserving a polyhe-
dral shape of the integration domain. The coordinate transformations introduced
here are somewhat simpler than the ones in the above mentioned papers, and we
expect that the presentation is geometrically more intuitive.

To this end, we need to partition the integration domain T×T into several
pyramides, which is necessary for us to use Duffy’s transformations in order to
remove the singularities, cf. [67, 72]. Denote the vertices of the triangle T by
A0 = (0, 0), A1 = (0, 1), and A2 = (1, 1). Then obviously, T×T has nine vertices
Aik := Ai × Ak for i, k = 0, 1, 2. Note that A00 = O.

We break T×T up into two pyramides D1 := {(x, y) ∈ T×T : x1 > y1} and
D2 := {(x, y) ∈ T×T : x1 < y1}. One can verify that D1 is the pyramid with
vertex O and base B1 = A10A11A12A20A21A22, being a triangular prism, and
that D2 is the pyramid with vertex O and base B2 B2 = A01A11A21A02A12A22,
being also a triangular prism. Moreover, these prisms can be described as B1 =
{1}× (0, 1)×T and B2 = T ×{1}× (0, 1). Introducing the reflection with respect
to the plane x = y by R : (x, y) 7→ (y, x), we notice the symmetry B2 = RB1

and so D2 = RD1.
By subdividing the prism B1 into tetrahedra, we can get a simplicial parti-

tioning of T×T , because any simplicial partitioning of B1 induces a simplicial
partitioning of D1, and by taking the image under the mapping R, a simplicial
partitioning of D2. Our choice of such a partitioning is depicted in Figure 8.3.

A20

A21

A22

A10

A11

A12

Figure 8.3: A simplicial partitioning of the prism B1.

Consequently, the domain T×T is subdivided into the following simplices

154 COMPUTABILITY OF SINGULAR INTEGRAL OPERATORS 8.4

described by their vertices.

D1


S1 = OA10A11A12A22,
S2 = OA10A11A20A22,
S3 = OA11A20A21A22,

and D2


S4 = OA01A11A21A22,
S5 = OA01A11A02A22,
S6 = OA11A02A12A22.

We notice the symmetry Si = RSi+3 for i = 1, 2, 3. The above partitionings
of T×T will be used in quadrature schemes for the integral (8.4.3).

In the following we will distinguish three basic cases:

• Coincident panels: Ξ = Ξ′, that is, the case of identical panels;

• Edge adjacent panels: Ξ and Ξ′ share one common edge;

• Vertex adjacent panels: Ξ and Ξ′ share one common vertex.

In view of (8.4.3), we need to integrate a singular function over a four dimen-
sional polyhedral domain T × T . The singularity of the function is located on
different dimensional sets in different situations: whereas the singularity occurs
at a point for vertex adjacent integrals, it occurs all along an edge in case the
integral is edge adjacent, and for coincident integrals, the singularity is on a two
dimensional “diagonal” of the domain. Therefore in each of the three cases, we
first characterize the singularity in terms of the distance to the singularity set, and
then introduce special coordinate transformations that annihilate the singularity.

Case of identical panels

First we will discuss the case of identical panels Ξ = Ξ′. In this case, the difference
r = χΞ(y)− χΞ(x) is zero if and only if t := y − x = 0. Since χΞ is affine, we can
write

r = 2−|λ|l1(t) = 2−|λ|l1(y1 − x1, y2 − x2),

where l1 : R2 7→ R3 is a linear function depending only on the shape of Ξ. Noting
that any panel Ξ is similar to a panel from the initial triangulation, we only have
to deal with finitely many functions l1. Introducing polar coordinates (ρ, θ) in R2

by ρ = |t| and θ = t/|t| ∈ S1, being the unit circle in R2, this difference r reads
as

r = 2−|λ|ρl1(θ).

Our goal is now to obtain an expression for |r|−1, because this quantity essentially
determines the singular behavior of the local kernel. Since r is defined on some

8.4 QUADRATURE FOR SINGULAR INTEGRALS 155

complete neighborhood of t = 0, the function l1(θ) has to be nonzero for any
θ ∈ S1, and so we have

|r|−1 = 2|λ|ρ−1a(θ)

with a(θ) := |l1(θ)|−1 which is analytic in a neighborhood of S1. Now the inte-
grand of (8.4.3) can be written as

|r(x, y)|−1g(x, y) = 2|λ|ρ−1a(θ)g(x, y). (8.4.5)

It is time to use the above described simplicial partitioning of the integration
domain T × T , in combination with special coordinate transformations for the
purpose of removing the singularity of the integrand. Introducing the notation
P := T×(0, 1)×(0, 1), we define the transformations φi : P→Si : (η, ζ, ξ) 7→ (x, y)
for i ∈ 1, 6.

φ1(η, ζ, ξ) =


(1− ξ)η1 + ξ

(1− ξ)η2

(1− ξ)η1 + ξζ
(1− ξ)η2 + ξζ

 , φ2(η, ζ, ξ) =


(1− ξ)η1 + ξ
(1− ξ)η2 + ξζ

(1− ξ)η1

(1− ξ)η2

 ,

φ3(η, ζ, ξ) =


(1− ξ)η1 + ξ
(1− ξ)η2 + ξ
(1− ξ)η1 + ξζ

(1− ξ)η2

 , (8.4.6)

and φi+3 := R◦φi for i = 1, 2, 3. The Jacobian of each transformation φi is given
by ξ(1−ξ)2. Recall that ρ−1 characterizes the singularity of the integrand (8.4.5).
In this regard, for each transformation φi one can show that

ρ = ξfi(ζ), with an analytic fi(ζ)≥ 1√
2

for any ζ ∈ [0, 1].

For instance, for φ1 we have

ρ2 = ξ2(ζ2 + (1− ζ)2) ≥ ξ2·1
2
,

since ζ2 + (1 − ζ)2≥1
2

for any ζ ∈ R. Moreover, for each φi one can verify that
θ = ϑi(ζ) for some analytic function ϑi : [0, 1] → S1.

In all, the Jacobian of the mapping φi annihilates the singularity in the inte-
grand (8.4.5), meaning that the integral I in (8.4.3) now can be written as the
following proper integral

I =

∫ 1

0

∫ 1

0

∫
T

ξ(1− ξ)2

6∑
i=1

g(φi(η, ζ, ξ))

|r(φi(η, ζ, ξ))|
dηdζdξ

= 2|λ|
∫ 1

0

∫ 1

0

∫
T

(1− ξ)2

6∑
i=1

a(ϑi(ζ))g(φi(η, ζ, ξ))

fi(ζ)
dηdζdξ.

(8.4.7)

156 COMPUTABILITY OF SINGULAR INTEGRAL OPERATORS 8.4

Therefore we will be able to use standard quadrature schemes to approximate the
integral I. Note that in numerical quadrature we can use the first expression in
(8.4.7) for the integral I. The functions fi and a ◦ ϑi are introduced here merely
for the analysis purpose.

Since the integrand in (8.4.7) is polynomial with respect to the variables ξ
and η, we can always choose exact quadrature rules for integrations over those
variables.

Proposition 8.4.1. Approximate the integral (8.4.7) by a product quadrature
rule Qξ×Qζ×Qη, where Qξ and Qη are quadrature rules exact for the integration
over the variables ξ ∈ (0, 1) and η ∈ T , respectively, and Qζ is a composite
quadrature rule for the integration over ζ ∈ (0, 1) of varying order p and fixed
rank N . Then there exist a constant δ > 0 such that the quadrature error satisfies

|E(Ξ,Ξ′)| <∼ 2−
3
2
(|λ|−|λ′|)(δN)−p. (8.4.8)

Choosing N such that δN > 1, we conclude that in this case Assumption 8.3.10
is fulfilled with d∗0 = −3

2
.

Proof. In view of Lemma 7.2.4, it suffices to consider the integration over ζ. Using
the analyticity of ζ 7→ a(ϑi(ζ))

fi(ζ)
one derives

sup
ζ∈[0,1]

∣∣∣∣∂kζ a(ϑi(ζ))fi(ζ)

∣∣∣∣ <∼ k!

δk
for k ∈ N0, i ∈ 1, 6,

for some constant δ > 0. From (8.4.4) and (8.4.6) we have for each i ∈ 1, 6 that
g ◦ φi is a polynomial of order e and

|∂kζ (g ◦ φi)| <∼ 2−
5
2
|λ|+ 3

2
|λ′| for k ∈ 1, e− 1.

Now using Proposition 7.2.6 the proof is obtained.

Case of edge adjacent panels

Now we will discuss the case when Ξ and Ξ′ share exactly one common edge.
Without loss of generality, we assume that χΞ(x) = χΞ′(x) for all x ∈ (0, 1)×{0}.
Then, the difference r = χΞ′(y)− χΞ(x) is zero if and only if

t = (t1, t2, t3) := (y1 − x1, x2, y2)

equals zero. Since χΞ and χΞ′ are affine, we can write

r = χΞ′(x1 + t1, t3)− χΞ(x1, t2) = 2−|λ|l1(t),

8.4 QUADRATURE FOR SINGULAR INTEGRALS 157

where l1 : R3 → R3 is a linear function depending only on the shapes of Ξ and
Ξ′. Introducing polar coordinates (ρ, θ) in R3 by ρ = |t| and θ = t/|t| ∈ S2, being
the unit sphere in R3, this difference r reads as

r = r(ρ, θ) = 2−|λ|ρl1(θ).

Since r is defined on a complete neighborhood of t = 0 in R× R2
≥0, the function

l1(θ) 6= 0 for any θ ∈ S2 with θ2, θ3 ≥ 0, allowing us to write

|r|−1 = 2|λ|ρ−1b(θ)

with b(θ) := |l1(θ)|−1 which is analytic in a neighborhood of S2 ∩
(
R× R2

≥0

)
.

Then the integrand of (8.4.3) can be written as

|r(x, y)|−1g(x, y) = 2|λ|ρ−1b(θ)g(x, y). (8.4.9)

Now we define the transformations φi : P→Si : (η, ζ, ξ) 7→ (x, y) for i ∈ 1, 6.

φ1(η, ζ, ξ) =


(1− ξ)ζ + ξ

ξη2

(1− ξ)ζ + ξη1

ξη1

 , φ2(η, ζ, ξ) =


(1− ξ)ζ + ξ

ξη1

(1− ξ)ζ + ξη2

ξη2

 ,

φ3(η, ζ, ξ) =


(1− ξ)ζ + ξ

ξ
(1− ξ)ζ + ξη1

ξη2

 , (8.4.10)

and φi+3 := R ◦ φi for i = 1, 2, 3. For each transformation φi one can show that
the Jacobian equals ξ2(1− ξ), and that

ρ = ξfi(η), with an analytic fi(η)≥ 1√
2

for any η ∈ T .

For instance, for φ1 we have

ρ2 = ξ2(η2
1 + (1− η1)

2 + η2
2) ≥ ξ2·1

2
.

Moreover, for each φi one can verify that θ = ϑi(η) with some analytic function
ϑi : T → S2.

In all, the Jacobian of the mapping φi annihilates the singularity in the inte-
grand (8.4.9), meaning that the integral I in (8.4.3) now can be written as the

158 COMPUTABILITY OF SINGULAR INTEGRAL OPERATORS 8.4

following proper integral

I =

∫ 1

0

∫ 1

0

∫
T

ξ2(1− ξ)
6∑
i=1

g(φi(η, ζ, ξ))

|r(φi(η, ζ, ξ))|
dηdζdξ

= 2|λ|
∫ 1

0

∫ 1

0

∫
T

ξ(1− ξ)
6∑
i=1

b(ϑi(η))g(φi(η, ζ, ξ))

fi(η)
dηdζdξ,

(8.4.11)

and thus the standard quadrature schemes on P can be applied.

Proposition 8.4.2. Approximate the integral (8.4.11) by a product quadrature
rule Qξ×Qζ×Qη, where Qξ and Qζ are quadrature rules exact for the integration
over the variables ξ, ζ ∈ (0, 1), respectively, and Qη is a composite quadrature rule
for the integration over η ∈ T of varying order p and fixed rank N . Then there
exist a constant δ > 0 such that the quadrature error satisfies

|E(Ξ,Ξ′)| <∼ 2−
3
2
(|λ|−|λ′|)(δN)−p. (8.4.12)

Choosing N such that δN > 1, we conclude that in this case Assumption 8.3.10
is fulfilled with d∗0 = −3

2
.

The proof is obtained similarly to the proof of Proposition 8.4.1.

Case of vertex adjacent panels

Let Ξ and Ξ′ share exactly one common point. Without loss of generality, we
assume that χΞ(0) = Ξ∩Ξ′ = χΞ′(0). Then obviously, the difference r = r(x, y) =
χΞ′(y)− χΞ(x) is zero if and only if t := (x, y) equals zero. Since χΞ and χΞ′ are
affine, we can write

r(x, y) = 2−|λ|l1(x, y),

where l1 : R4 → R3 is a linear function depending only on the shapes of Ξ and
Ξ′. Introducing polar coordinates (ρ, θ) in R4 by ρ = |t| and θ = t/|t| ∈ S3, being
the unit sphere in R4, this difference r reads as

r = r(ρ, θ) = 2−|λ|ρl1(θ).

Since r is defined on a complete neighborhood of t = 0 in {t ∈ R4 : t1 ≥ t2 ≥
0, t3 ≥ t4 ≥ 0}, the function l1(θ) 6= 0 for any θ ∈ S3 with θ1 ≥ θ2 ≥ 0 and
θ3 ≥ θ4 ≥ 0, allowing us to write

|r|−1 = 2|λ|ρ−1c(θ)

8.4 QUADRATURE FOR SINGULAR INTEGRALS 159

with c(θ) := |l1(θ)|−1 which is analytic in a neighborhood of {θ ∈ S3 : θ1 ≥ θ2 ≥
0, θ3 ≥ θ4 ≥ 0}. Then the integrand of (8.4.3) can be written as

|r(x, y)|−1g(x, y) = 2|λ|ρ−1c(θ)g(x, y). (8.4.13)

We define the transformations φ1 and φ2 that map the coordinates (η, ζ, ξ)
∈ P onto the four dimensional pyramides D1 and D2 respectively.

φ1(η, ζ, ξ) = ξ(1, ζ, η1, η2), and φ2(η, ζ, ξ) = ξ(η1, η2, 1, ζ). (8.4.14)

Notice that φ1 = R ◦ φ2 with R being the reflection x↔y. For both of the
transformations, the Jacobian equals ξ3, and we have

ρ = ξf(η, ζ) with f(η, ζ) =
√

1 + η1
2 + η2

2 + ζ2.

Moreover, we have θ = ϑ1(η, ζ) := f(η, ζ)−1(1, ζ, η1, η2) for the transformation
φ1, and θ = ϑ2(η, ζ) := Rϑ1(η, ζ) for the transformation φ2.

In all, the Jacobian of the mapping φi annihilates the singularity in the inte-
grand (8.4.13), meaning that the integral I in (8.4.3) now can be written as the
following proper integral

I =

∫ 1

0

∫ 1

0

∫
T

ξ3

2∑
i=1

g(φi(η, ζ, ξ))

|r(φi(η, ζ, ξ))|
dηdζdξ

= 2|λ|
∫ 1

0

∫ h

0

∫
T

ξ2

2∑
i=1

c(ϑi(η, ζ))g(φi(η, ζ, ξ))

f(η, ξ)
dηdζdξ,

(8.4.15)

and thus the standard quadrature schemes on P can be applied.

Proposition 8.4.3. Approximate the integral (8.4.15) by a product quadrature
rule Qξ × Qζ × Qη, where Qξ is a quadrature rule exact for the integration over
ξ ∈ (0, 1), and Qζ and Qη are composite quadrature rules for the integration over
ζ ∈ (0, 1) and η ∈ T , respectively, of varying order p and fixed rank N . Then
there exist a constant δ > 0 such that the quadrature error satisfies

|E(Ξ,Ξ′)| <∼ 2−
3
2
(|λ|−|λ′|)(δN)−p. (8.4.16)

Choosing N such that δN > 1, we conclude that in this case Assumption 8.3.10
is fulfilled with d∗0 = −3

2
.

160 COMPUTABILITY OF SINGULAR INTEGRAL OPERATORS 8.4

Chapter 9
Conclusion

9.1 Discussion
In [17, 18], Cohen, Dahmen and DeVore introduced adaptive wavelet paradigms
for solving operator equations. A number of algorithms with asymptotically opti-
mal computational complexity were developed, among others, under the assump-
tion that on average, an individual entry of the stiffness matrix can be computed
at unit cost. Although it has been indicated that this assumption is realistic, it
is far from obvious.

The work presented in this thesis shows that the average unit cost assumption
is valid for both differential and singular integral operators, at least when the
wavalets are piecewise polynomials (Chapters 7 and 8). As a consequence, we
can conclude that the “fully discrete” adaptive wavelet algorithm has optimal
computational complexity.

A crucial ingredient for proving the optimal complexity of the adaptive wavelet
algorithms was the coarsening step that was applied after every fixed number
of iterations. As we have shown in Chapter 3, it turns out that coarsening is
unnecessary for proving optimal computational complexity of algorithms of the
type considered in [17]. Since with the new method no information is deleted that
has been created by a sequence of computations, we expect that it is more efficient.
The algorithm from Chapter 3 can be applied directly with minor modifications
to a larger class of problems (Chapter 5). We also investigated the possibility
of using polynomial preconditioners in the context of adaptive wavelet methods
(Chapter 4).

In [5, 54], adaptive wavelet methods with “truncated” residuals were intro-
duced which are modifications of the methods from [17], and convincing numerical
experiments were reported showing that the methods are comparatively efficient.
We developed a theoretical framework that could be used to prove optimal com-

161

162 CONCLUSION 9.2

putational complexity of the methods with truncated residuals, and for elliptic
boundary value problems, a complete proof of optimality is given (Chapter 6).

9.2 Future work
There are many interesting directions in which future research on adaptive wavelet
algorithms can be taken.

Proving optimality of adaptive wavelet BEMs with truncated residuals is an
interesting and important open issue. Supposing that the proof would be similar
to our proof in the case of methods for boundary value problems (Chapter 6),
one would need efficient and reliable a posteriori error estimators for BEMs. To
our knowledge, the only known such estimators are those developed by Birgit
Faermann, cf. [42, 43, 44]. Then, the so-called local discrete lower bound for
those estimators seems to be far from obvious. This direction could also be a way
to approach the convergence and complexity analyses of adaptive BEMs.

Another interesting topic is the use of anisotropically supported wavelets for
adaptive algorithms. When isotropically supported wavelets are employed, the
convergence rate grows with the regularity of the solution in terms of (isotropic)
Besov spaces (cf. Chapter 2), and decreases with increasing space dimension. The
latter fact is an instance of the so called curse of dimensionality. Fortunately,
high dimensional problems are usually simple and formulated on tensor product
domains, and this exceptionally symmetric structure seems to give rise to a cer-
tain regular behaviour of the solution. Recently, Nitsche [65] identified certain
anisotropic Besov spaces as the natural smoothness spaces for measuring the reg-
ularity of the solution when anisotropically supported tensor product wavelets are
employed. It is also shown that in two and three dimensions, solutions to ellip-
tic PDE’s exhibit arbitrarily high regularity measured in terms of these spaces,
while it is not known whether the same holds in the isotropic setting. More-
over, adaptive wavelet algorithms applied with anisotropically supported tensor
product wavelets are proven to display asymptotically optimal convergence rates
independent of space dimension, only restricted by the anisotropic Besov regular-
ity of the solution and certain properties of the wavelets which can be bettered at
will by choosing appropriate wavelets, cf. [65, 79]. So above all, it seems that the
curse of dimensionality can be avoided. Yet, there still remains a few technical
details. One has to be sure that the constants in the asymptotic estimates do
not blow up with increasing dimension. Although it is generally expected, a suf-
ficient regularity of the PDE’s in more than three dimension needs to be verified.
Furthermore, appropriate data structures for the implementation of the adaptive
wavelet methods for high dimensions should be identified.

Anisotropically supported wavelets could also pay off even in low dimensions

9.2 FUTURE WORK 163

when a strong singularity along a layer is present, for instance, when boundary in-
tegral equations on polyhedra, or singularly perturbed boundary value problems
are considered. There have appeared some interesting results in the direction
of using (isotropic as well as anisotropic) wavelets for stabilizing singularly per-
turbed boundary value problems, cf. [6, 13].

Furthermore, there are many related active research areas that are not touched
upon in this thesis. Those include the issues of adaptive wavelet methods for
nonlinear variational problems (cf. [3, 19, 20, 35]), using wavelets for goal oriented
adaptivity (cf. [31]), using wavelet frames instead of a basis (cf. [27, 28, 83]), and
adaptive wavelet methods for eigenvalue computation.

164 CONCLUSION

Bibliography

[1] S. F. Ashby, T. A. Manteuffel, and J. S. Otto, A comparison of
adaptive Chebyshev and least squares polynomial preconditioning for Her-
mitian positive definite linear systems, SIAM J. Sci. Statist. Comput., 13
(1992), pp. 1–29.

[2] K. Atkinson, The numerical solution of boundary integral equations, in
The State of the Art in Numerical Analysis, I. Duff and G. Watson, eds.,
Clarendon Press, Oxford, 1997, pp. 223–259.

[3] A. Barinka, Fast computation tools for adaptive wavelet schemes, PhD
thesis, RWTH Aachen, Germany, March 2005.

[4] J. Bergh and J. Löfström, Interpolation spaces: An introduction,
vol. 223 of Grundlehren der mathematischen Wissenschaften, Springer-
Verlag, Berlin, Heidelberg, New York, 1976.

[5] S. Berrone and T. Kozubek, An adaptive WEM algorithm for solving
elliptic boundary problems in fairly general domains, Preprint 38, Politecnico
di Torino, Italy, 2004. Submitted.

[6] S. Bertoluzza, C. Canuto, and A. Tabacco, Stable discretizations of
convection-diffusion problems via computable negative-order inner products,
SIAM J. Numer. Anal., 38 (2000), pp. 1034–1055 (electronic).

[7] G. Beylkin, R. Coifman, and V. Rokhlin, The fast wavelet transform
and numerical algorithms, Comm. Pure & Appl. Math., 44 (1991), pp. 141–
183.

[8] P. Binev, W. Dahmen, and R. DeVore, Adaptive finite element methods
with convergence rates, Numer. Math., 97(2) (2004), pp. 219–268.

165

166 BIBLIOGRAPHY

[9] K. Bittner and K. Urban, Adaptive wavelet methods using semiorthogo-
nal spline wavelets: Sparse evaluation of nonlinear functions, preprint, Uni-
versität Ulm, Germany, 2004.

[10] J. Bramble and J. Pasciak, A preconditioning technique for indef-
inite systems resulting from mixed approximations of elliptic problems,
Math. Comp., 50(181) (1988), pp. 1–17.

[11] S. C. Brenner and R. L. Scott, The mathematical theory of finite ele-
ment methods, Springer Verlag, New York, 1994.

[12] V. I. Burenkov, Sobolev spaces on domains, Teubner Verlag, Stuttgart,
Leipzig, 1998.

[13] C. Canuto and A. Tabacco, Anisotropic wavelets along vector fields and
applications to PDE’s, Arab. J. Sci. Eng. Sect. C Theme Issues, 28 (2003),
pp. 89–105. Wavelet and fractal methods in science and engineering, Part I.

[14] C. Canuto, A. Tabacco, and K. Urban, The wavelet element method
part I: Construction and analysis, Appl. Comput. Harmon. Anal., 6 (1999),
pp. 1–52.

[15] C. Canuto and K. Urban, Adaptive optimization in convex Banach
spaces, SIAM J. Numer. Anal., 42 (2005), pp. 2043–2075.

[16] A. Cohen, Wavelet methods in numerical analysis, in Handbook of Nu-
merical Analysis. Vol. VII, P. Ciarlet and J. L. Lions, eds., North-Holland,
Amsterdam, 2000, pp. 417–711.

[17] A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet schemes
for elliptic operator equations – Convergence rates, Math. Comp., 70 (2001),
pp. 27–75.

[18] , Adaptive wavelet methods II – Beyond the elliptic case, Found. Com-
put. Math., 2 (2002), pp. 203–245.

[19] , Adaptive wavelet schemes for nonlinear variational problems, SIAM J.
Numer. Anal., 41 (2003), pp. 1785–1823.

[20] , Sparse evaluation of compositions of functions using multiscale expan-
sions, SIAM J. Math. Anal., 35(2) (2003), pp. 279–303.

[21] A. Cohen, I. Daubechies, and J. C. Feauveau, Biorthogonal bases
of compactly supported wavelets, Comm. Pure & Appl. Math., 45 (1992),
pp. 485–560.

BIBLIOGRAPHY 167

[22] A. Cohen and R. Masson, Wavelet adaptive method for second order
elliptic problems: Boundary conditions and domain decomposition, Numer.
Math., 86 (2000), pp. 193–238.

[23] M. Costabel, Boundary integral operators on Lipschitz domains: Elemen-
tary results, SIAM J. Numer. Anal., 19(3) (1988), pp. 613–626.

[24] M. Costabel and W. L. Wendland, Strong ellipticity of boundary in-
tegral operators, J. Reine. Angew. Math., 372 (1986), pp. 34–63.

[25] S. Dahlke, W. Dahmen, and K. Urban, Adaptive wavelet methods for
saddle point probelms – Optimal convergence rates, SIAM J. Numer. Anal.,
40 (2002), pp. 1230–1262.

[26] S. Dahlke and R. DeVore, Besov regularity for elliptic boundary value
problems, Comm. Part. Diff. Eqs., 22(1&2) (1997), pp. 1–16.

[27] S. Dahlke, M. Fornasier, and T. Raasch, Adaptive frame methods
for elliptic operator equations, Bericht 3, Philipps-Universität Marburg, Ger-
many, 2004.

[28] S. Dahlke, M. Fornasier, T. Raasch, R. P. Stevenson, and
M. Werner, Adaptive frame methods for elliptic operator equations: The
steepest descent approach, Technical Report 1347, Utrecht University, The
Netherlands, February 2006. Submitted.

[29] W. Dahmen, Stability of multiscale transformations, J. Fourier
Anal. & Appl., 2 (1996), pp. 341–361.

[30] W. Dahmen, H. Harbrecht, and R. Schneider, Adaptive methods for
boundary integral equations – Complexity and convergence estimates, IGPM
report 250, RWTH Aachen, Germany, March 2005.

[31] W. Dahmen, A. Kunoth, and J. Vorloeper, Convergence of adaptive
wavelet methods for goal-oriented error estimation, IGPM report, RWTH
Aachen, 2006. To appear in Proceedings of ENUMATH 05.

[32] W. Dahmen and R. Schneider, Wavelets with complementary bound-
ary conditions – Function spaces on the cube, Results in Math., 34 (1998),
pp. 255–293.

[33] , Composite wavelet bases for operator equations, Math. Comp., 68
(1999), pp. 1533–1567.

168 BIBLIOGRAPHY

[34] , Wavelets on manifolds I: Construction and domain decomposition,
SIAM J. Math. Anal., 31 (1999), pp. 184–230.

[35] W. Dahmen, R. Schneider, and Y. Xu, Nonlinear functionals of wavelet
expansions - adaptive reconstruction and fast evaluation, Numer. Math., 86
(2000), pp. 49–101.

[36] W. Dahmen and R. P. Stevenson, Element-by-element construction of
wavelets satisfying stability and moment conditions, SIAM J. Numer. Anal,
37 (1999), pp. 319–352.

[37] W. A. Dahmen, H. Harbrecht, and R. Schneider, Compression tech-
niques for boundary integral equations - Optimal complexity estimates, SIAM
J. Numer. Anal., 43 (2006), pp. 2251–2271.

[38] S. Dekel and D. Leviatan, The Bramble-Hilbert lemma for convex do-
mains, SIAM J. Numer. Anal, 35 (2004), pp. 1203–1212.

[39] R. DeVore, Nonlinear approximation, Acta Numerica, 7 (1998), pp. 51–
150.

[40] S. C. Eisenstat, H. C. Elman, and M. H. Schultz, Variational itera-
tive methods for nonsymmetric systems of linear equations, SIAM J. Numer.
Anal., 20(2) (1983), pp. 345–357.

[41] J. v. d. Eshof and G. L. Sleijpen, Inexact Krylov subspace methods for
linear systems, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 125–153.

[42] B. Faermann, Local a-posteriori error indicators for the Galerkin dis-
cretization of boundary integral equations, Numer. Math., 79 (1998), pp. 43–
76.

[43] , Localization of the Aronszajn-Slobodeckij norm and application to adap-
tive boundary element methods. Part I. The two-dimensional case, IMA J.
Numer. Anal., 20 (2000), pp. 203–234.

[44] , Localization of the Aronszajn-Slobodeckij norm and application to adap-
tive boundary element methods. Part II. The three-dimensional case, Numer.
Math., 92 (2002), pp. 467–499.

[45] Ts. Gantumur, An optimal adaptive wavelet method for nonsymmetric and
indefinite elliptic problems, Technical Report 1343, Utrecht University, The
Netherlands, January 2006. Submitted.

BIBLIOGRAPHY 169

[46] Ts. Gantumur, H. Harbrecht, and R. P. Stevenson, An optimal
adaptive wavelet method without coarsening of the iterands, Technical Re-
port 1325, Utrecht University, The Netherlands, March 2005. To appear in
Math. Comp.

[47] Ts. Gantumur and R. P. Stevenson, Computation of differential op-
erators in wavelet coordinates, Math. Comp., 75 (2006), pp. 697–709.

[48] , Computation of singular integral operators in wavelet coordinates,
Computing, 76 (2006), pp. 77–107.

[49] G. H. Golub and M. L. Overton, The convergence of inexact Chebyshev
and Richardson iterative methods for solving linear systems, Numer. Math.,
53 (1988), pp. 571–593.

[50] P. Grisvard, Elliptic problems in nonsmooth domains, vol. 24 of Mono-
graphs and Studies in Mathematics, Pitman, Boston, London, Melbourne,
1985.

[51] W. Hackbusch, Integral equations. Theory and numerical treatment,
ISNM, Birkhauser Verlag, Basel, Boston, Berlin, 1995.

[52] W. Hackbusch and S. A. Sauter, On the efficient use of the Galerkin
method to solve Fredholm integral equations, Appl. Math., 38 (1993), pp. 301–
322.

[53] H. Harbrecht, Wavelet Galerkin schemes for the boundary element
method in three dimensions, PhD thesis, TU Chemnitz, Germany, 2001.

[54] H. Harbrecht and R. Schneider, Adaptive wavelet Galerkin BEM, in
Computational Fluid and Solid Mechanics 2003, K.-J. Bathe, ed., Elsevier,
Amsterdam, Boston, 2003, pp. 1982–1986.

[55] , Biorthogonal wavelet bases for the boundary element method, Math.
Nachr., 269-270 (2004), pp. 167–188.

[56] H. Harbrecht and R. P. Stevenson, Wavelets with patchwise cancella-
tion properties, Technical Report 1311, Utrecht University, The Netherlands,
October 2004. To appear in Math. Comp.

[57] G. Hsiao and W. Wendland, Boundary element methods: foundation
and error analysis, in Encyclopedia of Computational Mechanics, E. Stein,
R. de Borst, and T. J. Hughes, eds., John Wiley & Sons Ltd, New York,
2004.

170 BIBLIOGRAPHY

[58] O. G. Johnson, C. A. Micchelli, and G. Paul, Polynomial precondi-
tioners for conjugate gradient calculations, SIAM J. Numer. Anal., 20 (1983),
pp. 362–376.

[59] Ch. Lage and Ch. Schwab, Wavelet Galerkin algorithms for boundary
integral equations, SIAM J. Sci. Comput., 20 (1999), pp. 2195–2222.

[60] V. Maz’ya and T. Shaposhnikova, Higher regularity in the classical layer
potential theory for Lipschitz domains, Indiana Univ. Math. J, 54 (2005),
pp. 99–142.

[61] W. C. McLean, Strongly elliptic systems and boundary integral equations,
Cambridge University Press, Cambridge, New York, 2000.

[62] K. Mekchay and R. Nochetto, Convergence of an adaptive finite ele-
ment method for general second order linear elliptic PDE, preprint, Univer-
sity of Maryland, 2004.

[63] A. A. R. Metselaar, Handling wavelet expansions in numerical analysis,
PhD thesis, Universiteit Twente, The Netherlands, June 2002.

[64] H. Nguyen, Finite element wavelets for solving partial differential equa-
tions, PhD thesis, Utrecht University, The Netherlands, April 2005.

[65] A. Nitsche, Sparse tensor product approximation of elliptic problems, PhD
thesis, ETH Zürich, Switzerland, October 2004.

[66] W. M. Patterson, Iterative methods for the solution of a linear operator
equation in Hilbert space – A survey, no. 394 in Lecture Notes in Mathemat-
ics, Springer-Verlag, Berlin, Heidelberg, New York, 1974.

[67] T. v. Petersdorff and Ch. Schwab, Fully discrete multiscale Galerkin
BEM, in Multiscale wavelet methods for partial differential equations, W. A.
Dahmen, P. Kurdila, and P. Oswald, eds., Wavelet analysis and its applica-
tions, San Diego, 1997, Academic Press, pp. 287–346.

[68] S. Rolewicz, Metric linear spaces, D. Reidel Publishing Co., Dordrecht,
1984.

[69] W. Rudin, Functional analysis, International Series in Pure and Applied
Mathematics, McGraw-Hill, Inc., New York, second ed., 1991.

[70] Y. Saad, Practical use of polynomial preconditionings for the conjugate gra-
dient method, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 865–881.

BIBLIOGRAPHY 171

[71] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Com-
put., 7 (1986), pp. 856–869.

[72] S. A. Sauter, Cubature techniques for 3-d Galerkin BEM, in Boundary ele-
ments: Implementation and analysis of advanced algorithms, W. Hackbusch
and G. Wittum, eds., Notes on numerical fluid mechanics 54, Braunschweig,
1996, Vieweg Verlag, pp. 29–44.

[73] S. A. Sauter and Ch. Lage, Transformation of hypersingular integrals
and black-box cubature, Math. Comp., 70 (2000), pp. 223–250.

[74] S. A. Sauter and Ch. Schwab, Randelement-methoden. Analyse, Nu-
merik und Implementierung schneller Algorithmen, B.G.Teubner, Stuttgart,
Leipzig, Wiesbaden, 2004.

[75] G. Savaré, Regularity results for elliptic equations in Lipschitz domains, J.
Funct. Anal., 152 (1998), pp. 176–201.

[76] A. Schatz, An observation concerning Ritz-Galerkin methods with indefi-
nite bilinear forms, Math. Comp., 28 (1974), pp. 959–962.

[77] M. Schechter, Principles of Functional Analysis, vol. 36 of Graduate
Studies in Mathematics, Americal Mathematical Society, Providence, Rhode
Island, 2001.

[78] R. Schneider, Multiskalen- und Wavelet-Matrixkompression: Analysis-
basierte Methoden zur Lösung großer vollbesetzter Gleigungssysteme, Ad-
vances in Numerical Mathematics, Teubner, Stuttgart, 1998.

[79] Ch. Schwab and R. P. Stevenson, Adaptive wavelet algorithms for
PDE’s on product domains, Technical Report 1353, Utrecht University, The
Netherlands, 2006.

[80] Ch. Schwab and W. L. Wendland, Kernel properties and representa-
tions of boundary integral operators, Math. Nachr., 156 (1992), pp. 187–218.

[81] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques
du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15
(1965), pp. 189–258.

[82] E. Stein, Singular integrals and differentiability properties of functions,
Princeton University Press, Princeton, NJ, 1970.

172 BIBLIOGRAPHY

[83] R. P. Stevenson, Adaptive solution of operator equations using wavelet
frames, SIAM J. Numer. Anal, 41(3) (2003), pp. 1074–1100.

[84] , Locally supported, piecewise polynomial biorthogonal wavelets on non-
uniform meshes, Constr. Approx., 19 (2003), pp. 477–508.

[85] , Composite wavelet bases with extended stability and cancellation prop-
erties, Technical Report 1304, Utrecht University, The Netherlands, July
2004. Submitted.

[86] , On the compressibility of operators in wavelet coordinates, SIAM J.
Math. Anal, 35(5) (2004), pp. 1110–1132.

[87] , The completion of locally refined simplicial partitions created by bisec-
tion, Technical Report 1336, Utrecht University, The Netherlands, Septem-
ber 2005. Submitted.

[88] , Optimality of a standard adaptive finite element method, Technical
Report 1329, Utrecht University, The Netherlands, May 2005. Submitted.

[89] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-
refinement techniques, Wiley-Teubner, Chichester, 1996.

	Notations and acronyms
	Introduction
	Background
	Thesis overview
	Algorithms
	Notational conventions

	Basic principles
	Introduction
	Wavelet bases
	Best N-term approximations
	Linear operator equations
	Convergent iterations in the energy space
	Optimal complexity with coarsening of the iterands
	Adaptive application of operators. Computability
	Approximate steepest descent iterations

	Adaptive Galerkin methods
	Introduction
	Adaptive Galerkin iterations
	Optimal complexity without coarsening of the iterands
	Numerical experiment

	Using polynomial preconditioners
	Introduction
	Polynomial preconditioners
	Preconditioned adaptive algorithm

	Adaptive algorithm for nonsymmetric and indefinite elliptic problems
	Introduction
	Ritz-Galerkin approximations
	Adaptive algorithm for nonsymmetric and indefinite elliptic problems

	Adaptive algorithm with truncated residuals
	Introduction
	Tree approximations
	Adaptive algorithm with truncated residuals
	The basic scheme
	The main result

	Elliptic boundary value problems
	The wavelet setting
	Differential operators
	Verification of Assumption 6.3.3

	Completion of tree

	Computability of differential operators
	Introduction
	Error estimates for numerical quadrature
	Compressibility
	Computability

	Computability of singular integral operators
	Introduction
	Compressibility
	Computability
	Quadrature for singular integrals

	Conclusion
	Discussion
	Future work

	Bibliography

