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Abstract

In this paper, we modify the adaptive wavelet algorithm from [Technical Report 1325, Department
of Mathematics, Utrecht University, March 2005] so that it applies directly, i.e., without forming
the normal equation, not only to self-adjoint elliptic operators but also to such operators to which
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is well-posed. We show that the algorithm has optimal computational complexity.
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1 Introduction

Let H be a real Hilbert space and let H′ denote its dual. Given a boundedly invertible linear
operator L : H → H′ and a linear functional f ∈ H′, we consider the problem of finding
u ∈ H such that

Lu = f.

As an example of H one can think of the Sobolev space Ht on a domain or manifold, possibly
incorporating essential boundary conditions. Then the weak formulation of (scalar) linear
differential or integral equations of order 2t leads to the above type of equations.

Let Ψ = {ψλ ∈ H : λ ∈ ∇} be a Riesz basis for H with a countable index set ∇. We
consider Ψ formally as a column vector whose entries are elements of H. Let u = uT Ψ where
u is a column vector in `2 := `2(∇). Then the above problem is equivalent to finding u ∈ `2
satisfying the infinite matrix-vector system

Lu = f , (1.1)

where L := 〈ψλ, Lψµ〉λ,µ∈∇ : `2 → `2 is boundedly invertible and f := 〈f, ψλ〉λ∈∇ ∈ `2. Here
〈·, ·〉 denotes the duality product on H×H′. In the following, we will also use 〈·, ·〉 to denote
〈·, ·〉`2 if there is no risk of confusion, and use ‖ · ‖ to denote ‖ · ‖`2 as well as ‖ · ‖`2→`2 . Note
that 〈v,w〉`2 can also be written as wTv.

∗This work was supported by the Netherlands Organization for Scientific Research and by the EC-IHP
project “Breaking Complexity”
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Our goal is now to approximate the solution u of (1.1) by a finitely supported vector. In
order to assess the quality of this approximation, we consider the following. Let γn(u) denote
the nth largest coefficient in modulus of u. For 0 < τ < 2, the space `wτ := `wτ (∇) is defined
by

`wτ =
{
u ∈ `2 : |u|`w

τ
:= sup

n
n1/τ |γn(u)| <∞

}
.

It is easily verified that `τ ↪→ `wτ ↪→ `τ+δ for any δ ∈ (0, 2 − τ ], justifying why `wτ is called
weak `τ . The expression |u|`w

τ
defines only a quasi-norm since in general it satisfies only a

generalized triangle inequality. Now let us denote by uN a best N -term approximation for u,
i.e., a vector with at most N nonzero coefficients that has the smallest possible `2-distance
to u. Then for each τ ∈ (0, 2), setting s = 1

τ −
1
2 , the membership u ∈ `wτ is equivalent to

sup
N
N s‖u− uN‖ h |u|`w

τ
, (1.2)

see, e.g., [CDD01, Proposition 3.2]. Note that ‖u − uT
NΨ‖H h ‖u − uN‖. Here and in the

following, in order to avoid the repeated use of generic but unspecified constants, by D . E
we mean that D can be bounded by a multiple of E, independently of parameters which D
and E may depend on. Obviously, D & E is defined as E . D, and D h E as D . E and
D & E.

Considering the Sobolev space Ht and a basis Ψ of sufficiently smooth wavelet type, the
theory of nonlinear approximation ([DeV98, Coh00]) tells us that if both

0 < s < d−t
n , (1.3)

where d is the order of the wavelets and n is the space dimension, and u is in the Besov space
Bsn+t

τ (Lτ ), with τ = (1
2 + s)−1, then u ∈ `wτ . The condition here involving Besov regularity

is much milder than the corresponding condition u ∈ Hsn+t involving Sobolev regularity that
would be needed to guarantee the same rate of convergence with linear approximation in the
span of N wavelets corresponding to the “coarsest levels.” Indeed, assuming a sufficiently
smooth right-hand side, for several boundary value problems it was proven that the solution
has a much higher Besov than Sobolev regularity [Dah99, DD97]. Note that with wavelets of
order d, the maximum rate that can be expected by only imposing appropriate smoothness
conditions on the solution is d−t

n . On general domains or manifolds, suitable wavelet bases
for Ht have been constructed in [DS99a, CTU99, CM00, DS99b, Ste04a, HS04].

The aforementioned convergence rates under the mild Besov regularity assumption concern
best N -term approximations, whose computation, however, requires full knowledge of the
solution u, which is only implicitly given. In [CDD01, CDD02], iterative methods for solving
Lu = f were developed that produce a sequence of approximations that converges with the
same rate as that of the best N -term approximations, taking a number of operations that
is equivalent to their support sizes. Both properties show that these methods are of optimal
computational complexity. The methods have been generalized or quantitatively improved in
e.g. [Ste03, DFR04, GHS05].

The methods apply under the condition that L is symmetric, positive definite (SPD),
which is equivalent to 〈Lv,w〉 = 〈v, Lw〉, v, w ∈ H, and 〈Lv, v〉 & ‖v‖2

H, v ∈ H, i.e., that L
is self-adjoint and H-elliptic. For the case that L does not have both properties, in [CDD02]
alternatives were sketched to reformulate Lu = f as an equivalent well-posed infinite matrix-
vector problem with a symmetric, positive definite system matrix, as via the normal equations,
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or, in case the equation represents a saddle point problem, by using the reformulation as a
positive definite system introduced in [BP88].

Throughout this paper, we will consider the operators of type L = A + B where A is
self-adjoint and H-elliptic, and B is compact. Now in general L is no longer SPD, hence the
above mentioned adaptive wavelet methods cannot be applied directly. Following [CDD02],
one can consider the normal equation LTLu = LT f ; however, the main disadvantage of
this approach is that the condition number of the system is squared, while the quantitative
properties of the methods depend sensitively on the conditioning of the system. In this paper,
we will modify the adaptive wavelet algorithm from [GHS05] so that it applies directly to the
system Lu = f , avoiding the normal equations. The analysis in [GHS05] extensively uses
the Galerkin orthogonality, which in the present case has to be replaced by only a quasi-
orthogonality property. It should be mentioned that this quasi-orthogonality property has
been used in [MN04] in a convergence proof of an adaptive finite element method. By proving
the quasi-orthogonality property for the present general setting and extending the complexity
analysis in [GHS05], we will show that our algorithm has optimal computational complexity.

This paper is organized as follows. In the following section, we derive results on Ritz-
Galerkin approximations to the exact solution, and in the last section, the adaptive wavelet
algorithm is constructed and analyzed.

2 Ritz-Galerkin approximations

Let H ↪→ Y be separable real Hilbert spaces with compact embedding, and let a : H×H → R
and b : Y × H → R be bounded bilinear forms. We assume that the bilinear form a is
symmetric and elliptic, which implies that ||| · ||| := a(·, ·)

1
2 is an equivalent norm on H, i.e.,

|||v||| h ‖v‖H v ∈ H. (2.1)

In particular, the operator A : H → H′ defined by 〈Av,w〉 = a(v, w) for v, w ∈ H, is
boundedly invertible. Moreover, since B : H → H′ defined by 〈Bv,w〉 = b(v, w) for v, w ∈ H,
is compact, the linear operator L := A+B is a Fredholm operator of index zero. Therefore,
assuming that L is injective, L : H → H′ is boundedly invertible, in particular meaning that
the linear operator equation

Lu = f, (2.2)

has a unique solution for f ∈ H′.
For our analysis we will need the following mild regularity assumption on the adjoint L′

of L: There is a Hilbert space X ↪→ H with compact embedding, such that (L′)−1 : Y ′ → X
is bounded. The following lemma gives a means to check this assumption.

Lemma 2.1. Let either A−1 : Y ′ → X or L−1 : Y ′ → X be bounded. Then (L′)−1 : Y ′ → X
is bounded.

Proof. We treat the first case only. The other case is analogous. The operator B extends to
a bounded mapping from Y to H′. So L′ = A + B′ : X → Y ′ is bounded. Now consider the
equation L′u = f . We know that there exists a unique solution u ∈ H with ‖u‖H . ‖f‖H′

and thus ‖B′u‖Y ′ . ‖u‖H . ‖f‖H′ . ‖f‖Y ′ . From Au = f − B′u, we now infer that
‖u‖X . ‖f‖Y ′ .
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Example 2.2. For some Lipschitz domain Ω ⊂ Rn, with H := H1
0 (Ω) let L : H → H′ be

defined by

〈Lv,w〉 = −
∑n

j,k=1〈ajk∂kv, ∂jw〉L2 +
∑n

k=1〈bk∂kv, w〉L2 + 〈cv, w〉L2 v, w ∈ H.

If the coefficients satisfy ajk, bk, c ∈ L∞ then L : H → H′ is bounded. Moreover, if the
matrix [ajk] is symmetric and uniformly positive definite a.e. in Ω, then the bilinear form
a(·, ·) := −

∑n
j,k=1〈ajk∂k·, ∂j ·〉L2 is symmetric and satisfies (2.1). If either bk = 0, 1 ≤ k ≤ n

and c ≥ 0 a.e. or c ≥ β > 0 a.e., then the generalized maximum principle implies that L
is injective, cf. [Sta65]. Also if L = A − η2 for a constant η ∈ R, then the injectivity is
guaranteed as long as η2 is not an eigenvalue of A. With Yσ := (L2(Ω),H1

0 (Ω))1−σ,2 for some
σ ∈ (0, 1], where (X,Y )θ,p denotes the intermediate space between X and Y obtained by the
real interpolation method, the bilinear form b(·, ·) :=

∑n
k=1〈bk∂k·, ·〉L2 +〈c·, ·〉L2 : Yσ×H → R

is bounded for any σ ∈ (0, 1]. If the coefficients ajk, 1 ≤ j, k ≤ n, are Lipschitz continuous,
then with Xσ := (H1

0 (Ω),H2(Ω) ∩H1
0 (Ω))σ,2 it is known that A−1 : Y ′σ → Xσ is bounded for

any σ ∈ (0, 1
2), cf. [Sav98]. Furthermore, the embeddings Xσ ↪→ H ↪→ Yσ are compact. From

Lemma 2.1 we conclude that all aforementioned conditions are satisfied.

Example 2.3. Let L be the operator considered in the above example. We assume that the
domain Ω is Lipschitz, the coefficients ajk, bk, c are constant and that the matrix [ajk] is
symmetric and positive definite. Then the single layer and hypersingular boundary integral
operators corresponding to the differential operator L can be written as the sum of a bounded
H-elliptic operator A : H → H′ and a compact operator B : H → H′, see [Cos88]. With Γ
being the boundary of the underlying domain Ω, here the energy space is H = Ht(Γ) with
t = −1

2 for the single layer operator and t = 1
2 for the hypersingular integral operator. A close

inspection of the proofs of [CW86, Theorem 3.9] and [Cos88, Theorem 2] reveals that in both
cases, the operator A is self-adjoint and that with Yσ := Ht−σ(Γ) where t has the appropriate
value depending on the case, the operator B can be extended to a bounded operator Yσ → H′
for any σ ∈ (0, 1

2 ]. Assuming the injectivity of L : H → H′, in [Cos88] it is shown that with
Xσ := Ht+σ(Γ), L−1 : Y ′σ → Xσ is bounded for any σ ∈ [0, 1

2 ]. The injectivity depends on the
particular case at hand, see [McL00] for some important cases.

We consider a sequence of finite dimensional closed subspaces V0 ⊂ V1 ⊂ . . . ⊂ H satisfying

inf
vj∈Vj

‖v − vj‖H ≤ αj‖v‖X v ∈ X , (2.3)

with limj→∞ αj = 0.

Remark 2.4. Such a sequence exists since the embedding X ↪→ H is compact, cf. [Sch01].

Example 2.5. Let H = Ht and X = Ht+σ. Then for standard finite element or spline spaces
Vj subordinate to dyadic subdivisions of an initial mesh, the approximation property (2.3) is
satisfied with αj h 2−jσ, for any t < γ and σ ≤ d− t, where d is the polynomial order of the
spaces Vj , and γ = supj{s : Vj ⊂ Hs}, see e.g. [Ngu05].

For a finite dimensional closed subspace S ⊂ H such that Vj ⊆ S for some j, we consider
the Ritz-Galerkin problem

〈LuS , vS〉 = 〈f, vS〉 for all vS ∈ S. (2.4)

It is well known that for j being sufficiently large, a unique solution uS to the above
problem exists, and that uS is a near best approximation to u in the energy norm ||| · |||. In
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the weaker norm ‖ · ‖Y , convergence of higher order than (2.3) can be obtained via an Aubin-
Nitsche duality argument, cf. [Sch74]. These results are recalled in the following lemma,
where for convenience we also include a proof.

Lemma 2.6. There is an absolute constant j0 ∈ N0 (not depending on S) such that for all
j ≥ j0, (2.4) has a unique solution with

|||u− uS ||| ≤ [1 +O(αj)] inf
v∈S

|||u− v|||. (2.5)

Moreover, for j ≥ j0 we have

‖u− uS‖Y ≤ O(αj)|||u− uS |||. (2.6)

Proof. Suppose that a solution uS to (2.4) exists. Then we trivially have

〈L(u− uS), vS〉 = 0 ∀vS ∈ S. (2.7)

Using this and the boundedness of b : Y ×H → R, for arbitrary vS ∈ S we get

|||u− uS |||2 = 〈L(u− uS), u− uS〉 − b(u− uS , u− uS)
= 〈L(u− uS), u− vS〉 − b(u− uS , u− uS)
= a(u− uS , u− vS) + b(u− uS , uS − vS)
≤ |||u− uS ||||||u− vS |||+O(1)‖u− uS‖Y‖uS − vS‖H.

(2.8)

We estimate ‖u− uS‖Y by an Aubin-Nitsche duality argument. For w ∈ Y ′ we infer that

〈u− uS , w〉 = 〈L(u− uS), (L′)−1w − wS〉 ≤ ‖L‖H→H′‖u− uS‖H‖(L′)−1w − wS‖H
≤ ‖L‖H→H′‖u− uS‖Hαj‖(L′)−1w‖X
≤ ‖L‖H→H′‖u− uS‖Hαj‖(L′)−1‖Y ′→X ‖w‖Y ′ ,

where we used (2.7), (2.3) and the boundedness of (L′)−1 : Y ′ → X . We have

‖u− uS‖Y = sup
w∈Y ′

〈u− uS , w〉
‖w‖Y ′

,

and subsequently using (2.1) we arrive at (2.6). Substituting (2.6) into (2.8), we get

|||u− uS ||| ≤ |||u− vS |||+O(αj)‖uS − vS‖H.

For the last term, from the triangle inequality and (2.1), we have

‖v − uS‖H . |||u− uS |||+ |||u− vS |||.

Now choosing j0 sufficiently large, we finally obtain (2.5).
Since (2.4) is a finite dimensional system, existence and uniqueness are equivalent. To

see the uniqueness, it is sufficient to prove that f = 0 implies uS = 0. By linearity and
invertibility of L, we have u = 0 if f = 0, and so (2.5) implies that uS = 0. The proof is
completed.

The following observation concerning quasi-orthogonality is an easy generalization of
[MN04, Lemma 2.1].
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Lemma 2.7. For some j ≥ j0 with j0 being the absolute constant from Lemma 2.6, let
S0 ⊂ S1 ⊂ H be finite dimensional subspaces satisfying Vj ⊆ S0. Let u0 ∈ S0 and u1 ∈ S1 be
the solutions to the Galerkin problems 〈Lu0, v〉 = 〈f, v〉 ∀v ∈ S0 and 〈Lu1, v〉 = 〈f, v〉 ∀v ∈ S1,
respectively. Then we have∣∣|||u− u0|||2 − |||u− u1|||2 − |||u1 − u0|||2

∣∣ ≤ O(αj)
(
|||u− u0|||2 + |||u− u1|||2

)
. (2.9)

Proof. We have |||u − u0|||2 = |||u − u1|||2 + |||u1 − u0|||2 + 2a(u − u1, u1 − u0). Using (2.7),
boundedness of b : Y ×H → R, and the triangle inequality, we estimate the absolute value of
the last term as

|2a(u− u1, u1 − u0)| = |2b(u− u1, u1 − u0)|
. ‖u− u1‖Y‖u1 − u0‖H
≤ ‖u− u1‖Y (‖u− u1‖H + ‖u− u0‖H)

Now using (2.6), and applying the inequality 2ab ≤ a2 + b2, a, b ∈ R, we conclude the proof
by

|2a(u− u1, u1 − u0)| ≤ O(αj)
(
|||u− u1|||2 + |||u− u1||||||u− u0|||

)
≤ O(αj)

(
|||u− u1|||2 + |||u− u0|||2

)
.

Using a Riesz basis for H, we will now transform (2.2) into an equivalent infinite matrix-
vector system in `2. Let Ψ = {ψλ : λ ∈ ∇} be a Riesz basis for H of wavelet type. We assume
that for some ∇0 ⊂ ∇1 ⊂ . . . ⊂ ∇, the subspaces defined by Vj = span{ψλ : λ ∈ ∇j}, j ∈ N0,
satisfies (2.3) with limj→∞ αj = 0.

Example 2.8. With the spaces Vj described in Example 2.5, wavelet bases satisfying the above
condition have been constructed e.g. in [DS99a, CTU99, CM00, DS99b, Ste04a, HS04].

Writing u = uT Ψ for some u ∈ `2, u satisfies

Lu = f , (2.10)

where L := 〈ψλ, Lψµ〉λ,µ∈∇ : `2 → `2 is boundedly invertible and f := 〈f, ψλ〉λ∈∇ ∈ `2.
Similarly to L, we define also the matrices A := 〈ψλ, Aψµ〉λ,µ∈∇ = a(ψµ, ψλ)λ,µ∈∇ and B :=
〈ψλ, Bψµ〉λ,µ∈∇ = b(ψµ, ψλ)λ,µ∈∇, so that L = A + B. The matrix A is symmetric positive
definite, so 〈A·, ·〉 is an inner product on `2, and the induced norm ||| · ||| satisfies

|||v|||2 := 〈Av,v〉 = a(vT Ψ,vT Ψ) = |||vT Ψ|||2 v ∈ `2.

Furthermore, one can verify that for any v ∈ `2, Λ ⊆ ∇, vΛ ∈ `2(Λ),

‖Av‖ ≤ ‖A‖
1
2 |||v||| ≤ ‖A‖‖v‖, |||vΛ||| ≤ ‖A−1‖

1
2 ‖PΛAvΛ‖. (2.11)

For any v,w ∈ `2, we have 〈Bv,w〉 = b(vT Ψ,wT Ψ) . ‖vT Ψ‖Y‖wT Ψ‖H . ‖vT Ψ‖Y‖w‖,
implying the following estimate which will be used often in the rest of this section.

‖Bv‖ = sup
0 6=w∈`2

〈Bv,w〉
‖w‖

. ‖vT Ψ‖Y v ∈ `2. (2.12)
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For some Λ ⊂ ∇, let S = span{ψλ : λ ∈ Λ}. Then uS = uT
ΛΨ ∈ S is the solution to the

Galerkin problem (2.4) if and only if uΛ ∈ `2(Λ) satisfies

PΛLIΛuΛ = PΛf , (2.13)

where PΛ : `2 → `2(Λ) is the orthogonal projector onto `2(Λ), and IΛ denotes the trivial
inclusion `2(Λ) → `2. In the following, we will refer to uΛ as the Galerkin solution with
respect to the index set Λ. From Lemma 2.6 we know that this solution exists and is unique
when ∇j ⊆ Λ for some j ≥ j0.

Lemma 2.9. Let PΛ and IΛ be as above. Then for any Λ ⊇ ∇j for some j ≥ j0 we have

‖(PΛLIΛ)−1‖ ≤ ‖A−1‖
[
1 + ‖BL−1‖+O(αj)

]
.

Proof. Recalling that L(u− uΛ) ⊥ `2(Λ) and that A = L−B, we have

‖uΛ‖2 ≤ ‖A−1‖|||uΛ|||2 = ‖A−1‖ [〈LuΛ,uΛ〉 − 〈BuΛ,uΛ〉]
= ‖A−1‖ [〈Lu,uΛ〉 − 〈Bu,uΛ〉+ 〈B(u− uΛ),uΛ〉] .

Now applying the Cauchy-Schwarz inequality gives

‖uΛ‖ ≤ ‖A−1‖ [‖Lu‖+ ‖Bu‖+ ‖B(u− uΛ)‖] . (2.14)

For the last term in the brackets, using the estimates (2.12), (2.6) and (2.5), we have

‖B(u− uΛ)‖ . ‖u− uT
ΛΨ‖Y ≤ O(αj)|||u− uT

ΛΨ||| ≤ O(αj) inf
v∈`2(Λ)

|||u− v||| ≤ O(αj)‖u‖.

We substitute it into (2.14) to get

‖uΛ‖ ≤ ‖A−1‖ [‖Lu‖+ ‖Bu‖+O(αj)‖u‖] ≤ ‖A−1‖
[
1 + ‖BL−1‖+O(αj)‖L−1‖

]
‖f‖.

Since this estimate holds in particular for arbitrary f = PΛf , taking into account that uΛ =
(PΛLIΛ)−1PΛf the proof is completed.

The following lemma generalizes [GHS05, Lemma 1.2] to the present case of nonsymmetric
and indefinite operators, and provides a way to extend a given set Λ0 ⊂ ∇ such that the error
of the Galerkin solution with respect to the extended set is reduced by a constant factor.

Lemma 2.10. Suppose that u0 ∈ `2(Λ0) is the solution to PΛ0LIΛ0u0 = PΛ0f with Λ0 ⊇ ∇j

for j sufficiently large. For a constant µ ∈ (0, 1), let ∇ ⊃ Λ1 ⊃ Λ0 be such that

‖PΛ1(f − Lu0)‖ ≥ µ‖f − Lu0‖. (2.15)

Then, for u1 ∈ `2(Λ1) being the solution to PΛ1LIΛ1u1 = PΛ1f , it holds that

|||u− u1||| ≤
[
1− κ(A)−1µ2 +O(αj)

] 1
2 |||u− u0|||.
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Proof. In this proof, we use the notations u0 = uT
0 Ψ and u1 = uT

1 Ψ. We have

‖L(u1 − u0)‖2 = ‖A(u1 − u0)‖2 + 2〈A(u1 − u0),B(u1 − u0)〉+ ‖B(u1 − u0)‖2.

The first term on the right hand side is bounded from above by using the first inequality from
(2.11). We estimate the second term by using (2.12) as

|2〈A(u1 − u0),B(u1 − u0)〉| ≤ 2‖A(u1 − u0)‖‖B(u1 − u0)‖ . |||u1 − u0|||‖u1 − u0‖Y .

For the third term we have ‖B(u1 − u0)‖2 . ‖u1 − u0‖2
Y . Combining these estimates, and

taking into account (2.6), we conclude that

‖L(u1 − u0)‖2 ≤ ‖A‖|||u1 − u0|||2 +O(1)|||u1 − u0|||‖u1 − u0‖Y
≤ ‖A‖|||u1 − u0|||2 +O(αj)

(
|||u− u0|||2 + |||u− u1|||2

)
.

(2.16)

On the other hand, we have

‖L(u− u0)‖2 = ‖A(u− u0)‖2 + 2〈A(u− u0),B(u− u0)〉+ ‖B(u− u0)‖2.

The first term can be bounded from below by using the last inequality in (2.11) with Λ = ∇.
By using (2.12) and (2.6), we bound the second term as

|2〈A(u− u0),B(u− u0)〉| . |||u− u0|||‖u− u0‖Y ≤ O(αj)|||u− u0|||2. (2.17)

Estimating the third term by zero, we infer

‖L(u− u0)‖2 ≥ ‖A−1‖−1|||u− u0|||2 −O(αj)|||u− u0|||2. (2.18)

By hypothesis we have ‖L(u1−u0)‖ ≥ ‖PΛ1L(u1−u0)‖ = ‖PΛ1(f−Lu0)‖ ≥ µ‖L(u−u0)‖.
Combining this with (2.16) and (2.18), we get

‖A‖|||u1 − u0|||2 +O(αj)|||u− u1|||2 ≥ µ2‖A−1‖−1|||u− u0|||2 −O(αj)|||u− u0|||2.

Now by using that |||u1 − u0||| ≤ |||u− u0|||2 − |||u− u1|||2 + O(αj)(|||u− u0|||2 + |||u− u1|||2) by
(2.9), and choosing j sufficiently large we finish the proof.

In the following lemma it is showed that for sufficiently small µ and u ∈ `wτ , for a set
Λ1 as in Lemma 2.10 that has minimal cardinality, #(Λ1\Λ0) can be bounded in terms of
‖f − Lu0‖ and |u|`w

τ
only, cf. [GHS05, Lemma 2.1].

Lemma 2.11. For some s > 0 and τ = (1
2 +s)−1 let u ∈ `wτ , and let µ ∈ (0, κ(A)−

1
2 ). Assume

that u0 ∈ `2(Λ0) is the solution to PΛ0LIΛ0u0 = PΛ0f with Λ0 ⊇ ∇j for a sufficiently large
j. Then, the smallest set Λ1 ⊃ Λ0 with

‖PΛ1(f − Lu0)‖ ≥ µ‖f − Lu0‖ (2.19)

satisfies
#(Λ1\Λ0) . ‖f − Lu0‖−1/s|u|1/s

`w
τ
.
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Proof. With a constant λ > 0 to be chosen later, let N be such that a best N -term ap-
proximation uN for u satisfies ‖u − uN‖ ≤ λ|||u − u0|||. Since L is boundedly invertible
we have |||u − u0||| & ‖f − Lu0‖ and thus, in view of (1.2), N . ‖f − Lu0‖−1/s|u|1/s

`w
τ

. Let
Λ := Λ0 ∪ suppuN ⊃ Λ0. We are going to show that for a suitable λ, and j sufficiently large,
‖PΛ(f − Lu0)‖ ≥ µ‖f − Lu0‖. Then by definition of Λ1 we may conclude that

#(Λ1\Λ0) . #(Λ\Λ0) ≤ N . ‖f − Lu0‖−1/s|u|1/s
`w
τ
.

Now we will show that the above claim is valid. The solution to PΛLIΛuΛ = PΛf satisfies

|||u− uΛ||| ≤ [1 +O(αj)]|||u− uN ||| ≤ [1 +O(αj)]‖A‖
1
2 ‖u− uN‖

≤ λ[1 +O(αj)]‖A‖
1
2 |||u− u0|||,

(2.20)

where we have used (2.5) and the second inequality from (2.11). We have

‖PΛL(uΛ − u0)‖2 ≥ ‖PΛA(uΛ − u0)‖2 + 2〈PΛA(uΛ − u0),B(uΛ − u0)〉.

The first term in the right hand side can be bounded from below by using the last inequality
from (2.11). Estimating the second term as

|2〈PΛA(uΛ − u0),B(uΛ − u0)〉| . |||uΛ − u0|||‖uΛ − u0‖ ≤ O(αj)
(
|||u− uΛ|||2 + |||u− u0|||2

)
,

we get

‖PΛL(uΛ − u0)‖2 ≥ ‖A−1‖−1|||uΛ − u0|||2 −O(αj)
(
|||u− uΛ|||2 + |||u− u0|||2

)
.

Now by using that |||uΛ − u0||| ≥ |||u− u0|||2 − |||u− uΛ|||2 −O(αj)(|||u− u0|||2 + |||u− uΛ|||2) by
(2.9), and applying (2.20), we have

‖PΛL(uΛ − u0)‖2 ≥ [1−O(αj)]‖A−1‖−1|||u− u0|||2 − [1 +O(αj)]‖A−1‖−1|||u− uΛ|||2

−O(αj)
[
|||u− uΛ|||2 + |||u− u0|||2

]
≥ [1−O(αj)] ‖A−1‖−1|||u− u0|||2 − [1 +O(αj)] ‖A−1‖−1|||u− uΛ|||2

≥
[
1− λ2‖A‖ −O(αj)

]
‖A−1‖−1|||u− u0|||2.

On the other hand, we have

‖L(u− u0)‖2 ≤ [1 +O(αj)] ‖A‖|||u− u0|||2.

Combining the last two estimates we infer

‖PΛ(f − Lu0)‖2 ≥ κ(A)−1
[
1− λ2‖A‖ −O(αj)

]
‖f − Lu0‖2.

Choose a value of the constant λ > 0 such that κ(A)−
1
2 (1 − λ2‖A‖)

1
2 > µ. Then for j

sufficiently large, we have ‖PΛ(f − Lu0)‖ ≥ µ‖f − Lu0‖, thus completing the proof.
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3 The adaptive algorithm

In this section, we will formulate an adaptive wavelet algorithm for solving (1.1) and analyse
its convergence behaviour. To give a rough idea before going through the rigorous treatment,
the algorithm starts with an initial index set Λ and computes an approximate residual of the
exact Galerkin solution with respect to the index set Λ. Having computed the approximate
residual, we use Lemma 2.10 and Lemma 2.11 to extend the set Λ such that the error in the
new Galerkin solution is a constant factor smaller where the cardinality of the extention is
up to a constant factor minimal, and this process is repeated until the computed residual is
satisfactorily small.

Ideally, our algorithm should produce approximations that converge with the same rate
as that of the best N -term approximations, taking a number of operations that is equivalent
to their support sizes, cf. (1.2). However, usually this is achieved for a limited range of
convergence rates. Whether this range is reasonably large can be answered by looking at
the connection between the smoothness of a function in the continuous space and the best
N -term approximation rate of the corresponding vector in the discrete space. For some
s > 0, we say that the algorithm has optimal computational complexity for the convergence
rate s, if, whenever u ∈ `wτ with 1

τ = s + 1
2 , for any given tolerance ε > 0, it computes an

approximation w to the exact solution u such that ‖u−w‖ ≤ ε and #suppw . ε−1/s|u|1/s
`w
τ

,
and the cost of determining w is bounded by an absolute multiple of the same expression. In
view of (1.3), since, by imposing whatever smoothness conditions on the solution u generally
the convergence rate of best N -term approximations cannot be higher than d−t

n , it is fully
satisfactory if the algorithm has optimal computational complexity for s ∈ (0, d−t

n ).
In order to use Lemma 2.10, we need to compute the residual r := f −Lu0 for a Galerkin

solution u0. Generally, this residual has infinitely many nonzero coefficients, and has to be
approximated by a finitely supported vector. We will approximate it by approximating the
vector f and the matrix-vector product Lu0 separately. In connection with that, we assume
that for some constant s∗ > 0, L is s∗-computable, meaning that for any s < s∗, for all
N ∈ N, there is an infinite matrix LN , having in each column O(N) non-zero entries, whose
computations require O(N) operations, such that

‖L− LN‖ . N−s. (3.1)

Under this assumption, the adaptive approximate matrix-vector product APPLY from [CDD01,
Ste03] can be shown to have the following properties:

APPLY[w, ε] → z. The input satisfies ε > 0, and w is finitely supported. The output
satisfies ‖Lw − z‖ ≤ ε, with for any s < s∗, #supp z . ε−1/s|w|1/s

`w
τ

, where, as always,
τ = (1

2 + s)−1, and the number of arithmetic operations and storage locations required by this
call being bounded by some absolute multiple of ε−1/s|w|1/s

`w
τ

+ #suppw + 1.

Remark 3.1. In the sequel we will construct an adaptive wavelet algorithm and prove that it
has optimal computational complexity for the convergence rates less than s∗. For sufficiently
smooth wavelets, that have sufficiently many vanishing moments, and for both differential
operators with piecewise sufficiently smooth coefficients, or singular integral operators on
sufficiently smooth manifolds, the results from [Ste04b, GS04, GS06] show that for some
s∗ ≥ d−t

n , L is s∗-computable. This result is satisfactory as explained earlier.
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The construction of a sequence of approximations for u that converges with a certain rate
requires the availability of a sequence of approximations for f that convergence with at least
that rate. It can be shown that for s < s∗, with τ = (1

2 + s)−1, if u ∈ `wτ , then f ∈ `wτ ,
with |f |`w

τ
. |u|`w

τ
, and so supN N s‖f − fN‖ . |u|`w

τ
, which, however does not tell how to

construct an approximation g which is qualitatively as good as fN with a comparable support
size. We will assume the availability of the following routine, whose realization depends on
the right-hand side at hand.

RHS[ε] → g with ‖f − g‖ ≤ ε, such that if u ∈ `wτ , and s < s∗, then #suppg . ε−1/s|u|1/s
`w
τ

,
and the number of arithmetic operations and storage locations required by this call is bounded
by some absolute multiple of ε−1/s|u|1/s

`w
τ

+ 1.

Assuming that we use the above subroutines to compute the residual and extend the
current set Λ0 to a set Λ as in Lemma 2.10, we now need to choose a way to compute
the Galerkin solution uΛ on the extended set Λ. Computing the Galerkin solution requires
inverting the system (2.13). In view of obtaining a method of optimal complexity, we will
solve the system approximately using an iterative method. Here we formulate a subroutine
to solve the Galerkin system (2.13) approximately.

GALSOLVE[Λ,w0, δ, ε] → wΛ

% The input should satisfy δ ≥ ‖PΛ(f − Lw0)‖.
% Let N be such that, with LN from (3.1),
% % := ‖L− LN‖‖A−1‖

[
2 + ‖BL−1‖

]
≤ ε

4ε+4δ . Set L̃Λ := PΛLNIΛ.
if δ ≤ ε then set wΛ := w0 and terminate the subroutine end if
r̃Λ := PΛ(RHS[ ε

4 ]−APPLY[w0,
ε
4 ])

Apply a suitable iterative method for solving L̃Λx = r̃Λ, e.g., Conjugate Gradients to the
Normal Equations, to find an x̃ with ‖r̃Λ − L̃Λx̃‖ ≤ ε

4
wΛ := w0 + x̃

Theorem 3.2. If Λ ⊇ ∇j with j sufficiently large, the output of wΛ := GALSOLVE[Λ,w0, δ, ε]
satisfies ‖PΛ(f − LwΛ)‖ ≤ ε, and for any s < s∗, the number of arithmetic operations and
storage locations required by the call is bounded by some absolute multiple of ε−1/s(|w0|1/s

`w
τ

+

|u|1/s
`w
τ

) + c(δ/ε)#Λ, with c : R+ → R+ being some non-decreasing function.

Proof. In this proof, j is assumed to be sufficiently large whenever needed. With the short-
hand notation LΛ = PΛLIΛ, using Lemma 2.9 and estimating 1 +O(αj) ≤ 2, we have

‖L−1
Λ (L̃Λ − LΛ)‖ ≤ ‖L−1

Λ ‖‖LN − L‖ ≤ ‖A−1‖
[
1 + ‖BL−1‖+O(αj)

]
‖LN − L‖ ≤ % < 1.

This implies that I + L−1
Λ (L̃Λ − LΛ) is invertible with ‖(I + L−1

Λ (L̃Λ − LΛ))−1‖ ≤ 1
1−% . Now

writing L̃Λ = LΛ(I + L−1
Λ (L̃Λ − LΛ)) and using Lemma 2.9 again, we conclude that L̃Λ is

invertible with
‖L̃−1

Λ ‖ ≤ 1
1− %

‖L−1
Λ ‖ ≤ 1

1− %
‖A−1‖

[
2 + ‖BL−1‖

]
. (3.2)

We have
‖L̃Λ − LΛ‖‖L̃−1

Λ ‖ ≤ ‖LN − L‖ 1
1− %

‖A−1‖
[
2 + ‖BL−1‖

]
≤ %

1− %
,

and ‖r̃Λ‖ ≤ ‖PΛ(f − Lw0)‖+ ‖PΛ(f − Lw0)− r̃Λ‖ ≤ δ + ε
2 . Setting rΛ := PΛ(f − Lw0) and

writing

PΛ(f − LwΛ) = rΛ −PΛLx̃ = (rΛ − r̃Λ) + (r̃Λ − L̃Λx̃) + (L̃Λ −PΛL)L̃−1
Λ (r̃Λ + L̃Λx̃− r̃Λ),
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we find
‖PΛ(f − LwΛ)‖ ≤ ε

2 + ε
4 + %

1−%(δ + ε
2 + ε

4) ≤ ε.

The properties of APPLY and RHS show that the cost of the computation of r̃Λ is bounded
by some multiple of ε−1/s(|w0|1/s

`w
τ

+ |u|1/s
`w
τ

). We know that ‖L̃Λ‖ . 1 uniformly in ε and δ.
So taking into account (3.2) we have κ(L̃Λ) . 1 uniformly in ε and δ. Since by (3.1), L̃Λ

is sparse and can be constructed in O(#Λ) operations, where the proportionality coefficient
is only dependent on an upper bound for δ/ε, and the required number of iterations of the
iterative method is bounded, the proof is completed.

Remark 3.3. If the symmetric part of L is positive definite, then the spectrum of L̃Λ lies in
the open right half of the complex plane, and so one can use the GMRES method for the
solution of the linear system in GALSOLVE, cf. [EES83, SS86]. In this case, the proof of
the preceding theorem works verbatim.

Next, we combine the above subroutines into an algorithm which approximately computes
the residual f − LuΛ for a given set Λ ⊂ ∇. We get an approximate Galerkin solution as a
byproduct because we use GALSOLVE to approximate the Galerkin solution uΛ.

GALRES[Λ,w0, ρ0, ε] → [rk,wk, ρk] :
% The input should satisfy ρ0 ≥ ‖f − Lw0‖.
% Let ω, γ ∈ (0, 1) and θ > 0 be constants.

k := 0, ζ0 := θρ0, δ0 := ρ0

do k := k + 1
ζk := ζk−1/2
δk := γζk

(
‖L‖‖A−1‖

[
2 + ‖BL−1‖

])−1

wk := GALSOLVE[Λ,wk−1, δk−1, δk]
rk := RHS[(1− γ)ζk/2]−APPLY[wk, (1− γ)ζk/2]
δk := min{δk−1, δk}

until ρk := ‖rk‖+ (1− γ)ζk ≤ ε or ζk ≤ ω‖rk‖

Remark 3.4. In the above algorithm, as opposed to the algorithm in [GHS05], we are forced to
place the Galerkin solver inside the loop that computes the current residual with a sufficient
accuracy. The reason is that in Lemma 2.10 and Lemma 2.11 the vector u0 must be the
Galerkin solution on its support, whereas in the corresponding Lemma 1.2 and Lemma 2.1
from [GHS05] this vector could be arbitrary.

Remark 3.5. In view of [GHS05, Remark 2.2 and Remark 2.6], taking into account that ρ0 is
an upper bound on the residual of w0, a reasonable choice for the value of θ is θ ≈ 2ω

(1+ω)(1−γ) .

Theorem 3.6. If Λ ⊇ ∇j for some sufficiently large j, then [r,w, ρ] := GALRES[Λ,w0, ρ0, ε]
terminates with ‖f − Lw‖ ≤ ρ, and either ρ ≤ ε or ‖r − (f − LuΛ)‖ ≤ ω‖r‖. Furthermore,
under the same condition we have ρ & min{ρ0, ε}. In addition, if for some s < s∗ and
τ = (1

2 + s)−1, u ∈ `wτ , then #supp r . ρ−1/s|u|1/s
`w
τ

+ (ρ0/ρ)1/s#Λ and the number of arith-
metic operations and storage locations required by the call is bounded by some absolute multiple
of ρ−1/s|u|1/s

`w
τ

+ (ρ0/ρ)1/s(#Λ + 1).
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Proof. If at evaluation of the until-clause for the k-th iteration, ζk > ω‖rk‖, then ρk =
‖rk‖+ (1− γ)ζk < (ω−1 + 1− γ)ζk. Since ζk is halved in each iteration, we infer that, if not
by ζk ≤ ω‖rk‖, the inner loop will terminate by ρk ≤ ε.

Let K be the value of k at the termination of the loop. First we will show ρ & min{ρ0, ε}.
When the loop terminates in the first iteration, i.e., when K = 1, we have ρ1 = ‖r1‖ + (1 −
γ)ζ1 & ρ0. In the case the loop terminates with ρK ≤ ε we have ‖rK−1‖ + 2(1 − γ)ζK > ε
and 2ζK > ω‖rK−1‖, so we conclude

ρK ≥ (1− γ)ζK >
(1− γ)ω(‖rK−1‖+ 2(1− γ)ζK)

2 + 2ω(1− γ)
>

(1− γ)ωε
2 + 2ω(1− γ)

.

Since after any evaluation of rk inside the algorithm, ‖rk − (f − Lwk)‖ ≤ (1 − γ)ζk, for
any 1 ≤ k ≤ K, ρk is an upper bound on ‖f − Lwk‖. Together with the condition on ρ0

this guarantees that the subroutine GALSOLVE is called with a valid parameter δk−1. By
applying Lemma 2.9 for sufficiently large j, we have

‖rk − (f − LuΛ)‖ ≤ ‖rk − (f − Lwk)‖+ ‖L(uΛ −wk)‖
≤ (1− γ)ζk + ‖L‖‖(PΛLIΛ)−1‖‖PΛ(f − Lwk)‖
≤ (1− γ)ζk + ‖L‖ · ‖A−1‖[1 + ‖BL−1‖+O(αj)] · δk ≤ ζk,

and therefore the condition ζk ≤ ω‖rk‖ implies ‖rk − (f − LuΛ)‖ ≤ ω‖rk‖. This proves the
first part of the theorem.

The properties of RHS, APPLY and GALSOLVE imply that the cost of k-th iteration
can be bounded by some multiple of ζ−1/s

k (|wk−1|
1/s
`w
τ

+ |u|1/s
`w
τ

+ |wk|
1/s
`w
τ

)+c( δk−1

δk
)#Λ+#Λ+1,

where c(·) is the non-decreasing function from Theorem 3.2. Since any vector wk determined
inside the algorithm satisfies ‖u − wk‖ . ρ0, from |wk|`w

τ
. |u|`w

τ
+ (#suppwk)s‖wk − u‖

([CDD01, Lemma 4.11]), we infer that |wk|`w
τ

. |u|`w
τ

+ (#Λ)sρ0. At any iteration the ratio
δk−1

δk
can be bounded by a multiple of max{ δ0

δ1
, 2} . ρ0

ζ1
+ 1 . 1. By the geometric decrease

of ζk inside the loop, the above considerations imply that the total cost of the algorithm can
be bounded by some multiple of ζ−1/s

K (|u|1/s
`w
τ

+ ρ
1/s
0 #Λ) +K(#Λ + 1). Taking into account

the value of ζ0, and the geometric decrease of ζi inside the loop, we have K(#Λ + 1) =
Kρ

−1/s
0 ρ

1/s
0 (#Λ+1) . ζ

−1/s
K ρ

1/s
0 (#Λ+1). The number of nonzero coefficients in rK is bounded

by an absolute multiple of ζ−1/s
K (|u|1/s

`w
τ

+ρ
1/s
0 #Λ) so the theorem is proven upon showing that

ζK & ρK . When the loop terminates in the first iteration, i.e., when K = 1, we have
ρ1 = ‖r1‖ + (1 − γ)ζ1 ≤ ‖f − Lw0‖ + 2(1 − γ)ζ1 . ρ0 + ζ1 . ζ1, and when the loop
terminates with ζK ≥ ω‖rK‖, we have ρK = ‖rK‖ + (1 − γ)ζK ≤ ( 1

ω + 1 − γ)ζK . In
the other case, we have ω‖rK−1‖ ≤ 2ζK , and so from ‖rK − rK−1‖ ≤ ζK + 2ζK , we infer
‖rK‖ ≤ ‖rK−1‖+ 3ζK ≤ ( 2

ω + 3)ζK , so that ρK ≤ ( 2
ω + 4− γ)ζK .

We now define our adaptive wavelet solver.

SOLVE[ε] → wk :
% Let j be a sufficiently large fixed integer,
% ρ0 ≥ ‖f‖, and α ∈ (0, 1) be constants.

k := 0, w0 := 0, Λ1 := ∇j

do k := k + 1
[rk,wk, ρk] :=GALRES[Λk,wk−1, ρk−1, ε]
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if ρk > ε
then determine a set ∇ ⊃ Λk+1 ⊃ Λk, with, up to some absolute constant factor,

minimal cardinality, such that ‖PΛk+1
rk‖ ≥ α‖rk‖

else terminate the subroutine
enddo

Remark 3.7. Employing an efficient exact sorting algorithm, one can determine the set Λk+1

with true minimal cardinality, in O (#supp r · log(#supp r)) operations. If one allows ”mini-
mal cardinality up to some absolute constant factor”, as in the above algorithm, the log-factor
can be removed via binary bins, see [GHS05, Remark 2.3] and [Ste03] for details.

Theorem 3.8. w := SOLVE[ε] terminates with ‖f − Lw‖ ≤ ε. In addition, let the param-
eters α and ρ0 in SOLVE, and ω in GALRES, be selected such that α+ω

1−ω < κ(A)−
1
2 and

ρ0 . ‖f‖, and let ε . ‖f‖. Then, if for some s < s∗, and τ = (1
2 + s)−1, u ∈ `wτ , we have

#suppw . ε−1/s|u|1/s
`w
τ

and the number of arithmetic operations and storage locations required
by the call is bounded by some absolute multiple of the same expression.

Proof. Before we come to the actual proof, first we indicate the need for the conditions
involving ρ0, ‖f‖ and ε. If ρ0 6. ‖f‖ we cannot bound the cost of the first call of GALRES.
If ε 6. ‖f‖, then ε−1/s|u|1/s

`w
τ

might be arbitrarily small, whereas SOLVE takes in any case
some arithmetic operations.

Abbreviating PΛk
as Pk, let uk ∈ `2(Λk) be the solution of the Galerkin system PkLuk =

Pkf . Assume that the k-th call of GALRES terminates with ρk > ε and thus with ‖rk −
(f − Luk)‖ ≤ ω‖rk‖. Then we have

α‖rk‖ ≤ ‖Pk+1rk‖ = ‖Pk+1[rk − (f − Luk) + (f − Luk)]‖ ≤ ω‖rk‖+ ‖Pk+1(f − Luk)‖,

giving ‖Pk+1(f − Luk)‖ ≥ (α − ω)‖rk‖. Defining νk := ‖rk‖ + ‖rk − (f − Luk)‖ we have
‖f − Luk‖ ≤ νk ≤ (1 + ω)‖rk‖, and using this we obtain

‖Pk+1(f − Luk)‖ ≥ α−ω
1+ω νk ≥ α−ω

1+ω ‖f − Luk‖,

so that Lemma 2.10 shows that |||u−uk+1||| ≤ [1−κ(A)−1(α−ω
1+ω )2 +O(αj)

] 1
2 |||u−uk|||. Taking

into account that νk ≤ (1+ω)‖rk‖ < (1+ω)ρk and that ‖f −Luk‖ ≥ ‖Pk+1(f −Luk)‖ & νk,
we have ρk h νk h ‖f − Luk‖ h |||u − uk||| as long as ρk > ε. By the conditions that α > ω
and that j is sufficiently large, it holds that ρk . ξk−1ρ1 for certain ξ < 1, so that SOLVE
terminates, say directly after the K-th iteration. This proves the first part of the theorem.

With µ = α+ω
1−ω , for 1 ≤ k < K let ∇ ⊃ Λ ⊃ Λk be the smallest set with

‖PΛ(f − Luk)‖ ≥ µ‖f − Luk‖.

Since µ < κ(A)
1
2 by the condition on ω and α, and ‖f − Luk‖ ≤ νk, an application of

Lemma 2.11 shows that #(Λ\Λk) . ν
−1/s
k |u|1/s

`w
τ

. On the other hand, using Theorem 3.6 twice
we have µ‖rk‖ ≤ µ‖f −Luk‖+µω‖rk‖ ≤ ‖PΛ(f −Luk)‖+µω‖rk‖ ≤ ‖PΛrk‖+ (1 +µ)ω‖rk‖
or ‖PΛrk‖ ≥ α‖rk‖. Thus by construction of Λk+1 we conclude that

#(Λk+1\Λk) . #(Λ\Λk) . ν
−1/s
k |u|1/s

`w
τ

. ρ
−1/s
k |u|1/s

`w
τ

for 1 ≤ k < K.
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Since Λ1 . 1 . ρ
−1/s
0 |u|1/s

`w
τ

by ρ0 . ‖f‖ . |u|`w
τ
, with Λ0 := ∅ we have

#Λk =
k−1∑
i=0

#(Λi+1\Λi) . (
k−1∑
i=0

ρ
−1/s
i )|u|1/s

`w
τ

. ρ
−1/s
k−1 |u|

1/s
`w
τ

for 1 ≤ k ≤ K. (3.3)

In view of Remark 3.7, we infer that the cost of determining the set Λk+1 is of order
#supp rk. From Theorem 3.6, we have #supp rk . ρ

−1/s
k |u|1/s

`w
τ

+ (ρk−1/ρk)1/s#Λk and that

the cost of the k-th call of GALRES is of order ρ−1/s
k |u|1/s

`w
τ

+(ρk−1/ρk)1/s(#Λk +1), implying
that the cost of the k-th iteration of SOLVE can be bounded by an absolute multiple of the
latter expression. Now by using (3.3) and 1 . ρ

−1/s
0 |u|1/s

`w
τ

, and taking into account the
geometric decrease of ρk we conclude that the total cost of the algorithm can be bounded
by an absolute multiple of ρ−1/s

K |u|1/s
`w
τ

. From Theorem 3.6 we have ρK & min{ρK−1, ε} & ε,
where the second inequality follows from ρK−1 > ε when K > 1 and by assumption when
K = 1. This completes the proof.
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