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Abstract. In this paper, an adaptive wavelet method for solving linear operator equations is
constructed that is a modification of the method from [Math. Comp, 70 (2001), pp.27–75] by
Cohen, Dahmen and DeVore, in the sense that there is no recurrent coarsening of the iterands.
Despite of this, it will be shown that the method has optimal computational complexity. Nu-
merical results for a simple model problem indicate that the new method is more efficient than
an existing alternative adaptive wavelet method.

1. Preliminaries

For some boundedly invertible linear operator A : H → H ′, where H is some separable Hilbert
space with dual H ′, and some f ∈ H ′, we consider the problem of finding u ∈ H such that

Au = f.

As typical examples, we think of linear differential or integral equations of some order 2t in
variational form. Furthermore, although systems of such equations also fit into the framework,
usually we think of scalar equations. So typically H is a Sobolev space Ht, possibly incorporating
essential boundary conditions, on an n-dimensional underlying domain or manifold.

We assume that we have a Riesz basis Ψ = {ψλ : λ ∈ ∇} for Ht available, where ∇ is some
infinite countable index set. Formally viewing this basis as a column vector, by writing u = uT Ψ
the above problem is equivalent to finding u ∈ `2 = `2(∇) satisfying the infinite matrix-vector
system

Au = f ,

where A := 〈Ψ, AΨ〉 : `2 → `2 is boundedly invertible and f := 〈Ψ, f〉 ∈ `2. Here 〈·, ·〉 denotes
the duality product on (Ht,H−t). In the following, we will also use 〈·, ·〉 to denote 〈·, ·〉`2 , and use
‖ · ‖ to denote ‖ · ‖`2 as well as ‖ · ‖`2→`2 . Throughout this paper, u and f will always denote the
solution and right-hand side of this equation, respectively.

Let us denote by uN a best N -term approximation for u, i.e., a vector with at most N nonzero
coefficients that has distance to u not larger than that of any vector with a support of that size.
Note that ‖u−uT

NΨ‖Ht h ‖u−uN‖. We will consider bases Ψ of sufficiently smooth wavelet type
of order d. Then the theory of nonlinear approximation ([DeV98, Coh03]) tells us that if both

0 < s < d−t
n ,

and u is in the Besov space Bsn+t
τ (Lτ ), then

(1.1) sup
N∈N

Ns‖u− uN‖ < ∞.

Here, and throughout in this paper, s and τ are related according to

τ = (
1
2

+ s)−1.
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The above condition involving Besov regularity is much milder that the condition u ∈ Hsn+t

involving Sobolev regularity which would be needed to guarantee the same rate of convergence
with linear approximation in the span of N wavelets corresponding to the “coarsest levels.” Indeed,
assuming a sufficiently smooth right-hand side, for several boundary value problems it was proven
that the solution has a much higher Besov than Sobolev regularity [DD97, Dah99]. Note that,
regardless of the smoothness of the solution u, a rate higher than d−t

n can never be expected with
wavelets of order d, except when u happens to be exceptionally close to a finite linear combination
of wavelets. On general domains or manifolds, suitable wavelet bases for Ht have been constructed
in [DS99a, CTU99, CM00, DS99b, Ste04a, HS04].

Vectors u ∈ `2 that satisfy (1.1) can be characterized as follows (see [DeV98]): Let γn(u) denote
the nth largest coefficient in modulus of u. For 0 < τ < 2, the space `w

τ = `w
τ (∇) is defined by

`w
τ =

{
u ∈ `2 : |u|`w

τ
:= sup

n
n1/τ |γn(u)| < ∞

}
.

It is easily verified that `τ ↪→ `w
τ ↪→ `τ+δ for any δ ∈ (0, 2− τ ], justifying why `w

τ is called weak `τ .
The expression |u|`w

τ
defines only a quasi-norm since it does not necessarily satisfy the triangle

inequality. With these `w
τ -spaces at hand, it can be shown that the property (1.1) is equivalent to

u ∈ `w
τ . In particular, for each τ ∈ (0, 2),

(1.2) sup
N

Ns‖u− uN‖ h |u|`w
τ
,

see, e.g., [CDD01, Proposition 3.2]. Here and in the following, in order to avoid the repeated use
of generic but unspecified constants, by C . D we mean that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Obviously, C & D is defined as
D . C, and C h D as C . D and C & D.

The aforementioned convergence rates under the mild Besov regularity assumption concern
best N -term approximations, whose computation, however, requires full knowledge of the solution
u, which is only implicitly given. In [CDD01, CDD02], iterative methods for solving Au = f
were developed which produce a sequence of approximations that converges with the same rate
as is guaranteed for best N -term approximations, whereas their computation requires a number
of operations that is equivalent to their support size. Together, both properties show that these
methods are of optimal computational complexity. As a preparation for the results that will be
derived in this paper, below we discuss both methods in some detail.

In each iteration of these methods, the matrix A has to be applied to some (finitely supported)
vector. Since, generally, each column of A contains infinitely many non-zero entries, clearly this
matrix-vector product cannot be computed exactly, and has to be approximated. For sufficiently
smooth wavelets, that have sufficiently many vanishing moments, and for both differential oper-
ators with piecewise sufficiently smooth coefficients, or singular integral operators on sufficiently
smooth manifolds, the results from [Ste04b, GS04, GS05] show that for some s∗ > d−t

n , A is
s∗-computable. This means that for any s < s∗, for all N ∈ N, there is an infinite matrix AN ,
having in each column O(N) non-zero entries, whose computations require O(N) operations, such
that

(1.3) ‖A−AN‖ . N−s.

Using this result, the adaptive approximate matrix-vector product APPLY from [CDD02] can be
shown to have the following properties:

APPLY[w, ε] → z. Let ε > 0 and w be finitely supported, then the output satisfies ‖Aw−z‖ ≤ ε.
Moreover, for any s < s∗, #supp z . ε−1/s|w|1/s

`w
τ

, where the number of arithmetic operations and

storage locations used by this call is bounded by some absolute multiple of ε−1/s|w|1/s
`w

τ
+#suppw+1.

Remark 1.1. In [DHS05], a somewhat weaker condition than (1.3) is verified, that, however, is
also sufficient to guarantee above properties of APPLY.

The construction of a sequence of approximations for u that converge with a certain rate
requires the availability of a sequence of approximations for f that converge with at least that
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rate. It can be shown that for any s < s∗, if u ∈ `w
τ , then f ∈ `w

τ , with |f |`w
τ

. |u|`w
τ
, and

so supN Ns‖f − fN‖ . |u|`w
τ
. This property, however, does not tell us how to construct an

approximation g that is qualitatively as good as fN with a comparable support size. We will
assume the availability of the following routine, whose realization depends on the right-hand side
at hand.

RHS[ε] → g. Let ε > 0, then the output satisfies ‖f−g‖ ≤ ε. Moreover, for any s < s∗, if u ∈ `w
τ ,

then #suppg . ε−1/s|u|1/s
`w

τ
, where the number of arithmetic operations and storage locations used

by the call is bounded by some absolute multiple of ε−1/s|u|1/s
`w

τ
+ 1.

The results concerning optimal computational complexity of the iterative methods from [CDD01,
CDD02] require the properties of APPLY and RHS mentioned above. Moreover, the methods
apply under the condition that A is symmetric, positive definite (SPD), which, since A = 〈Ψ, AΨ〉,
is equivalent to 〈v, Aw〉 = 〈Av,w〉, v, w ∈ H, and 〈v, Av〉 & ‖v‖2H , v ∈ H.

For the case that A does not have both properties, the methods can be applied to the normal
equations A∗Au = A∗f . Using APPLY and RHS, in [CDD02, Sect. 7] it was shown how to
construct routines to approximate the matrix-vector product and the right-hand side vector of this
system, which routines inherit the properties APPLY and RHS have for the original system. In
other words, without loss of generality, in the following it is sufficient to consider the case that A
is SPD.

The idea of the iterative method from [CDD02] is to apply Richardson iteration to Au = f .
Of course, this iteration cannot be performed exactly, but by ensuring that the errors due to
the inexact matrix-vector product and the approximation of f exhibit a proper decay when the
iteration proceeds, a linearly convergent method is obtained.

The principle behind the method from [CDD01] is to improve a given approximation w for u
by realizing the saturation property: Let 〈〈·, ·〉〉 := 〈A·, ·〉 and ||| · ||| := 〈〈·, ·〉〉 1

2 . For any Λ ⊂ ∇, let
PΛ denote the `2-orthogonal projector onto `2(Λ), i.e., PΛ replaces all coefficients outside Λ by
zeros. With the notations vΛ, zΛ, etc., we will mean vectors in `2(Λ), i.e., vectors that are zero
outside Λ. Using that A is SPD, one easily verifies that for any v ∈ `2, Λ ⊂ ∇, and vΛ ∈ `2(Λ),

‖A−1‖− 1
2 ‖v‖ ≤ |||v||| ≤ ‖A‖ 1

2 ‖v‖, ‖Av‖ ≤ ‖A‖ 1
2 |||v|||, ‖A−1‖− 1

2 |||vΛ||| ≤ ‖PΛAvΛ‖,
which properties will be often used in the following. The next lemma is well-known:

Lemma 1.2. Let µ ∈ (0, 1], w ∈ `2, ∇ ⊃ Λ ⊃ suppw such that

(1.4) ‖PΛ(f −Aw)‖ ≥ µ‖f −Aw‖.
Then, for uΛ ∈ `2(Λ) being the solution of the Galerkin system PΛAuΛ = PΛf , and with κ(A) :=
‖A‖‖A−1‖, we have

|||u− uΛ||| ≤ [1− κ(A)−1µ2
] 1

2 |||u−w|||.
Proof. We have

|||uΛ −w||| ≥ ‖A‖− 1
2 ‖A(uΛ −w)‖ ≥ ‖A‖− 1

2 ‖PΛ(f −Aw)‖
≥ ‖A‖− 1

2 µ‖f −Aw‖ ≥ κ(A)−
1
2 µ|||u−w|||,

that, with κ(A)−
1
2 µ reading as some arbitrary positive constant, is known as the saturation prop-

erty of the space `2(Λ) containing w. The proof is completed by using the Galerkin orthogonality
|||u−w|||2 = |||u− uΛ|||2 + |||uΛ −w|||2. ¤

In this lemma it was assumed to have full knowledge about the exact residual, and furthermore
that the arising Galerkin system is solved exactly. As with the Richardson iteration, however,
linear convergence is retained with an inexact evaluation of the residuals, and an inexact solution
of the Galerkin systems, in case the tolerances exhibit a proper decay as the iteration proceeds.

We remark that if, instead of being a Riesz basis, Ψ is only a frame for H, then the inexact
Richardson method is still applicable (see [Ste03, DFR04]), whereas the other method is not since
in that case the Galerkin systems can be arbitrarily badly conditioned.



4 TSOGTGEREL GANTUMUR, HELMUT HARBRECHT, AND ROB STEVENSON

Returning to the Riesz basis case, both above iterative methods are linearly convergent, however,
generally their rates are not as good as that of best N -term approximations. Therefore, in [CDD01,
CDD02] these methods were extended with a so-called coarsening routine. After each K iterations,
where K is a sufficiently large fixed constant, the smallest coefficients from the current iterand
are removed, increasing the upper bound for its error with some factor larger than 2, but with
that restoring the optimal balance between accuracy and vector length. Only after the extension
with the coarsening routine, the resulting methods could be shown to be of optimal computational
complexity.

In this paper, we reconsider the method from [CDD01]. Since for any subset Λ ⊂ ∇, the
best approximation in energy norm from `2(Λ) is the Galerkin solution, that can be accurately
approximated at relatively low cost, we expect that this method gives quantitatively the best
results. The main point of the paper is that we will show that if µ is less than κ(A)−

1
2 , and Λ

is the smallest set containing suppw that satisfies (1.4), then, without coarsening of the iterands,
these approximations converge with a rate that is guaranteed for best N -term approximations.
Both conditions on the selection of Λ can be qualitatively understood as follows: The basis of
Lemma 1.2 is the use of the coefficients of the residual vector as local error indicators. In case
κ(A) = 1, the residual is just a multiple of the error, but when κ(A) À 1, only the really
largest coefficients can be used as reliable indicators about where the error is large. Of course,
applying a larger set of indicators cannot reduce the convergence rate, but it may hamper optimal
computational complexity. Notice the similarity with adaptive finite element methods where the
largest local error indicators are used for marking elements for further refinement.

As we will see, above result holds also true when the residuals and the Galerkin solutions are
determined only inexactly, assuming a proper decay of the tolerances as the iteration proceeds, and
when the cardinality of Λ is only minimal modulo some constant factor. Using both generalizations,
again a method of optimal computational complexity is obtained.

One might argue that picking the largest coefficients of the (approximate) residual vector is
another instance of coarsening, but on a different place in the algorithm. The principle behind it,
however, is very different from that behind coarsening of the iterands. What is more, since with
the new method no information is deleted that has been created by a sequence of computations,
we expect that it is more efficient.

Another modification to the method from [CDD01] we will make is that for each call of APPLY
or RHS, we will use as a tolerance some fixed multiple of the norm of the current approximate
residual, instead of using an a priori prescribed tolerance. Since it seems hard to avoid that a
priori tolerances are increasingly either unnecessarily small, making the calls costly, or large so
that the perturbed iteration due to the inexact evaluations converges significantly slower than the
unperturbed one, also here we expect to obtain a quantitative improvement.

In this paper, we consider approximations for u from `2(Λ), where Λ can be any finite subset
of ∇. In [CDD03], in the context of non-linear operators, a slightly restricted type of wavelet
approximation is introduced, in the sense that only sets Λ are considered that are trees, meaning
that if λ ∈ Λ, then for any λ′ ∈ ∇ with supp ψλ ⊂ supp ψλ′ , also λ′ ∈ Λ. At least for linear
operators, there is no real need to restrict to tree approximations. Yet, it is claimed that working
with trees has advantages in view of obtaining an efficient implementation, whereas, on the other
hand, best tree N -term approximations converge towards u with a rate N−s under regularity
conditions that are only slightly stronger than that for unrestricted best N -term approximations.
We note that by making obvious changes only, the results from this paper also apply to tree
approximations.

We tested our adaptive wavelet solver for the Poisson equation on the interval. The results
reported in the last section show that in this simple example the new method is indeed much
more efficient than the inexact Richardson method with coarsening of the iterands. In [DHS05],
co-authored by the second author, numerical results based on tree approximations are given for
singular integral equations on the boundary of three dimensional domains.
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2. The adaptive method without coarsening of the iterands

In the following lemma it is shown that for sufficiently small µ and u ∈ `w
τ , for a set Λ as in

Lemma 1.2 that has minimal cardinality, #(Λ\suppw) can be bounded in terms of ‖f −Aw‖ and
|u|`w

τ
only, i.e., independently of |w|`w

τ
and the value of s∗ (cf. [CDD01, §4.2-4.3]).

Lemma 2.1. Let µ ∈ (0, κ(A)−
1
2 ) be a constant, w ∈ `2, and for some s > 0, u ∈ `w

τ . Then the
smallest set Λ ⊃ suppw with

‖PΛ(f −Aw)‖ ≥ µ‖f −Aw‖
satisfies

(2.1) #(Λ\suppw) . ‖f −Aw‖−1/s|u|1/s
`w

τ
.

Proof. Let λ > 0 be a constant with µ ≤ κ(A)−
1
2 (1 − ‖A‖λ2)

1
2 . Let N be the smallest integer

such that a best N -term approximation uN for u satisfies ‖u−uN‖ ≤ λ|||u−w|||. Since |||u−w||| ≥
‖A‖− 1

2 ‖f −Aw‖, we have
N . ‖f −Aw‖−1/s|u|1/s

`w
τ

.

With Λ̆ := suppw ∪ suppuN , the solution of PΛ̆AuΛ̆ = PΛ̆f satisfies

|||u− uΛ̆||| ≤ |||u− uN ||| ≤ ‖A‖ 1
2 ‖u− uN‖ ≤ ‖A‖ 1

2 λ|||u−w|||,
and so by Galerkin orthogonality, |||uΛ̆ −w||| ≥ (1− ‖A‖λ2)

1
2 |||u−w|||, giving

‖PΛ̆(f −Aw)‖ = ‖PΛ̆(AuΛ̆ −Aw)‖ ≥ ‖A−1‖− 1
2 |||uΛ̆ −w|||

≥ ‖A−1‖− 1
2 (1− ‖A‖λ2)

1
2 |||u−w||| ≥ κ(A)−

1
2 (1− ‖A‖λ2)

1
2 ‖f −Aw‖

≥ µ‖f −Aw‖.
Since Λ̆ ⊃ suppw, by definition of Λ we conclude that

#(Λ\suppw) ≤ #(Λ̆\suppw) ≤ N . ‖f −Aw‖−1/s|u|1/s
`w

τ
. ¤

Since we do not have access to the exact residual, obviously Lemma 2.1 cannot be applied
directly. The following routine GROW provides a practical algorithm for extending the support of
an approximation w for u to a set Λ, which is sufficiently large such that `2(Λ) has the saturation
property, but whose cardinality can be bounded as in Lemma 2.1. Firstly, inside a loop, the
tolerances for the approximate matrix-vector product and the approximation of the right-hand
side are decreased until either the computed approximate residual r has a sufficiently small relative
error, or the norm of the residual is below the target tolerance in which case w will be accepted
as a valid approximation for u. In case the norm of the residual is not below the target tolerance,
secondly, a set Λ ⊃ suppw is determined with modulo some constant factor minimal cardinality
such that ‖PΛr‖ ≥ α‖r‖.
GROW[w, ν̄, ε] → [Λ, ν]:
% Let α, ω be constants with 0 < ω < α, α+ω

1−ω < κ(A)−
1
2 .

ζ := 2 ων̄
1−ω

do ζ := ζ/2, r := RHS[ζ/2]−APPLY[w, ζ/2]
until ν := ‖r‖+ ζ ≤ ε or ζ ≤ ω‖r‖
if ν > ε
then determine a set Λ ⊃ suppw with modulo some absolute constant factor

minimal cardinality such that ‖PΛr‖ ≥ α‖r‖
else Λ := ∅
endif

Remark 2.2. GROW will be called with a parameter ν̄ that estimates the norm of the residual
of w. If it is outside [ 1−ω

1+ω ‖f − Aw‖, ‖f − Aw‖], then ζ at the first evaluation of r is outside
[ ω
1+ω‖f −Aw‖, ω

1−ω‖f −Aw‖], and from ω‖f −Aw‖ − ζ ≤ ω‖r‖ ≤ ω‖f + Aw‖ + ζ, one infers
that in this case either the second test in the until-clause will fail anyway, meaning that the first
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iteration of the do-loop is not of any use, or that second test in the until-clause is always passed,
but possibly with a tolerance that is unnecessarily small. We conclude that there is not much
sense in calling GROW with a value of ν̄ that is far outside [ 1−ω

1+ω ‖f −Aw‖, ‖f −Aw‖].

Remark 2.3. Selecting Λ in GROW with truly minimal cardinality would require the sorting
of all coefficients of r|∇\suppw by their modulus, which needs O(N log N) operations with N :=
#supp r|∇\suppw. Another O(#supp r) operations for computing ‖r‖ are unavoidable. In the
following, we recall a procedure with which the above log-factor is avoided.

In view of our task to select Λ ⊃ suppw with ‖PΛr‖ ≥ α‖r‖, we may discard all coefficients
of r|∇\suppw with modulus not larger than

√
(1− α2)‖r‖/√N . With M := ‖r|∇\suppw‖∞, and

q being the smallest integer with 2−(q+1)/2M ≤
√

(1− α2)‖r‖/√N , we store the other coeffi-
cients of r|∇\suppw in q + 1 bins corresponding whether they lie in [M, 1√

2
M), [ 1√

2
M, 1

2M), . . . ,

or [2−q/2M, 2−(q+1)/2M). Then we build Λ by extracting coefficients from the bins, starting with
the first bin, and when it is empty moving to the second bin and so on until ‖PΛr‖ ≥ α‖r‖ is
satisfied. Let the resulting Λ now contains coefficients from the pth bin, but not from further bins.
Then a minimal set Λ̃ that satisfies ‖PΛ̃r‖ ≥ α‖r‖ contains all coefficients from the bins up to the
(p− 1)th one. Since any two coefficients in the pth bin differ less than a factor

√
2, we infer that

the cardinality of the contribution from the pth bin to Λ is at most twice as large as that to Λ̃,
so that #Λ ≤ 2#Λ̃. The number of operations and storage locations required by this procedure
is O(#supp r + q), where q < 2 log2(M

√
N/[

√
1− α2‖r‖]) ≤ 2 log2(

√
N/

√
1− α2) . log2(

√
N) <

#supp r.

In the next theorem it is shown that if GROW[w, ν̄, ε] does not terminate because of the target
tolerance ε is met, then it outputs a set Λ that satisfies both (1.4) with µ = α−ω

1+ω and (2.1).

Theorem 2.4. [Λ, ν] = GROW[w, ν̄, ε] terminates with ν ≥ ‖f−Aw‖ and ν & min{ν̄, ε}. If, for
some s < s∗, u ∈ `w

τ , then the number of arithmetic operations and storage locations required by
the call is bounded by some absolute multiple of min{ν̄, ν}−1/s

[|w|1/s
`w

τ
+|u|1/s

`w
τ

+ν̄1/s(#suppw+1)
]
.

If GROW terminates with ν > ε, then

(2.2) α−ω
1+ω ν ≤ ‖PΛ(f −Aw)‖,

and

(2.3) #(Λ\suppw) . ν−1/s|u|1/s
`w

τ
.

Proof. If at evaluation of the until-clause, ζ > ω‖r‖, then ‖r‖+ ζ < (ω−1 + 1)ζ. Since ζ is halved
in each iteration, we infer that, if not by ζ ≤ ω‖r‖, GROW will terminate by ‖r‖+ ζ ≤ ε.

Since after any evaluation of r inside the algorithm, ‖r − (f − Aw)‖ ≤ ζ, any value of ν
determined inside the algorithm is an upper bound on ‖f − Aw‖. If the do-loop terminates in
the first iteration, or the algorithm terminates with ν > ε, then ν & min{ν̄, ε}. In the other
case, let rold := RHS[ζ] − APPLY[w, ζ]. We have ‖rold‖ + 2ζ > ε and 2ζ > ω‖rold‖, so that
ν ≥ ζ > (2ω−1 + 2)−1(‖rold‖+ 2ζ) > ωε

2+2ω .
By the geometrical decrease of ζ inside the algorithm, the properties of RHS and APPLY,

and in view Remark 2.3, the total cost of the call of GROW can be bounded by some multiple
of ζ−1/s(|w|1/s

`w
τ

+ |u|1/s
`w

τ
) + K(#suppw + 1), with ζ, r and ν having their values at termination

and K being the number of calls of APPLY that were made. Taking into account the initial
value of ζ, and again its geometrical decrease inside the algorithm, we have K(#suppw + 1) =
Kν̄−1/sν̄1/s(#suppw + 1) . ζ−1/sν̄1/s(#suppw + 1). The proof of the first part of the theorem
is completed once we have shown that ζ & min{ν̄, ν}. When the do-loop terminates in the first
iteration, we have ζ & ν̄, and when the algorithm terminates with ζ ≥ ω‖r‖, we have ζ & ν. In
the other case, we have ω‖rold‖ < 2ζ with rold as above, and so from ‖r− rold‖ ≤ ζ + 2ζ, we infer
‖r‖ ≤ ‖rold‖+ 3ζ < (2ω−1 + 3)ζ, so that ν < (2ω−1 + 4)ζ.
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Now assume that GROW terminates with ν > ε and thus with ζ ≤ ω‖r‖. With g = RHS[ζ/2]
and z = APPLY[w, ζ/2], we have

‖PΛ(f −Aw)‖ ≥ ‖PΛr‖ − ‖PΛ(Aw − z)‖ − ‖PΛ(f − g)‖
≥ α‖r‖ − ζ ≥ α−ω

1+ω ν,(2.4)

where the last inequality is a consequence of ζ ≤ ω‖r‖, ω < α, and ν = ‖r‖+ ζ.
To prove (2.3), with µ = α+ω

1−ω let Λ̂ ⊃ suppw be the smallest set with

‖PΛ̂(f −Aw)‖ ≥ µ‖f −Aw‖.
Then

(2.5) µ‖r‖ ≤ µ‖f −Aw‖+ µζ ≤ ‖PΛ̂(f −Aw)‖+ µζ ≤ ‖PΛ̂r‖+ (1 + µ)ω‖r‖,
or ‖PΛ̂r‖ ≥ α‖r‖. By construction of Λ in GROW, we conclude that #(Λ\suppw) . #(Λ̂\suppw).
Since µ < κ(A)−

1
2 by the condition on ω and α, and ‖f −Aw‖ ≤ ν, an application of Lemma 2.1

shows that #(Λ̂\suppw) . ν−1/s|u|1/s
`w

τ
which completes the proof. ¤

When having extended suppw to a set Λ such that `2(Λ) has the saturation property, the
second ingredient of the iterative method is the approximate solution of the Galerkin system on
`2(Λ). Given an approximation gΛ for PΛf , there are various possibilities to iteratively solving the
system PΛAuΛ = gΛ starting with some initial approximation wΛ for uΛ, where obviously we will
take wΛ = w. Instead of relying on the adaptive routine APPLY throughout the iteration, after
approximately computing the initial residual using the APPLY routine, the following routine
GALSOLVE iterates using some fixed, non-adaptive approximation for

AΛ := PΛA|`2(Λ).

The accuracy of this approximation depends only on the factor with which one wants to reduce
the norm of the residual. This approach can be expected to be particularly efficient when the
approximate computation of the entries of A is relatively expensive, as with singular integral
operators. As can be deduced from [vS04], it is even possible in the course of the iteration to
gradually diminish the accuracy of the approximation for AΛ.

GALSOLVE[Λ,gΛ,wΛ, δ, ε] → w̃Λ:
% The input should satisfy δ ≥ ‖gΛ −AΛwΛ‖.
% With AN from (1.3), let N be such that σ := ‖A−AN‖‖A−1‖ ≤ ε

3ε+3δ .
% Set B := PΛ

1
2 (AN + A∗

N )|`2(Λ), with A∗
N being the adjoint of AN .

r0 := gΛ −PΛ(APPLY[wΛ, ε
3 ])

To find an x with ‖r0 − Bx‖ ≤ ε
3 , apply a suitable iterative method for solving Bx = r0, e.g.,

Conjugate Gradients or Conjugate Residuals
w̃Λ := wΛ + x

Theorem 2.5. w̃Λ := GALSOLVE[Λ,gΛ,wΛ, δ, ε] satisfies ‖gΛ−AΛw̃Λ‖ ≤ ε. For any s < s∗,
the number of arithmetic operations and storage locations required by the call is bounded by some
absolute multiple of ε−1/s(|wΛ|1/s

`w
τ

+ |uΛ|1/s
`w

τ
) + c(δ/ε)#Λ, where c : R+ → R+ is some non-

decreasing function.

Proof. Using 〈AΛvΛ,vΛ〉 ≥ ‖A−1‖−1‖vΛ‖2 and ‖AΛ − B‖ ≤ ‖A − AN‖ = σ‖A−1‖−1 <
1
3‖A−1‖−1, we infer that B is SPD with respect to the canonical scalar product on `2(Λ), and
that κ(B) . 1 uniformly in ε and δ. Writing B−1 = (I − A−1

Λ (AΛ − B))−1A−1
Λ , we find that

‖B−1‖ ≤ ‖A−1
Λ ‖

1−‖A−1
Λ ‖‖AΛ−B‖ and so ‖AΛ −B‖‖B−1‖ ≤ σ

1−σ .

We have ‖r0‖ ≤ δ + ε
3 . Writing

gΛ −AΛw̃Λ = (gΛ −AΛwΛ − r0) + (r0 −Bx) + (B−AΛ)B−1(r0 + Bx− r0),

we find
‖AΛw̃Λ − gΛ‖ ≤ ε

3 + ε
3 + σ

1−σ (δ + ε
3 + ε

3 ) ≤ ε.
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The properties of APPLY and RHS show that the cost of the computation of r0 is bounded by
some multiple of ε−1/s(|wΛ|1/s

`w
τ

+ |uΛ|1/s
`w

τ
)+#Λ. Since by (1.3), B is sparse and can be constructed

in O(#Λ) operations, and the required number of iterations of the iterative method is bounded,
everything only dependent on an upper bound for δ/ε, the proof is completed. ¤

We now have the ingredients available to define our adaptive wavelet solver.

SOLVE[ν−1, ε] → wk:
% With α, ω being the parameters inside GROW, let γ be a constant in

(
0, 1

6κ(A)−
1
2 α−ω

1+ω

)
.

% Let θ > 0 be a constant.
k := 0; wk := 0
while with [Λk+1, νk] := GROW[wk, θνk−1, ε], νk > ε do

gk+1 := PΛk+1(RHS[γνk])
wk+1 := GALSOLVE[Λk+1,gk+1,wk, (1 + γ)νk, γνk]
k := k + 1

enddo

Remark 2.6. We will see that at the call of GROW[wk, θνk−1, ε], it holds that ‖f−Awk‖ . νk−1.
Although for any fixed θ > 0, SOLVE will be shown to be of optimal computational complexity,
in view of Remark 2.2 a suitable tuning of θ will result in quantitatively better results. Ideally, θ
has the largest value for which the do-loop inside GROW always terminates in one iteration.

Theorem 2.7. w := SOLVE[ν−1, ε] terminates with ‖Aw − f‖ ≤ ε. If ν−1 h ‖f‖ & ε, and for
some s < s∗, u ∈ `w

τ , then #suppw . ε−1/s|u|1/s
`w

τ
and the number of arithmetic operations and

storage locations required by the call is bounded by some absolute multiple of the same expression.

Proof. Before we come to the actual proof, first we indicate the need for the conditions involving
ν−1, ‖f‖ and ε. If ν−1 6& ε, then the cost of the first call of RHS in the first call of GROW can
be arbitrarily large. If ν−1 6. ‖f‖, then we cannot bound the number of iterations in the loop of
the first call of GROW, each of them requiring in any case some arithmetic operations. Finally,
if ‖f‖ 6& ε, then ε−1/s|u|1/s

`w
τ

might be arbitrarily small, whereas SOLVE takes in any case some
arithmetic operations.

Theorem 2.4 shows that νk ≥ ‖Awk − f‖, and that νk . ‖f −Awk‖ as long as νk > ε. We
have ‖gk+1 − PΛk+1Awk‖ ≤ (1 + γ)νk, so that (1 + γ)νk is a valid parameter for the (k + 1)th
call of GALSOLVE. Below we will prove that a constant ξ < 1 exists such that

(2.6) |||u−wk+1||| ≤ ξ|||u−wk|||,
as long as νk > ε. Because of ‖Awk − f‖ h |||u−wk|||, this result shows that SOLVE terminates
after finitely many iterations, say directly after the (K + 1)th call of GROW that produces
[ΛK+1, νK ], and furthermore that νk . ξk−iνi for all 0 ≤ i ≤ k ≤ K − 1. From νK ≤ ε < νK−1

when K > 0, and ν0 ≤ max{ε, 1+ω
α−ω‖f‖} . ν−1, the last inequality by assumption, we even have

(2.7) νk . ξk−iνi, −1 ≤ i ≤ k ≤ K.

Since with Λ0 := ∅, suppwi ⊂ Λi and Λi ⊂ Λi+1, for 1 ≤ k ≤ K by (2.3) we have

(2.8) #suppwk ≤ #Λk =
k−1∑

i=0

#(Λi+1\Λi) . (
k−1∑

i=0

ν
−1/s
i )|u|1/s

`w
τ

. ν
−1/s
k−1 |u|1/s

`w
τ

.

From |wk|`w
τ

. |u|`w
τ
+(#suppwk)s‖wk−u‖ ([CDD01, Lemma 4.11]), we infer that |wk|`w

τ
. |u|`w

τ
.

By Theorem 2.4, the cost of the (k +1)th call of GROW for k ≤ K is bounded by an absolute
multiple of

min{νk−1, νk}−1/s
[|u|1/s

`w
τ

+ ν
1/s
k−1(ν

−1/s
k−1 |u|1/s

`w
τ

+ 1)
]

. ν
−1/s
k |u|1/s

`w
τ

,

where we used (2.8), min{νk−1, νk} & νk by (2.7), and 1 . ν
−1/s
k−1 |u|1/s

`w
τ

by νk−1 . ν−1 . ‖f‖ .
|u|`w

τ
. The cost of the (k+1)th call for k < K of RHS or GALSOLVE is bounded by an absolute

multiple of ν
−1/s
k |u|1/s

`w
τ

or ν
−1/s
k (|wk|1/s

`w
τ

+ |u|1/s
`w

τ
)+#Λk+1 . ν

−1/s
k |u|1/s

`w
τ

, respectively. From (2.7)
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and νK & min{νK−1, ε} & ε by Theorem 2.4, where the second inequality follows from νK−1 > ε
when K > 0, and by assumption when K = 0, the proof is completed upon showing (2.6).

Abbreviating PΛk+1 as Pk+1, for 0 ≤ k < K let uk+1 be the solution of Pk+1Auk+1 = Pk+1f .
Because of ‖f−Awk‖ ≤ νk and (2.2), that can be applied since νk > ε, we have ‖Pk+1(f−Awk)‖ ≥
α−ω
1+ω ‖f −Awk‖, so that Lemma 1.2 shows that |||u− uk+1||| ≤ [1− κ(A)−1(α−ω

1+ω )2
] 1

2 |||u−wk|||.
Our (k+1)th iterand is, however, not uk+1 but wk+1, which contains errors because of the non-

exact right-hand side and the inexact solution of the Galerkin system. One can simply estimate
|||u − wk+1||| ≤ |||u − uk+1||| + |||uk+1 − wk+1|||, but a sharper result can be derived by using that
u−wk+1 is nearly 〈〈·, ·〉〉-orthogonal to `2(Λk+1). With β := γ 2+2ω

α−ω κ(A)
1
2 < 1

3 , we have

|||uk+1 −wk+1||| ≤ ‖A−1‖ 1
2 ‖Pk+1A(uk+1 −wk+1)‖

≤ ‖A−1‖ 1
2
(‖gk+1 −Pk+1Awk+1‖+ ‖Pk+1f − gk+1‖

)

≤ ‖A−1‖ 1
2 2γνk ≤ ‖A−1‖ 1

2 2γ 1+ω
α−ω‖Pk+1(f −Awk)‖ ≤ β|||uk+1 −wk|||.

Using u− uk+1 ⊥〈〈 , 〉〉 `2(Λk+1), we have

|〈〈u−wk+1,wk+1 −wk〉〉| = |〈〈uk+1 −wk+1,wk+1 −wk〉〉|
≤ |||uk+1 −wk+1||||||wk+1 −wk||| ≤ β|||uk+1 −wk||||||wk+1 −wk|||.

Now by writing

|||u−wk|||2 = |||u−wk+1|||2 + |||wk+1 −wk|||2 + 2〈〈u−wk+1,wk+1 −wk〉〉,
and, for obtaining the second line in the following multi-line formula, two applications of

|||wk+1 −wk||| ≥ |||uk+1 −wk||| − |||wk+1 − uk+1||| ≥ (1− β)|||uk+1 −wk|||,
we find that

|||u−wk|||2 ≥ |||u−wk+1|||2 + |||wk+1 −wk|||
(|||wk+1 −wk||| − 2β|||uk+1 −wk|||

)

≥ |||u−wk+1|||2 + (1− β)(1− 3β)|||uk+1 −wk|||2
≥ |||u−wk+1|||2 + (1− β)(1− 3β)κ(A)−1(α−ω

1+ω )2|||u−wk|||2,
or

|||u−wk+1||| ≤
[
1− (1− β)(1− 3β)κ(A)−1(α−ω

1+ω )2
] 1

2 |||u−wk|||,
which completes the proof. ¤

Remark 2.8. Inside the call of [Λk+1, νk] = GROW[wk, θνk−1, ε] made in SOLVE, we search an
approximation rk,ζ := RHS[ζ/2]−APPLY[wk, ζ/2] for r̄k := f −Awk with a ζ ≤ ω‖rk,ζ‖ that
is as large as possible in order to minimize the support of rk,ζ outside suppwk. When k > 0,
because of the preceding calls of RHS and GALSOLVE, we have a set Λk ⊃ suppwk and a νk−1

with ‖PΛk
r̄k‖ ≤ δk := 2γνk−1. In this remark, we investigate whether it is possible to benefit from

this information to obtain an approximation for the residual with relative error not exceeding ω
whose support extends less outside suppwk.

Let rI
k,ζ := PΛk

rk,ζ and rE
k,ζ := P∇\Λk

rk,ζ , and similarly r̄I
k and r̄E

k . From

ζ2 ≥ ‖r̄− rk,ζ‖2 = ‖r̄I − rI
k,ζ‖2 + ‖r̄E − rE

k,ζ‖2 ≥ (‖rI
k,ζ‖ − δk)2 + ‖r̄E − rE

k,ζ‖2,
we have

‖r̄− rE
k,ζ‖ = (‖r̄E − rE

k,ζ‖2 + ‖r̄I‖2) 1
2 ≤ (ζ2 − (‖rI

k,ζ‖ − δk)2 + δ2
k)

1
2 =: ζ̆.

So, alternatively, instead of rk,ζ , we may use rE
k,ζ as an approximation for r̄k, and thus stop

the routine GROW as soon as νk := ‖rE
k,ζ‖ + ζ̆ ≤ ε or ζ̆ ≤ ω‖rE

k,ζ‖, and use rE
k,ζ also for the

determination of Λk+1. Since for any ζ and rk,ζ with rI
k,ζ 6= 0 and ζ < ‖rk,ζ‖, it holds that

ζ̆‖rk,ζ‖ < ζ‖rE
k,ζ‖ if δk is small enough, under this condition the alternative test is passed more

easily. This may even be a reason to decrease the parameter γ.
The approach discussed in this remark has been applied in the experiments reported in [DHS05].
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3. Numerical experiment

We consider the variational formulation of the following problem of order 2t = 2 on the interval
[0, 1], i.e., n = 1, with periodic boundary conditions

(3.1) −∆u + u = f on R/Z.

We define the right-hand side f by f(v) = 4v( 1
2 ) +

∫ 1

0
g(x)v(x)dx, with

(3.2) g(x) = (16π2 + 1) cos(4πx)− 4 +
{

2x2, if x ∈ [0, 1/2),
2(1− x)2, if x ∈ [1/2, 1],

so that the solution u is given by

(3.3) u(x) = cos(4πx) +
{

2x2, if x ∈ [0, 1/2),
2(1− x)2, if x ∈ [1/2, 1],

see Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0

0.2

0.4

0.6

0.8

1

x

Figure 1. The solution u is the sum of both functions illustrated.

We use the periodized B-spline wavelets of order d = 3 with 3 vanishing moments from [CDF92].
The solution u is in Hs+1(R/Z) only for s < 1

2 . On the other hand, since u can be shown to be in
Bs+1

τ (Lτ (R/Z)) for any s > 0, we deduce that the corresponding discrete solution u is in `w
τ for

any s < d−t
n = 2.

We will compare the results of our adaptive wavelet algorithm SOLVE with those obtained
with the Richardson iteration based method from [CDD02], which we refer to as being the CDD2
method, and that reads as follows:

CDD2SOLVE[ν, ε] → w:
% ν ≥ ‖u‖
% Define the parameters ω := 2

‖A‖+‖A−1‖−1 and ρ := 1−κ(A)
1+κ(A) .

% Let θ and K be constants with 2ρK < θ < 1/2.
w := 0
while ν > ε do

for j = 1 to K

w := w + ω
(
RHS[ ρjν

2ωK ]−APPLY[w, ρjν
2ωK ]

)

endfor
ν := 2ρKν/θ
w := COARSE[w, (1− θ)ν]

enddo
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Here the coarsening routine COARSE is defined by

COARSE[w, δ] → wδ with ‖wδ − w‖ ≤ δ, where modulo some absolute factor #suppwδ is
minimal.

We tested our adaptive wavelet algorithm SOLVE or CDD2SOLVE with parameters α = 0.4,
ω = 0.012618, and γ = 0.009581, or K = 5 and θ = 2/7, respectively. Inside the ranges where the
methods are proven to be of optimal computational complexity, these parameters are close to the
values that give quantitatively the best results. Actually, since these ranges result from a succession
of worst case analyses , we may expect that outside them, i.e., concerning SOLVE for larger α, ω
and γ, more efficient algorithms are obtained. For convenience, we implemented the routine RHS
by simply computing all coefficients of f up to a sufficiently high level, and sorting them beforehand.
Now in a call of RHS, the largest coefficients are gathered in a vector g until

√
‖f‖2 − ‖g‖2 is

less than the prescribed tolerance. The numerical results, given in Figure 2, illustrate the optimal
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Figure 2. Convergence histories

computational complexity of both SOLVE and CDD2SOLVE. Furthermore, they show that in
this example the new method needs less than a factor 10 in computing time to achieve the same
accuracy.
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