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Abstract

With respect to a wavelet basis, singular integral operators can be
well approximated by sparse matrices, and in [Found. Comput. Math.,
2 (2002), pp. 203–245] and [SIAM J. Math. Anal., 35 (2004), pp.
1110–1132], this property was used to prove certain optimal complex-
ity results in the context of adaptive wavelet methods. These results,
however, were based upon the assumption that, on average, each entry
of the approximating sparse matrices can be computed at unit cost. In
this paper, we confirm this assumption by carefully distributing com-
putational costs over the matrix entries in combination with choosing
efficient quadrature schemes.
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pression, numerical integration, singular integrals, nearly singular integrals,
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1 Introduction

Boundary integral methods reduce elliptic boundary value problems in do-
mains to integral equations formulated on the boundary of the domain.
Although the dimension of the underlying manifold decreases by one, the fi-
nite element discretization of the resulting boundary integral equations gives
densely populated stiffness matrices, causing serious obstructions to accurate
numerical solution processes. In order to overcome this difficulty, various
successful approaches for approximating the stiffness matrix by sparse ones
have been developed, such as multipole expansions, panel clustering, and
wavelet compression, see e.g. [Atk97, Hac95]. We will restrict ourselves
here to the latter approach.

In [BCR91], it was first observed that wavelet bases give rise to al-
most sparse stiffness matrices for the Galerkin discretization of singular
integral operators, meaning that the stiffness matrix has many small en-
tries that can be discarded without reducing the order of convergence of
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the resulting solution. This result ignited the development of efficient com-
pression techniques for boundary integral equations based upon wavelets.
In [vPS97, Sch98, DHS02] it was shown that for a wide class of boundary
integral operators a wavelet basis can be chosen so that the full accuracy
of the Galerkin discretization can be retained at a computational work of
order N (possibly with a logarithmic factor in some studies), where N is
the number of degrees of freedom used in the discretization. First nontrivial
implementations of these algorithms and performance tests were reported in
[LS99, Har01].

The main reason why a stiffness matrix entry is small is that the kernel
of the involved integral operator is increasingly smooth away from its diag-
onal, and that the wavelets have vanishing moments, meaning that they are
L2-orthogonal to all polynomials up to a certain degree. Another advantage
of a wavelet-Galerkin discretization is that the diagonally scaled stiffness
matrices are well-conditioned uniformly in their sizes, guaranteeing a uni-
form convergence rate of iterative methods for the linear systems. Finally,
recent developments suggest a natural use of wavelets in adaptive discretiza-
tion methods that approximate the solution using, up to a constant factor,
as few degrees of freedom as possible. This paper focusses on these adaptive
methods.

Let Ht(Γ) be the usual Sobolev space defined on a sufficiently smooth
n-dimensional manifold Γ ⊂ IRn+1, and let H−t(Γ) be its dual space. Then
we consider the problem of finding the solution u ∈ Ht(Γ) of

Lu = g,

where L : Ht(Γ) → H−t(Γ) is a boundedly invertible linear operator, and
g ∈ H−t(Γ). We will think of this problem as being the result of a variational
formulation of a strongly elliptic boundary integral equation of order 2t.
With Ψ = {ψλ : λ ∈ Λ} being a Riesz basis for Ht(Γ), an equivalent infinite
matrix-vector problem reads as

Mu = g, (1.1)

where, with 〈 , 〉 denoting the duality product on Ht(Γ) × H−t(Γ), M :=
〈Ψ, LΨ〉 : `2(Λ) → `2(Λ) is boundedly invertible, g := 〈Ψ, g〉 ∈ `2(Λ), and
u = uT Ψ.

Considering Ψ to be a wavelet basis, in [CDD01, CDD02, GHS05], iter-
ative adaptive methods have been developed for approximating the solution
of this infinite dimensional problem by a finitely supported vector within
any given tolerance. Roughly speaking, these methods consist of the ap-
plication of a simple iterative scheme to the infinite matrix-vector problem,
where each application of the infinite stiffness matrix M is replaced by an
inexact version. To assess the quality of these methods, the `2(Λ)-error of
the obtained approximation after spending O(N) operations is compared
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with that of a best N -term approximation for u, i.e., a vector uN with at
most N non-zero coefficients that has `2(Λ)-distance to u less or equal to
that of any vector with a support of that size.

In any case for wavelets that are sufficiently smooth, the theory of non-
linear approximation ([DeV98]) shows that if both

0 < s < d−t
n ,

where d is the order of the wavelets, and the solution u is in the Besov space
Bsn+t

τ (Lτ (Γ)) with 1
τ = 1

2 + s, then u ∈ As, meaning that

sup
N∈IN

N s‖u− uN‖ < ∞. (1.2)

Here ‖ ‖ denotes the standard norm on `2(Λ), whereas on other occasions,
it will also denote the standard norm on the space of linear operators from
`2(Λ) to `2(Λ). Note that for any v ∈ `2(Λ), ‖u− vT Ψ‖Ht(Γ) h ‖u− v‖.

In order to avoid the repeated use of generic but unspecified constants,
in this paper by C . D we mean that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Obviously,
C & D is defined as D . C, and C h D as C . D and C & D.

The attractive feature of these best N -term approximations is the fact
that the condition involving Besov regularity is much milder than the corre-
sponding condition u ∈ Hsn+t(Γ) involving Sobolev regularity that would be
needed to guarantee the same rate of convergence with approximation from
the fixed, i.e., non-adaptive spaces spanned by N wavelets on the coarsest
scales. Note that with wavelets of order d, the maximal rate that can be
expected is d−t

n .
The efficiency of the adaptive methods hinges on the cost of the approxi-

mate matrix-vector routine APPLY from [CDD02], which depends on how
well M can be approximated by a computable sparse matrix.

We will use the following definition.

Definition 1.1. M is called s∗-computable, when for each j ∈ IN0, we
can construct an infinite matrix M∗

j having in each column O(2j) non-zero
entries, whose computation takes O(2j) operations, such that for any s < s∗,
‖M−M∗

j‖ . 2−js.

The main theorem from [CDD01, CDD02, GHS05] now says that if
u ∈ As for some s, and M is s∗-computable for an s∗ > s, then the number
of arithmetic operations and storage locations used by the adaptive wavelet
algorithms from these papers for computing an approximation for u within
tolerance ε is of the order ε−1/s. Since in view of (1.2) the same order of
storage locations is generally needed to approximate u within this toler-
ance using best N -term approximations, assuming these would be available,
this result shows that these solution methods have optimal computational
complexity.
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Remark 1.2. Actually, instead of being s∗-computable, in [CDD02] it was
assumed that M is “s∗-compressible”. Apart from our addition that each
column of M∗

j should not only have O(2j) entries, but also that, on aver-
age, the computation of each of these entries should take O(1) operations,
it is easily seen that the definition of “s∗-compressibility” from [CDD02] is
equivalent to our definition of s∗-computability (cf. [Ste04a, Remark 2.4]).
In [CDD02] the average unit cost assumption was mentioned separately af-
terwards (in Assumption 2).
Remark 1.3. In Definition 1.1, we may allow the computational cost and
the number of non-zeros in each column of M∗

j to be O(jc2j) with any fixed
constant c ∈ IR. Indeed, in the spirit of Remark 2.4 of [Ste04a], one can
show that this results in an equivalent definition.

To conclude optimality of the adaptive wavelet method, it is necessary
to show that M is s∗-computable for some s∗ ≥ d−t

n , since otherwise for
a solution u that has sufficient Besov regularity, the computability will be
the limiting factor. On the other hand, since, for wavelets of order d, by
imposing whatever smoothness conditions u ∈ As can only be guaranteed
for s ≤ d−t

n , showing s∗-computability for some s∗ > d−t
n is also a sufficient

condition for optimality of the adaptive wavelet method.
Assuming the average unit cost property, s∗-computability for some

s∗ > d−t
n has been demonstrated in [Ste04a] for both differential and singular

integral operators, and piecewise polynomial wavelets that are sufficiently
smooth and have sufficiently many vanishing moments. More precisely, un-
der such conditions it was proven that for some s∗ > d−t

n , the infinite stiffness
matrix M is s∗-compressible, a concept that, different than in [CDD02], we
define as follows.

Definition 1.4. M is called s∗-compressible, when for each j ∈ IN0, there
exists an infinite matrix Mj , constructed by dropping entries from M, such
that in each column it has O(2j) non-zero entries, and that for any s < s∗,
‖M−Mj‖ . 2−js.

Only in the special case of a differential operator with constant coeffi-
cients, entries of M can be computed exactly, in O(1) operations, so that s∗-
compressibility immediately implies s∗-computability. In general, numerical
quadrature is required to approximate the entries. The case of differential
operators was treated in the paper [GS04]. In the present paper, considering
singular integral operators resulting from the boundary integral method, we
will show that M is s∗-computable for the same value of s∗ as it was shown
to be s∗-compressible. Summarizing, this result shows that using the rou-
tine APPLY from [CDD02], the compression rules from [Ste04a] (recalled
in Theorem 3.4), and the quadrature schemes derived in this paper to ap-
proximately compute the remaining entries, the adaptive wavelet methods
from [CDD01, CDD02, GHS05] now define fully discrete algorithms that
have optimal computational complexity.
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We split our task into two parts. First we derive a criterion on the
accuracy-work balance of a numerical quadrature scheme to approximate
any entry of M, such that, for a suitable choice of the work invested in
approximating the entries of the compressed matrix Mj as function of both
wavelets involved, we obtain an approximation M∗

j of which the computa-
tion of each column requires O(jc2j) operations with a fixed constant c (cf.
Remark 1.3), and ‖Mj −M∗

j‖ ≤ 2−js∗ , meaning that M is s∗-computable.
Second, we show that for any desired s∗ > 0 we can fulfill the above criterion
by the application of certain quadrature rules of variable order.

This paper is organized as follows. We collect some error estimates for
numerical quadrature in Section 2. In Section 3, assumptions are formulated
on the singular integral operator and the wavelets, and the result concerning
s∗-compressibility is recalled from [Ste04a]. Then in Section 4, rules for the
numerical approximation of the entries of the stiffness matrix are derived,
with which s∗-computability for some s∗ > d−t

n will be demonstrated.
At the end of this introduction, we fix a few more notations. A monomial

of n variables is conveniently written using a multi-index α ∈ INn
0 as xα :=

xα1
1 . . . xαn

n . Likewise we write partial differentiation operators, that is, ∂α :=
∂α1

1 . . . ∂αn
n . We set |α| := α1 + . . . + αn, and the relation α ≤ β is defined

as αi ≤ βi for all i ∈ 1, n. We have |α ± β| = |α| ± |β| provided that
α − β ∈ INn

0 in case of subtraction. Binomial coefficients are naturally
defined as

(
α
β

)
:=

(
α1

β1

)
. . .

(
αn

βn

)
.

Shortly after the first version of this work was finished, so in particular in-
dependently of this work, a preprint [DHS05] appeared in which the same topic is
studied. The main difference with our work is that [DHS05] focusses on constrained
wavelet approximations in the sense that the set of indices of a wavelet approxi-
mation should have a tree structure. With this type of approximation a somewhat
stronger condition is required to obtain (1.2). On the other hand, the authors claim
that tree approximations allow for a more efficient implementation.

2 Error estimates for numerical quadrature

In this section, we recall some quadrature error estimates, referring to e.g.
[GS04] for detailed proofs. We define the radius of a star-shaped domain Ω
by

rad(Ω) := min
y∈S(Ω)

max
x∈∂Ω

|x− y|, (2.1)

where S(Ω) := clos{y ∈ Ω : Ω is star-shaped w.r.t. y}. Apparently, we
always have rad(Ω) ≤ diam(Ω), and the radius of a convex domain equals
the radius of its smallest circumscribed sphere.

On a star-shaped domain Ω, let us now consider quadrature rules of
the form Q : f 7→ ∑

j wjf(xj) to approximate I : f 7→ ∫
Ω f . We will only

consider rules that are internal meaning that all xj ∈ closΩ. The quadrature
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error functional is defined as E := I −Q.

Proposition 2.1. For a rule Q of order p, meaning that E(f) = 0 for all
f ∈ Pp−1(Ω), and any f ∈ W p∞(Ω) we have

|E(f)| ≤
(

1 +

∑
j |wj |

vol(Ω)

)
· np

p!
· rad(Ω)p · vol(Ω) · |f |W p

∞(Ω). (2.2)

Note that for a rule that is positive, meaning that all wj > 0, and that

has order p > 0, we have
P

j |wj |
vol(Ω) = 1.

Let us now consider a collection O of disjoint star-shaped Lipschitz
subdomains Ω′ ⊂ Ω, the latter not necessarily being star-shaped, such
that clos Ω = ∪Ω′∈O closΩ′, which collection we will refer to as being a
quadrature mesh. Writing I(f) as

∑
Ω′∈O

∫
Ω′ f , on each subdomain Ω′

we employ a quadrature rule QΩ′(f) =
∑

j wΩ′
j f(xΩ′

j ) of order p, defin-
ing a composite quadrature rule Q of rank N := #O (and order p) by
Q(f) :=

∑
Ω′∈O QΩ′(f).

Proposition 2.2. For the error functional E = I − Q of this composite
quadrature rule, and f ∈ W p∞(Ω) we have

|E(f)| ≤
(

1 + sup
Ω′∈O

∑
j |wΩ′

j |
vol(Ω′)

)
· sup
Ω′∈O

(
N1/nrad(Ω′)

diam(Ω)

)p

×N−p/n · np

p!
· diam(Ω)p · vol(Ω) · |f |W p

∞(Ω).

In view of above estimate, as well as to control the number of function
evaluations that are required, in this paper we will consider families (Qp)p∈IN

of composite quadrature rules Qp : f 7→ ∑
Ω′∈O

∑
j wp,Ω′

j f(xp,Ω′
j ) of order p

with a fixed mesh O, that are admissible meaning that they satisfy

sup
p∈IN,Ω′∈O

max

{∑
j |wp,Ω′

j |
vol(Ω′)

,
#xp,Ω′

j

pn

}
< ∞.

Note that the bound on the number of abscissae in each subdomain is reason-
able because the space of polynomials of total degree p−1 has

(
p−1+n

n

) ≤ pn

degrees of freedom. Moreover, for a quadrature mesh O we define the fol-
lowing quantity

CO := sup
Ω′∈O

(#O)1/nrad(Ω′)
diam(Ω)

. (2.3)

Finally in this section, we consider product quadrature rules which are
generally applied on Cartesian product domains. Let A and B be domains
of possibly different dimensions, equipped with the quadrature rules Q(A) :
g 7→ ∑

j wjg(xj) and Q(B) : h 7→ ∑
k vkh(yk) to approximate I(A) : g 7→
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∫
A g and I(B) : h 7→ ∫

B h, respectively. For simplicity, in this setting we
will always assume that these rules are positive and have strictly positive
orders. Now with the product rule Q(A) × Q(B) we mean the mapping
f 7→ ∑

jk wjvkf(xj , yk) to approximate I : f 7→ ∫
A×B f .

Lemma 2.3. With error functionals E(A) := I(A) − Q(A) and E(B) :=
I(B) −Q(B), the product rule Q := Q(A) ×Q(B) satisfies

|I(f)−Q(f)| ≤ vol(A) sup
x∈A

|E(B)(f(x, ·))|+vol(B) sup
y∈B

|E(A)(f(·, y))|, (2.4)

as long as both E(A)(f(·, y)) and E(B)(f(x, ·)) make sense for all y ∈ B and
x ∈ A, respectively.

As an application of this lemma, we have the following result for product
quadrature rules on rectangular domains.

Proposition 2.4. Consider the rectangular domain ¤ := (0, l1)×. . .×(0, ln)
and define l := maxi li. For the i-th coordinate direction, let Q

(i)
M be a

composite quadrature rule of order p with respect to a quadrature mesh on
(0, li) of M equally sized subintervals. Then for the product quadrature rule
Q := Q

(1)
M × . . . × Q

(n)
M to approximate I : f 7→ ∫

� f , and f such that
∂p

i f ∈ L∞(¤), i ∈ 1, n, we have

|I(f)−Q(f)| ≤ n
21−p

p!
M−p · ln+p ·max

i∈1,n
‖∂p

i f‖L∞(�). (2.5)

In particular, this quadrature rule is exact on Qp−1(¤) := Pp−1(0, l1)× . . .×
Pp−1(0, ln).

3 Compressibility

For some µ ∈ IN , let Γ be a patchwise smooth, compact n-dimensional,
globally Cµ−1,1 manifold in IRn+1. Following [DS99b], we assume that Γ =
∪M

q=1Γq, with Γq ∩ Γq′ = ∅ when q 6= q′, and that for each 1 ≤ q ≤ M , there
exists

• a domain Ωq ⊂ IRn, and a C∞-parametrization κq : IRn → IRn+1 with
Im(κq|Ωq

) = Γq,

• a domain IRn ⊃ Ω̂q ⊃⊃ Ωq, and an extension of κq|Ωq
to a Cµ−1,1

para-metrization κ̂q : Ω̂q → Im(κ̂q) ⊂ Γ.

Formally supposing that the domains Ωq are pairwise disjoint, for notational
convenience we introduce the invertible mapping κ : ∪qΩq → ∪qΓq ⊂ Γ via

κ(x) := κq(x) with q such that x ∈ Ωq.
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κq

Ωq

Γq

Figure 1: Parametrization of the manifold.

For |s| ≤ µ, the Sobolev spaces Hs(Γ) are well-defined, where for s < 0,
Hs(Γ) is the dual of H−s(Γ). Let

Ψ = {ψλ : λ ∈ Λ}
be a Riesz basis for Ht(Γ) of wavelet type. The index λ encodes both the
level, denoted by |λ| ∈ IN0, and the location of the wavelet ψλ. We will
assume that the wavelets are local and piecewise smooth with respect to
nested subdivisions in the following sense. We assume that there exists a se-
quence (O`)`∈IN0 of collections O` of disjoint “uniformly” Lipschitz domains
Θ ∈ O`, with

diam(Θ) h 2−` and vol(Θ) h 2−n`, (3.1)

and where each Θ ∈ O` is contained in some Ωq, and its closure is the union
of the closures of a uniformly bounded number of subdomains from O`+1.
For a precise definition of a collection of sets to be a collection of uniformly
Lipschitz domains, we refer to [Ste04a, Remark 2.1]. Defining the collections
of panels

G` := {κ(Θ) : Θ ∈ O`}, (` ∈ IN0),

we assume that Γ = ∪Π∈G`
Π, (` ∈ IN0), and that for each λ ∈ Λ there exists

a subcollection Gλ ⊂ G|λ| with

sup
λ∈Λ

#Gλ < ∞ and sup
`∈IN0,Π∈G`

#{λ : |λ| = `, Π ∈ Gλ} < ∞,

such that suppψλ = ∪Π∈Gλ
closΠ, being a connected set, and that on each

Θ ∈ κ−1(Gλ), the pull-back ψ̂λ,Θ := (ψλ ◦ κ)|Θ is smooth with

sup
x∈Θ

|∂βψ̂λ,Θ(x)| <∼ 2(|β|+n
2
−t)|λ| for β ∈ Nn

0 . (3.2)

We assume that the wavelets have the so-called cancellation property of
order d̃ ∈ IN , saying that there exists a constant η > 0, such that for any
p ∈ [1,∞], for all continuous, patchwise smooth functions v and λ ∈ Λ,

|〈v, ψλ〉| <∼ 2−|λ|(
n
2
−n

p
+t+d̃) max

1≤q≤M
|v|

W d̃
p (B(supp ψλ;2−|λ|η)∩Γq)

, (3.3)
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where for A ⊂ IRn+1 and ε > 0, B(A; ε) := {y ∈ IRn+1 : dist(A, y) < ε}.
Furthermore, for some k ∈ IN0 ∪ {−1}, with k < µ and

γ := k + 3
2 > t, (3.4)

we assume that all ψλ ∈ Ck(Γ), where k = −1 means no global continuity
condition, and that for all r ∈ [−d̃, γ), s < γ, necessarily with |s|, |r| ≤ µ,

‖ · ‖Hr(Γ)
<∼ 2`(r−s)‖ · ‖Hs(Γ) on W` := span{ψλ : |λ| = `}. (3.5)

Inside a patch, a similar property can be required for larger ranges: For all
q ∈ 1,M , and r ∈ [−d̃, γ), s < γ, we assume that

‖·‖Hr(Γq)
<∼ 2`(r−s)‖·‖Hs(Γq) on span{ψλ : |λ| = `, B(suppψλ; 2−`η) ⊂ Γq}.

(3.6)

Remark 3.1. Wavelets that satisfy the assumptions in principle for any d, d̃
and smoothness permitted by both d and the regularity of the manifold were
constructed in [DS99b]. Apart from this construction, all known approaches
based on non-overlapping domain decompositions yield wavelets which over
the interfaces between patches are only continuous. With the constructions
from [DS99a, CTU99, CM00], biorthogonality was realized with respect to a
modified L2(Γ)-scalar product. As a consequence, with the interpretation of
functions as functionals via the Riesz mapping with respect to the standard
L2(Γ) scalar product, for negative t the wavelets only generate a Riesz basis
for Ht(Γ) when t > −1

2 , and likewise wavelets with supports that extend to
more than one patch generally have no cancellation properties in the sense
of (3.3). Recently in [Ste04b], this difficulty was overcame, and wavelets
were constructed that all have the cancellation property of the full order,
and that generate Riesz bases for the full range of Sobolev spaces Ht(Γ)
that is allowed by continuous gluing of functions over the patch interfaces
and the regularity of the manifold.

For some |t| ≤ µ, let L be a bounded operator from Ht(Γ) → H−t(Γ),
where we have in mind a singular integral operator of order 2t. We assume
that the operator L is defined by

Lu(z) =
∫

Γ
K(z, z′)u(z′)dΓz′ , (z ∈ Γ), (3.7)

and that its local kernel function

K̂(x, x′) := K(κ(x), κ(x′)) · |∂κ(x)| · |∂κ(x′)|

satisfies for all x, x′ ∈ ∪1≤q≤MΩq, and α, β ∈ INn
0 ,

|∂α
x ∂β

x′K̂(x, x′)| <∼
|α + β|!
ς |α+β| · dist(κ(x), κ(x′))−(n+2t+|α+β|), (3.8)
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with a constant ς > 0 (cf. [Har01, DHS02]), provided that n+2t+ |α+β| >
0. If the kernel function K(z, z′) contains non-integrable singularities, the
integral (3.7) has to be understood in the finite part sense of Hadamard,
see e.g. [SW92, SL00]. Following [DHS02], we emphasize that (3.8) requires
patchwise smoothness but no global smoothness of Γ. Only assuming global
Lipschitz continuity of Γ, the local kernel of any standard boundary integral
operator of order 2t can be shown to satisfy (3.8).

We assume that for some σ ∈ (0, µ − |t|], both L and its adjoint L′ are
bounded from Ht+σ(Γ) → H−t+σ(Γ).

Remark 3.2. If Γ is a C∞-manifold, then these boundary integral operators
are known to be pseudo-differential operators, meaning that for any σ ∈ IR
they define bounded mappings from Ht+σ(Γ) → H−t+σ(Γ). For Γ being
only Lipschitz continuous, for the classical boundary integral equations it is
known that L : Ht+σ(Γ) → H−t+σ(Γ) is bounded for the maximum possible
value σ = 1 − |t| (cf. [Cos88]). With increasing smoothness of Γ one may
expect this boundedness for larger values of σ. Results in this direction can
be found in [MS04].

Furthermore, with H̃s(Γq) :=
{

Hs(Γq) when s ≥ 0,
(H−s

0 (Γq))′ when s < 0,
we assume

that there exists a τ ∈ (0, µ− |t|] such that

L : Ht+τ (Γ) → H̃−t+τ (Γq) is bounded for all 1 ≤ q ≤ M. (3.9)

Remark 3.3. Since for any |s| ≤ µ, the restriction of functions on Γ to
Γq is a bounded mapping from Hs(Γ) to H̃s(Γq), from the boundedness
of L : Ht+σ(Γ) → H−t+σ(Γ), it follows that in any case (3.9) is valid for
τ = σ. So for example for Γ being a C∞-manifold, (3.9) is valid for any
τ ∈ IR. Yet, in particular when t < 0, for Γ being less smooth it might
happen that (3.9) is valid for a τ that is strictly larger than any σ for which
L : Ht+σ(Γ) → H−t+σ(Γ) is bounded.

In the following theorem, we recall the main result on compressibility for
boundary integral operators from [Ste04a].

Theorem 3.4. For Ψ being a Riesz basis for Ht(Γ) as described above with
t + d̃ > 0, and d̃ > γ − 2t, let M = 〈Ψ, LΨ〉.

Let α ∈ (1
2 , 1) and bi := (1 + i)−1−ε for some ε > 0. Choose k satisfying

k =
1

n− 1
when n > 1,

k >
min{t + d̃, τ}

γ − t
and k ≥ max{1,

min{t + d̃, τ}
min{t + µ, σ}} when n = 1.

(3.10)
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We define the infinite matrix Mj for j ∈ IN by replacing all entries Mλ,λ′ =
〈ψλ, Lψλ′〉 by zeros when
∣∣|λ| − |λ′|∣∣ > jk, or (3.11)
∣∣|λ| − |λ′|∣∣ ≤ j/n and δ(λ, λ′) ≥ max{3η, 2α(j/n−||λ|−|λ′||)}, or (3.12)∣∣|λ| − |λ′|∣∣ > j/n and

δ̃(λ, λ′) ≥ max{2n(j/n−||λ|−|λ′||)b||λ|−|λ′||−j/n, 2η2−||λ|−|λ
′||}, (3.13)

where
δ(λ, λ′) := 2min{|λ|,|λ′|}dist(suppψλ, suppψλ′), (3.14)

and

δ̃(λ, λ′) := 2min{|λ|,|λ′|} ×
{

dist(suppψλ, sing suppψλ′) when |λ| > |λ′|,
dist(sing suppψλ, suppψλ′) when |λ| < |λ′|,

and η is from (3.3).
Then the number of non-zero entries in each column of Mj is of order

2j, and for any

s ≤ min
{

t+d̃
n , τ

n

}
, with s < γ−t

n−1 , s ≤ σ
n−1 and s ≤ µ+t

n−1 when n > 1,

it holds that ‖M−Mj‖ <∼ 2−js. We conclude that M is s∗-compressible, as
defined in Definition 1.4, with s∗ = min{ t+d̃

n , τ
n , σ

n−1 , γ−t
n−1 , µ+t

n−1} when n > 1,
and s∗ = min{t + d̃, τ} when n = 1.

From this theorem we infer that if d̃ ≥ d−2t, τ ≥ d− t and, when n > 1,
min{γ−t,σ,t+µ}

n−1 ≥ d−t
n , then s∗ ≥ d−t

n as required. For n > 1, the condition
involving γ is satisfied for instance for spline wavelets, where γ = d− 1

2 , in
case d−t

n ≥ 1
2 .

If each entry of M can be exactly computed in O(1) operations, then
s∗-compressibility implies s∗-computability, as defined in Definition 1.1, and
so, when indeed s∗ ≥ d−t

n , it implies the optimal computational complexity
of the adaptive wavelet scheme from [CDD02]. In general, one is not able to
compute the matrix entries exactly. What is more, it is far from obvious how
to compute the entries of Mj sufficiently accurate while keeping the average
computational expense per entry in each column uniformly bounded. In
the next section, additionally assuming that the wavelets are essentially
piecewise polynomials, we will show that it is possible to arrange quadrature
schemes which admit s∗-computability of M.

4 Computability

In this section, we will present a numerical integration scheme which com-
putes an approximation M∗

j of Mj such that, for some specified constant

11



c, by spending O(jc2j) computational work per column of M∗
j , the approx-

imation error satisfies ‖Mj −M∗
j‖ <∼ 2−js∗ with s∗ given by Theorem 3.4,

implying that M is s∗-computable.
Let us consider the computation of individual entries

Mλ,λ′ =
∫

Γ
ψλ(z)

(∫

Γ
K(z, z′)ψλ′(z′)dΓz′

)
dΓz (4.1)

of M. Unless explicitly stated otherwise, throughout this section we assume
that

|λ| ≥ |λ′|.
We start with an assumption.

Assumption 4.1. For any Ξ ∈ Gλ, Ξ′ ∈ G|λ| with Ξ′ ⊂ suppψλ′ , in the
following we assume that the integral

∫

Ξ

∫

Ξ′
K(z, z′)ψλ(z)ψλ′(z′)dΓzdΓz′

is well-defined.

This assumption obviously holds in case of proper or improper integrals.
However, it requires an appropriate interpretation of the integrals in case of
strongly- or hyper-singular kernels. For strongly singular kernels on surfaces
in IR3 the assumption was confirmed in [HS93].

As a consequence of the assumption, we may write

Mλ,λ′ =
∑

Π∈Gλ

∑

Π′∈Gλ′

Iλλ′(Π, Π′), (4.2)

with, for Π ∈ Gλ and Π′ ∈ Gλ′ ,

Iλλ′(Π, Π′) :=
∑

{Ξ′∈G|λ|:Ξ′⊂Π′}

∫

Π

∫

Ξ′
K(z, z′)ψλ(z)ψλ′(z′)dΓzdΓz′ . (4.3)

We assume that for each Π ∈ Gλ, Π′ ∈ Gλ′ an approximation of the
integral Iλλ′(Π, Π′) is obtained by some numerical scheme dependent on j,
and using (4.2), that these approximations are used to assemble the matrix
M∗

j . The following theorem defines a criterion on the computational cost
in relation to the accuracy of computing the integrals Iλλ′(Π, Π′) so that
s∗-compressibility implies s∗-computability.

Theorem 4.2. Let s∗ > 0 be any given constant, and M, Mj be as in
Theorem 3.4. Let σ : ∪`G` → IR be some fixed function such that

σ(Ξ) h diam(Ξ) for Ξ ∈ ∪`G`, (4.4)

12



and let d∗, e∗ ∈ IR and % > 1 be fixed constants. Assume that for any p ∈ IN ,
an approximation I∗λλ′(Π, Π′) of the integral Iλλ′(Π,Π′) can be computed such
that by spending the number of

W <∼ p2n(1 + ||λ| − |λ′||) (4.5)

arithmetical operations, the error satisfies

|Eλλ′(Π, Π′)| <∼ %−p2||λ|−|λ
′||d∗

×max
{

1,
dist(Π, Π′)

% max{σ(Π), σ(Π′)}
}e∗−p

.
(4.6)

Then for any fixed ϑ ≥ 0, and for parameters θ and τ with

θ ≥ s∗/ log2 % and τ > (n/2 + d∗)/ log2 %, (4.7)

by choosing p for the computation of I∗λλ′(Π, Π′) as the smallest positive
integer satisfying

p > e∗ + n and p ≥ jθ + τ ||λ| − |λ′|| − ϑ, (4.8)

the so computed approximation M∗
j of Mj satisfies ‖Mj − M∗

j‖ <∼ 2−js∗,
where the work for computing each column of M∗

j is O(j2n+12j).
By taking s∗ as given in Theorem 3.4, we conclude that the matrix M is

s∗-computable for the same value of s∗ as it was shown to be s∗-compressible.

The proof will use Schur’s lemma that we recall here for the reader’s
convenience.

Lemma 4.3 (Schur’s lemma). If for a matrix A = (aλ,λ′)λ,λ′∈Λ, there is
a sequence wλ > 0, λ ∈ Λ, and a constant C such that
∑

λ′∈Λ

wλ′ |aλ λ′ | ≤ wλC, (λ ∈ Λ), and
∑

λ∈Λ

wλ|aλ λ′ | ≤ wλ′C, (λ′ ∈ Λ),

then ‖A‖ ≤ C.

Proof of Theorem 4.2. Since #Gλ, #Gλ′
<∼ 1, it is sufficient to give the proof

pretending that #Gλ = #Gλ′ = 1.
With the matrix (∆λ,λ′)λ,λ′∈Λ defined by

∆λ,λ′ := max
{

1,
dist(Π,Π′)

%max{σ(Π), σ(Π′)}
}

, Π ∈ Gλ, Π′ ∈ Gλ′ ,

for each λ ∈ Λ, `′ ∈ IN0, and β > n, we can verify that
∑

|λ′|=`′
∆−β

λ,λ′
<∼ 2n max{0,`′−|λ|}, (4.9)
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using the locality of the wavelets and the fact that σ(Π′) h diam(Π′) h 2−|λ′|

and that vol(Π′) h 2−|λ′|n.
Denoting the entry (λ, λ′) of the error matrix Mj −M∗

j by εj,λλ′ , and
by substituting p ≥ jθ + τ ||λ| − |λ′|| − ϑ into (4.6), we infer that

εj,λλ′ . 2−jθ log2 %2−||λ|−|λ
′||(τ log2 %−d∗)∆−(p−e∗)

λ,λ′ . (4.10)

Recall that σ := τ log2 %−d∗ > n/2 and p−e∗ > n. Applying Schur’s lemma
to the error matrix Mj −M∗

j with weights wλ = 2−|λ|n/2, we have

w−1
λ

∑

λ′
wλ′ |εj,λλ′ | . 2−jθ log2 %2|λ|n/2

∑

`′≥0

2−`′n/22−(|λ|−`′)σ ·
∑

|λ′|=`′
∆−(p−e∗)

λ,λ′

. 2−jθ log2 %2|λ|n/2
∑

0≤`′≤|λ|
2−`′n/22−(|λ|−`′)σ · 1

+ 2−jθ log2 %2|λ|n/2
∑

`′>|λ|
2−`′n/22−(`′−|λ|)σ · 2(`′−|λ|)n

. 2−jθ log2 %,

where we used (4.9) in the second step. Now by the symmetry of the estimate
(4.10) in λ and λ′, we conclude that the error in the computed matrix M∗

j

satisfies
‖Mj −M∗

j‖ . 2−jθ log2 % ≤ 2−js∗ .

The work for computing the entry (M∗
j )λ,λ′ is of order

p(j, λ, λ′)2n(1 + ||λ| − |λ′||) <∼ (jθ + τ ||λ| − |λ′||)2n(1 + ||λ| − |λ′||).

Since M∗
j contains nonzero entries only for ||λ| − |λ′|| ≤ jk, we can bound

the work for computing each element (M∗
j )λ,λ′ by a constant multiple of

j2n+1. Now using the fact that each column of Mj contains O(2j) nonzero
entries, we conclude the computational work per column is O(j2n+12j).

By applying the error estimates from Section 2, we will now show how
numerical quadrature schemes satisfying (4.5) and (4.6) can be realized. We
will consider variable order quadrature rules, meaning that constants ab-
sorbed by the “<∼” symbol will not depend on the quadrature order. To this
end, we consider a general finite subdivision Υ ⊂ (∪`G`)2 of the integration
domain Π×Π′ such that {Ξ×Ξ′ ∈ Υ : dist(Ξ, Ξ′) = 0} ⊂ G2

|λ|. Then in view
of Assumption 4.1, we can split the integral (4.3) as

Iλλ′(Π, Π′) =
∑

Ξ×Ξ′∈Υ

Iλλ′(Ξ, Ξ′), (4.11)

with
Iλλ′(Ξ, Ξ′) :=

∫

Ξ

∫

Ξ′
K(z, z′)ψλ(z)ψλ′(z′)dΓzdΓz′ .
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First we will study the numerical evaluation of an individual integral I(Ξ, Ξ′)
for the case that dist(Ξ, Ξ′) > 0. We can write the integral I(Ξ,Ξ′) in local
coordinates

Iλλ′(Ξ,Ξ′) =
∫

Θ

∫

Θ′
K̂(x, x′)ψ̂λ,κ−1(Π)(x)ψ̂λ′,κ−1(Π′)(x

′)dxdx′, (4.12)

where Θ = κ−1(Ξ) and Θ′ = κ−1(Ξ′).

Definition 4.4. The wavelet basis Ψ is said to be of P -type of order e
when for all λ ∈ Λ and Θ ∈ O|λ|, ψ̂λ,Θ ∈ Pe−1(Θ). Similarly, Ψ is of Q-
type of order e when for all λ ∈ Λ and Θ ∈ O|λ|, Θ is an n-rectangle and
ψ̂λ,Θ ∈ Qe−1(Θ).

Lemma 4.5. Assume that the wavelet basis Ψ is of P -type of order e and
that dist(κ(Θ), κ(Θ′)) > 0. For the domains Θ and Θ′, we employ composite
quadrature rules from admissible families (uniformly in Θ, Θ′) of orders p
and fixed ranks N , and apply the product of these quadrature rules to approx-
imate the non-singular integral Iλλ′(κ(Θ), κ(Θ′)) from (4.12). We define

σ(κ(Θ̃)) :=
nC

ςN1/n
diam(Θ̃) for all Θ̃ ∈ ∪`O`, (4.13)

where ς > 0 is the constant involved in the Calderon-Zygmund estimate
(3.8), and C is an upper bound on the quantity (2.3) for quadrature meshes
on Θ̃ ∈ ∪`O`. Then with

ω :=
dist(κ(Θ), κ(Θ′))

max{σ(κ(Θ)), σ(κ(Θ′))} , (4.14)

for any p ≥ max{e − 2t − n, e − 1}, the quadrature error E(κ(Θ), κ(Θ′))
satisfies

|E(Ξ,Ξ′)| <∼ 2||λ|−|λ
′||(n/2−t)ω−(n+p) max{1, ω}e−1

×min{σ(κ(Θ)), σ(κ(Θ′))}n dist(κ(Θ), κ(Θ′))−2t.
(4.15)

Proof. Since there will be no risk of confusion, we will write ψ̂λ and ψ̂λ′

instead of ψ̂λ,κ−1(Π) and ψ̂λ′,κ−1(Π′), respectively. By Lemma 2.3, the error
of the product quadrature is

|E(κ(Θ), κ(Θ′))| ≤ vol(Θ′) · sup
x′∈Θ′

|E(x′)|+ vol(Θ) · sup
x∈Θ

|E′(x)|, (4.16)

where we denoted by E(x′) the error of the quadrature over the domain Θ
with the integrand x 7→ K̂(x, x′)ψ̂λ(x)ψ̂λ′(x′). Analogously E′(x) denotes
the error of the quadrature over Θ′. Using Proposition 2.2 to bound E(x′),
we have

|E(x′)| <∼
np

p!
CpN−p/n vol(Θ)·diam(Θ)p ·|ψ̂λ′(x′)|·|K̂(·, x′)ψ̂λ|W p

∞(Θ). (4.17)
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The partial derivatives with |η| = p, satisfy

∣∣∣∂η
x

(
K̂(x, x′)ψ̂λ(x)

)∣∣∣ =

∣∣∣∣∣∣
∑

ξ≤η

(
η

ξ

)
∂η−ξ

x K̂(x, x′)∂ξ
xψ̂λ(x)

∣∣∣∣∣∣

≤
∑

{ξ≤η:|ξ|≤e−1}

(
η

ξ

) ∣∣∣∂η−ξ
x K̂(x, x′)∂ξ

xψ̂λ(x)
∣∣∣ ,

since ∂ξψ̂λ can only be nonzero when |ξ| ≤ e − 1 because ψ̂λ ∈ Pe−1. Ap-
plying the estimates (3.2) and (3.8) we have, with δ := dist(κ(Θ), κ(Θ′))

|K̂(·, x′)ψ̂|W p
∞(Θ)

<∼ max
|η|=p

∑

{ξ≤η:|ξ|≤e−1}

(
η

ξ

)
(p− |ξ|)!

ςp−|ξ|

× δ−(n+2t+p−|ξ|)2(|ξ|+n/2−t)|λ|

<∼ 2|λ|(n/2−t)δ−(n+2t+p) max
|η|=p

∑

{ξ≤η:|ξ|≤e−1}

(
η

ξ

)
(p− |ξ|)!

ςp−|ξ|
(
2|λ|δ

)|ξ|

<∼
p!
ςp
· 2|λ|(n/2−t)δ−(n+2t+p) ·max{1, 2|λ|δ}e−1,

where
(
η
ξ

)
(p−|ξ|)! ≤ p! was used. By substituting this result into (4.17), set-

ting c := nC/(ςN1/n), and using vol(Θ) <∼ diam(Θ)n, vol(Θ′) <∼ diam(Θ′)n,
and again (3.2), we get

vol(Θ′) · sup
x′∈Θ′

|E(x′)| <∼ diam(Θ′)ncp diam(Θ)n+p · 2(|λ|+|λ′|)(n/2−t)

× δ−(n+2t+p) max{1, 2|λ|δ}e−1

= diam(Θ′)n diam(Θ)n+p · 2(|λ|+|λ′|)(n/2−t)c−nδ−2tω−n−p

×max{diam(Θ),diam(Θ′)}−n−p max{1, 2|λ|δ}e−1

= c−n2(|λ|+|λ′|)(n/2−t)δ−2tω−n−p min{diam(Θ), diam(Θ′)}n

×
(

diam(Θ)
max{diam(Θ), diam(Θ′)}

)p

max{1, 2|λ|δ}e−1,

by definition of ω. For the expression in the last row, employing the inequal-
ities (

diam(Θ)
max{diam(Θ), diam(Θ′)}

)p

≤ 1,

and
(

diam(Θ)
max{diam(Θ),diam(Θ′)}

)p (
2|λ|δ

)e−1
=

(
diam(Θ)

2−|λ|

)e−1

×
(

δ

max{diam(Θ), diam(Θ′)}
)e−1 (

diam(Θ)
max{diam(Θ),diam(Θ′)}

)p−e+1

<∼ ωe−1,
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and taking the maximum over these two, the assertion of the lemma is
proven for the first term in (4.16). The remaining second term in (4.16) can
be estimated exactly in the same fashion by interchanging the roles of λ and
λ′.

Obviously, if Ψ is of Q-type of order e, then it is also of P -type of
order n(e− 1) + 1. In the next lemma, however, we will see that product
quadrature rules are quantitatively more efficient for Q-type wavelets.

Lemma 4.6. Assume that the wavelet basis Ψ is of Q-type of order e and
that dist(κ(Θ), κ(Θ′)) > 0. For the domains Θ and Θ′, we employ composite
product quadrature rules of orders p and fixed ranks N as in Corollary 2.4,
and apply the product of these quadrature rules to approximate the non-
singular integral Iλλ′(κ(Θ), κ(Θ′)) from (4.12). We define

σ(κ(Θ̃)) :=
1

2ςN1/n
l̃ for all Θ̃ ∈ ∪`O`, (4.18)

where l̃ is the maximum edge length of Θ̃, and ς is the constant involved in
the Calderon-Zygmund estimate (3.8). Then with

ω :=
dist(κ(Θ), κ(Θ′))

max{σ(κ(Θ)), σ(κ(Θ′))} , (4.19)

for any p ≥ max{e − 2t − n, e − 1}, the quadrature error E(κ(Θ), κ(Θ′))
satisfies

|E(Ξ,Ξ′)| <∼ 2||λ|−|λ
′||(n/2−t)ω−(n+p) max{1, ω}e−1

×min{σ(κ(Θ)), σ(κ(Θ′))}n dist(κ(Θ), κ(Θ′))−2t.
(4.20)

Proof. Adopting the notations from the previous proof, we use Corollary 2.4
to estimate E(x′).

|E(x′)| ≤ n
21−p

p!
N−p/nln+p · |ψ̂λ′(x′)| · max

j=1,n

∥∥∥∂p
xj

(
K̂(x, x′)ψ̂λ(x)

)∥∥∥
L∞(Θ)

.

The partial derivative of order p along the j-th coordinate direction satisfies
∣∣∣∂p

xj

(
K̂(x, x′)ψ̂λ(x)

)∣∣∣ =

∣∣∣∣∣
p∑

k=0

(
p

k

)
∂p−k

xj
K̂(x, x′)∂k

xj
ψ̂λ(x)

∣∣∣∣∣

≤
min{p,e−1}∑

k=0

(
p

k

) ∣∣∣∂p−k
xj

K̂(x, x′)∂k
xj

ψ̂λ(x)
∣∣∣ ,

since ∂k
xj

ψ̂λ(x) can only be nonzero when k ≤ e − 1 because ψ̂λ ∈ Qe−1.
Applying the estimates (3.2) and (3.8) we have, with δ := dist(κ(Θ), κ(Θ))

max
j=1,n

‖K̂(·, x′)ψ̂‖L∞(Θ)
<∼ 2|λ|(n/2−t)δ−(n+2t+p)

min{p,e−1}∑

k=0

(
p

k

)
(p− k)!

ςp−k

×
(
2|λ|δ

)k
<∼

p!
ςp
· 2|λ|(n/2−t)δ−(n+2t+p) ·max{1, 2|λ|δ}e−1.
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Further we can proceed as in the preceding proof.

We now turn back to the computation of the integral Iλλ′(Π, Π′) in (4.3).
From Lemmata 4.5 and 4.6, we see that convergence of the quadrature rule
as a function of the order p depends on the quantity ω, which is in essence
the distance between the panels in terms of the size of the bigger panel.
For panels Π and Π′ that have a sufficiently large mutual distance, namely,
when dist(Π, Π′) > max{σ(Π), σ(Π′)} and thus ω > 1, it makes sense to
apply quadrature directly on the domain Π × Π′, that is, not to apply a
further splitting as in (4.11).

For the integrals with 0 < dist(Π, Π′) ≤ max{σ(Π), σ(Π′)}, however, the
subdivision Υ has to be nontrivial. By subdividing the integration domain
Π × Π′ in such a way that ω > 1 for all individual integrals Iλλ′(Ξ,Ξ′), we
will ensure convergence of the numerical integration also for these integrals.

Finally, for the case that dist(Π, Π′) = 0, quadrature methods developed
for standard Galerkin boundary elements cannot be applied directly in the
wavelet setting, because the panels Π and Π′ can have very different sizes.
Therefore, our strategy here will be to split the bigger panel into smaller
panels such that the resulting singular integrals are over panels of the same
level, and such that the nonsingular integrals are arranged so that ω > 1
for each of them. In view of these considerations, we consider the following
algorithm for producing a subdivision of the product domain Π×Π′.

Algorithm 4.7. Let ρ > 0 be given, and σ : ∪lGl → IR be a function
satisfying

σ(Ξ) h diam(Ξ) uniformly in Ξ ∈ ∪lGl. (4.21)

Let a pair of elements Π ∈ G` and Π′ ∈ G`′ with ` ≥ `′ be given.

1. Set Υ := ∅, Ξ := Π, Ξ′ := Π′, and ˜̀ := `, ˜̀′ := `′.

2. If the pair Ξ and Ξ′ does satisfy one of the conditions

dist(Ξ, Ξ′) ≥ ρ ·max{σ(Ξ), σ(Ξ′)}, (4.22)

or
dist(Ξ, Ξ′) = 0 and Ξ = Π, Ξ′ ∈ G`, (4.23)

accept the pair: Υ := Υ ∪ {Ξ× Ξ′}. If not, go to either step 3 or 4.

3. If ˜̀′ ≤ ˜̀, subdivide Ξ′ into next level elements Ξ′i ∈ G˜̀′+1, and perform
step 2 with ˜̀′ = ˜̀′ + 1, Ξ′ = Ξ′i for each Ξ′i.

4. If ˜̀′ > ˜̀, subdivide Ξ into next level elements Ξi ∈ G˜̀+1, and perform
step 2 with ˜̀= ˜̀+ 1, Ξ = Ξi for each Ξi.
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Remark 4.8. Algorithm 4.7 can already be found in, e.g., [Har01, LS99,
vPS97] with σ(Ξ) = 2−` for Ξ ∈ G`. This nonuniform subdivision effectively
distributes the “strength” of the nearly singular behavior of the integrand
over individual subdomains. In [LS99, vPS97] the value of ρ is fixed inde-
pendent of the user and the subdivision Υ is of type Υ = Ξ × Υ′, where
Υ′ is a subdivision of Ξ′. For the algorithm in [Har01], as is the case for
the version herein, the parameter ρ can be chosen by the user, and there-
fore the subdivision Υ is needed to be more general. Later we will see that
the parameter ρ can be used to control the convergence rate of quadrature
schemes based on the subdivision generated by Algorithm 4.7.

Π

Π′

Figure 2: A possible subdivision of Π × Π′ generated by Algorithm 4.7:
n = 1, dist(Π, Π′) = 0 and Π ∩Π′ = ∅.

Remark 4.9. Since the manifold is Lipschitz, and the subdivisions are nested
and satisfy (3.1), one can verify that for any pair Ξ,Ξ′ ∈ ∪`G` such that
dist(Ξ, Ξ′) > 0,

dist(Ξ, Ξ′) ≥ cΓ min{diamΞ,diamΞ′},

with the constant cΓ depending only on the manifold Γ and its parametriza-
tion.

Theorem 4.10. For any Π × Π′ ∈ G` × G`′ with ` ≥ `′, Algorithm 4.7
terminates. We have ∪Ξ×Ξ′∈ΥΞ× Ξ′ = Π×Π′ and the number of elements
in Υ can be bounded by

#Υ <∼ (ρn + 1)(`− `′) + ρ2n + 1, (4.24)

with the constant absorbed by the “<∼” symbol not depending on Π, Π′, and
ρ.

Proof. In each two successive subdivisions the maximum diameter of the
“current” panels decreases by a constant factor, while the minimum distance
between the “current” pairs does not decrease. Furthermore, thinking of a
pair of panels that have distance zero, if the panels of a current pair live on
different levels, then the difference in levels is decreased by a subdivision.
Therefore the conditions (4.22) or (4.23) will eventually be satisfied starting
from any pair, implying that the algorithm will terminate.
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To avoid some technicalities, we prove here the estimate (4.24) for the
simple case that the manifold Γ is IRn, and that σ(Ξ̃) = diam(Ξ̃) = 2−˜̀ for
all Ξ̃ ∈ G˜̀, ˜̀∈ IN0. For the general case an analogous proof is obtained by
using the fact that Γ is Lipschitz and that σ(Ξ̃) h diam(Ξ̃) h 2−˜̀ for all
Ξ̃ ∈ G˜̀, ˜̀∈ IN0.

Let N˜̀ denote the number of pairs Ξ× Ξ′ ∈ Υ such that Ξ′ ∈ G˜̀. Then
we can estimate the total number of pairs by estimating the numbers N˜̀

and summing over all ˜̀. It is obvious that if dist(Π,Π′) > 0, the number
of pairs Ξ × Ξ′ ∈ Υ that satisfy (4.23) is zero, and if dist(Π, Π′) = 0, this
number is uniformly bounded. Since in (4.24) this number is absorbed by
the term 1 at the right hand side, in the remainder we will only count pairs
of type (4.22).

In case ˜̀≤ `, we have Ξ = Π for any Ξ′ ∈ G˜̀ with Ξ × Ξ′ ∈ Υ. When,
moreover ˜̀ > `′ we have dist(Π, Ξ′) ≤ (2ρ + 2)2−˜̀. Indeed, if not, then
the “parent” Ξ′′ ∈ G˜̀−1 of Ξ′ would have satisfied dist(Π, Ξ′′) > 2ρ2−˜̀ =
max{σ(Π), σ(Ξ′′)} and so Ξ′ would never have been created by the algorithm.
We conclude that for `′ < ˜̀≤ `, N˜̀

<∼
(
(2ρ + 2)2−˜̀+ 2−`

)n
/2−˜̀n <∼ ρn +1.

Now we consider Ξ×Ξ′ ∈ Υ with Ξ′ ∈ G˜̀ and ˜̀> ` (and such that Ξ×Ξ′

satisfies (4.22)). By construction of the algorithm, we have either Ξ ∈ G˜̀ or
Ξ ∈ G˜̀−1. Similar arguments as have been used above show that for fixed
Ξ, the number of such pairs is bounded by a constant multiple of ρn + 1.
Since the number of such Ξ is bounded by a constant multiple of 2(˜̀−`)n, we
conclude that for ˜̀> `, N˜̀

<∼ (ρn + 1)2(˜̀−`)n.
Employing Remark 4.9, it is easy to see that the smallest subelements

generated by this algorithm will belong to the level `max with ρ2−`max >∼ 2−`,
implying that 2(`max−`)n <∼ ρn. Therefore, we conclude that the number of
elements in the subdivision Υ is bounded by a constant multiple of

1 +
`max∑

˜̀=`′+1

N˜̀
<∼ 1 +

∑̀

˜̀=`′+1

(ρn + 1) +
`max∑

˜̀=`+1

(ρn + 1)2(˜̀−`)n

<∼ (ρn + 1)(`− `′) + ρ2n + 1.

From the condition (4.23), we have that the singular integrals corre-
sponding to the subdivision Υ are always over pairs of panels on the same
level. In this paper, we make the following Assumption 4.11 on quadrature
schemes for computing those singular integrals. For completeness, in the
appendix we confirm this assumption for the simple case of the single layer
kernel on polyhedral surfaces in IR3. In any case for weakly- and strongly
singular integrals, using the quadrature schemes from e.g. [Sau96, SS04], we
expect that Assumption 4.11 can be verified generally.
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Assumption 4.11. We assume that there exist d∗0 ∈ IR and %0 > 1 such
that for any λ, λ′ ∈ Λ with |λ| ≥ |λ′|, Ξ, Ξ′ ∈ G|λ| with dist(Ξ,Ξ′) = 0,
and for any order p ∈ IN , an approximation I∗λλ′(Ξ, Ξ′) of Iλλ′(Ξ, Ξ′) can be
computed within W <∼ p2n arithmetical operations, having an error

|Iλλ′(Ξ, Ξ′)− I∗λλ′(Ξ,Ξ)′| <∼ %−p
0 2||λ|−|λ

′||d∗0 . (4.25)

Now we are ready to present an algorithm how to compute the integral
(4.11) with the help of a generally non-uniform subdivision of the integration
domain Π×Π′.

Algorithm 4.12. Assume that Ψ is of P -type of order e, and choose the
function σ(·) as in Lemma 4.5, and fix a value of ρ > 1. Then for any p ∈ IN
the following algorithm approximates the integral Iλλ′(Π,Π′).

1. Apply Algorithm 4.7 with the above ρ and σ(·) to get the subdivision
Υ of Π×Π′;

2. For each subdomain Ξ× Ξ′ ∈ Υ apply either step 3 or 4;

3. If dist(Ξ, Ξ′) > 0, apply the quadrature scheme of order p from Lemma
4.5;

4. If dist(Ξ, Ξ′) = 0, apply the computational scheme of order p from
Assumption 4.11.

Remark 4.13. For Q-type wavelets, the above algorithm can be redefined by
replacing ”Lemma 4.5” by ”Lemma 4.6”.

Theorem 4.14. Let Ψ be of P -type of order e, and assume that an ap-
proximation I∗λλ′(Π, Π′) of Iλλ′(Π,Π′) is computed by using Algorithm 4.12.
Assume that n ≥ 2t. Then, in case that

dist(Π,Π′) ≥ ρ max{σ(Π), σ(Π′)}, (4.26)

with e∗ = e− 1− 2t− n, the error of the numerical integration satisfies

|Eλλ′(Π, Π′)| <∼ ρ−p2−||λ|−|λ
′||(t+n/2)

(
dist(Π, Π′)

ρ max{σ(Π), σ(Π′)}
)e∗−p

, (4.27)

and the work for computing I∗λλ′(Π, Π′) is bounded by a constant multiple of
p2n, provided that p ≥ max{e− 1, e∗+1}. In case that (4.26) does not hold,
for any d∗1 ≥ |t| − n/2, with d∗1 > −n/2 when t = 0, the error satisfies

|Eλλ′(Π,Π′)| <∼ ρ−p2||λ|−|λ
′||d∗1 + %−p

0 2||λ|−|λ
′||d∗0 , (4.28)

and the work is bounded by a constant multiple of p2n(1+||λ|−|λ′||), provided
that p ≥ max{e− 1, e∗ + 1}. In view of Remark 4.13, these results also hold
for Q-type wavelets of order e.

By taking % := min{%0, ρ} and d∗ := max{d∗0, d∗1}, we conclude that the
criteria (4.5) and (4.6) for s∗-computability from Theorem 4.2 are satisfied.
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Proof. Without loss of generality, we assume that |λ| ≥ |λ′|. First, we will
consider the case that (4.26) holds. In this case, we have the subdivision Υ =
{Π×Π′}, and so the computational work is of order of p2n. Applying Lemma
4.5 with Θ = κ−1(Π) and Θ′ = κ−1(Π′), taking into account the definition
of ω, and using the fact that ω ≥ ρ > 1 and that min{σ(Π), σ(Π′)} <∼ 2−|λ|,
we get

|Eλλ′(Π, Π′)| <∼ 2(|λ|−|λ′|)(n/2−t)ω−(n+p) max{1, ω}e−1

×min{σ(Π), σ(Π′)}n dist(Π, Π′)−2t

<∼ 2−|λ|(t+n/2)+|λ′|(t−n/2)ωe−1−n−pω−2t max{σ(Π), σ(Π′)}−2t.

Now using the estimate max{σ(Π), σ(Π′)} h 2−|λ′| and n ≥ 2t, we have

|Eλλ′(Π, Π′)| <∼ 2−(|λ|−|λ′|)(t+n/2)−|λ′|(n−2t)ωe∗−p

<∼ ρ−p2−(|λ|−|λ′|)(t+n/2)(ω/ρ)e∗−p,

proving the first part of the theorem.
Let us now consider the case that (4.26) does not hold. Since ρ is fixed,

the number of subdomains of the subdivision Υ is of order 1 + ||λ| − |λ′||,
and thus we get the work bound. By Assumption 4.11, the sum of the
errors made in the approximations for Iλλ′(Ξ, Ξ′) with Ξ × Ξ′ ∈ Υ and
dist(Ξ, Ξ′) = 0 is responsible for the last term in (4.28).

We need to estimate the portion of the total error Eλλ′(Π, Π′) that cor-
responds to the integrals Iλλ′(Ξ,Ξ′) with Ξ × Ξ′ ∈ Υ and dist(Ξ, Ξ′) > 0.
We denote by I1 the sum of all these integrals arising from the subdivision
Υ, and by I∗1 the computed approximation for I1. Since by construction for
any Ξ × Ξ′ ∈ Υ with dist(Ξ,Ξ′) > 0 it holds that dist(Ξ,Ξ′)

max{σ(Ξ),σ(Ξ′)} ≥ ρ > 1,
Lemma 4.5 gives

|I1 − I∗1 | <∼
∑

{Ξ×Ξ′∈Υ:dist(Ξ,Ξ′)>0}
2(|λ|−|λ′|)(n/2−t)ρe−1−n−p

×min{σ(Ξ), σ(Ξ′)}n dist(Ξ, Ξ′)−2t

<∼ ρ−p2−|λ|(t+n/2)+|λ′|(t−n/2)
∑

{Ξ×Ξ′∈Υ:dist(Ξ,Ξ′)>0}
dist(Ξ, Ξ′)−2t,

(4.29)

where we have used that min{σ(Ξ), σ(Ξ′)} <∼ 2−|λ|.
From the proof of Lemma 4.10, recall that for the number N˜̀ of Ξ×Ξ′ ∈

Υ with Ξ′ ∈ G˜̀, we have N˜̀ = 0 for ˜̀ > `max where, since ρ is a fixed
constant, `max − |λ| <∼ 1, and furthermore N˜̀

<∼ 1 for |λ′| ≤ ˜̀≤ `max. Since
for Ξ × Ξ′ ∈ Υ with dist(Ξ, Ξ′) > 0 and Ξ′ ∈ G˜̀, dist(Ξ,Ξ′) h 2−˜̀, we may

22



bound the sum in the last row of (4.29) on a constant multiple of

`max∑

˜̀=|λ′|
2˜̀·2t <∼





1 + ||λ| − |λ′|| if t = 0,

2|λ′|·2t if t < 0,

2|λ|·2t if t > 0.

By substituting this result into (4.29), the proof is completed.

A Quadrature for singular integrals

In this appendix, we confirm Assumption 4.11 for the simple case of the
single layer kernel on polyhedral surfaces in IR3.

We assume that the manifold Γ is the surface of a three dimensional
polyhedron, and that the subdivisions G`, (` ∈ IN), are generated by dyadic
refinements of G0, being an initial conforming triangulation of Γ.

We take the operator L to be the single layer operator (thus t = −1
2)

having the kernel

K(z, z′) =
1

4π|z − z′| z 6= z′, (A.1)

and assume that the wavelet basis Ψ is of P -type of order e. Let λ, λ′ ∈ Λ be
indices with |λ| ≥ |λ′|. Then in view of Assumption 4.11, we are ultimately
interested in computing the integral

I :=
∫

Ξ

∫

Ξ′
K(z, z′)ψλ(z)ψλ′(z′)dΓzdΓz′ , (A.2)

where Ξ, Ξ′ ∈ G|λ| and dist(Ξ,Ξ′) = 0. With

T := {(x1, x2) ∈ IR2 : 0 < x2 < x1 < 1},
we can find affine bijections χΞ : T → Ξ, and χΞ′ : T → Ξ′, thus with
Jacobians JΞ := |∂χΞ| h 2−2|λ|, and JΞ′ := |∂χΞ′ | h 2−2|λ|, such that

I =
∫

T

∫

T

g(x, y)
|r(x, y)|dxdy, (A.3)

where g(x, y) := (4π)−1JΞJΞ′ψλ(χΞ(x))ψλ′(χΞ′(y)) and r(x, y) := χΞ′(y) −
χΞ(x). Taking into account that n = 2 and t = −1

2 , from (3.2) we derive
the following estimates for β ∈ IN2

0

|∂β
xg| <∼ 2−

5
2
|λ|+ 3

2
|λ′| and |∂β

y g| <∼ 2−
5
2
|λ|+ 3

2
|λ′|2(|λ′|−|λ|)|β|. (A.4)

We present here a slight variation of the quadrature scheme developed
in e.g. [Sau96, vPS97, SS04], see also [SL00]. The idea is to apply a degen-
erate coordinate transformation which is a generalization of the so called
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Duffy’s triangular coordinates, effectively removing the singularity of the in-
tegrand while preserving a polyhedral shape of the integration domain. The
coordinate transformations introduced here are somewhat simpler than the
ones in the above mentioned papers, and we expect that the presentation is
geometrically more intuitive.

To this end, we need to partition the integration domain T×T into sev-
eral pyramides, which is necessary for us to use Duffy’s transformations in
order to remove the singularities, cf. [Sau96, vPS97]. Denote the vertices of
the triangle T by A0 = (0, 0), A1 = (0, 1), and A2 = (1, 1). Then obviously,
T×T has nine vertices Aik := Ai ×Ak for i, k = 0, 1, 2. Note that A00 = O.

We break T×T up into two pyramides D1 := {(x, y) ∈ T×T : x1 >
y1} and D2 := {(x, y) ∈ T×T : x1 < y1}. One can verify that D1 is
the pyramid with vertex O and base B1 = A10A11A12A20A21A22, being a
triangular prism, and that D2 is the pyramid with vertex O and base B2

B2 = A01A11A21A02A12A22, being also a triangular prism. Moreover, these
prisms can be described as B1 = {1}× (0, 1)× T and B2 = T ×{1}× (0, 1).
Introducing the reflection with respect to the plane x = y by R : (x, y) 7→
(y, x), we notice the symmetry B2 = RB1 and so D2 = RD1.

By subdividing the prism B1 into tetrahedra, we can get a simplicial
partitioning of T×T , because any simplicial partitioning of B1 induces a
simplicial partitioning of D1, and by taking the image under the mapping
R, a simplicial partitioning of D2. Our choice of such a partitioning is
depicted in Figure 3.

A
20

A
21

A
22

A
10

A
11

A
12

Figure 3: A simplicial partitioning of the prism B1.

Consequently, the domain T×T is subdivided into the following simplices
described by their vertices.

D1





S1 = OA10A11A12A22,
S2 = OA10A11A20A22,
S3 = OA11A20A21A22,

and D2





S4 = OA01A11A21A22,
S5 = OA01A11A02A22,
S6 = OA11A02A12A22.
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We notice the symmetry Si = RSi+3 for i = 1, 2, 3. The above parti-
tionings of T×T will be used in quadrature schemes for the integral (A.3).

In the following we will distinguish three basic cases:

• Coincident panels: Ξ = Ξ′, that is, the case of identical panels;

• Edge adjacent panels: Ξ and Ξ′ share one common edge;

• Vertex adjacent panels: Ξ and Ξ′ share one common vertex.

In view of (A.3), we need to integrate a singular function over a four
dimensional polyhedral domain T × T . The singularity of the function is
located on different dimensional sets in different situations: whereas the
singularity occurs at a point for vertex adjacent integrals, it occurs all along
an edge in case the integral is edge adjacent, and for coincident integrals,
the singularity is on a two dimensional “diagonal” of the domain. Therefore
in each of the three cases, we first characterize the singularity in terms of
the distance to the singularity set, and then introduce special coordinate
transformations that annihilate the singularity.

A.1 Case of identical panels

First we will discuss the case of identical panels Ξ = Ξ′. In this case, the
difference r = χΞ(y)− χΞ(x) is zero if and only if t := y − x = 0. Since χΞ

is affine, we can write

r = 2−|λ|l1(t) = 2−|λ|l1(y1 − x1, y2 − x2),

where l1 : IR2 7→ IR3 is a linear function depending only on the shape of Ξ.
Noting that any panel Ξ is similar to a panel from the initial triangulation,
we only have to deal with finitely many functions l1. Introducing polar
coordinates (ρ, θ) in IR2 by ρ = |t| and θ = t/|t| ∈ S1, being the unit circle
in IR2, this difference r reads as

r = 2−|λ|ρl1(θ).

Our goal is now to obtain an expression for |r|−1, because this quantity
essentially determines the singular behavior of the local kernel. Since r is
defined on some complete neighborhood of t = 0, the function l1(θ) has to
be nonzero for any θ ∈ S1, and so we have

|r|−1 = 2|λ|ρ−1a(θ)

with a(θ) := |l1(θ)|−1 which is analytic in a neighborhood of S1. Now the
integrand of (A.3) can be written as

|r(x, y)|−1g(x, y) = 2|λ|ρ−1a(θ)g(x, y). (A.5)

25



It is time to use the above described simplicial partitioning of the integra-
tion domain T × T , in combination with special coordinate transformations
for the purpose of removing the singularity of the integrand. Introduc-
ing the notation P := T × (0, 1) × (0, 1), we define the transformations
φi : P→Si : (η, ζ, ξ) 7→ (x, y) for i ∈ 1, 6.

φ1(η, ζ, ξ) =




(1− ξ)η1 + ξ
(1− ξ)η2

(1− ξ)η1 + ξζ
(1− ξ)η2 + ξζ


 , φ2(η, ζ, ξ) =




(1− ξ)η1 + ξ
(1− ξ)η2 + ξζ

(1− ξ)η1

(1− ξ)η2


 ,

φ3(η, ζ, ξ) =




(1− ξ)η1 + ξ
(1− ξ)η2 + ξ
(1− ξ)η1 + ξζ

(1− ξ)η2


 , (A.6)

and φi+3 := R ◦ φi for i = 1, 2, 3. The Jacobian of each transformation φi

is given by ξ(1 − ξ)2. Recall that ρ−1 characterizes the singularity of the
integrand (A.5). In this regard, for each transformation φi one can show
that

ρ = ξfi(ζ), with an analytic fi(ζ)≥ 1√
2

for any ζ ∈ [0, 1].

For instance, for φ1 we have

ρ2 = ξ2(ζ2 + (1− ζ)2) ≥ ξ2·12 ,

since ζ2 + (1 − ζ)2≥1
2 for any ζ ∈ IR. Moreover, for each φi one can verify

that θ = ϑi(ζ) for some analytic function ϑi : [0, 1] → S1.
In all, the Jacobian of the mapping φi annihilates the singularity in the

integrand (A.5), meaning that the integral I in (A.3) now can be written as
the following proper integral

I =
∫ 1

0

∫ 1

0

∫

T
ξ(1− ξ)2

6∑

i=1

g(φi(η, ζ, ξ))
|r(φi(η, ζ, ξ))|dηdζdξ

= 2|λ|
∫ 1

0

∫ 1

0

∫

T
(1− ξ)2

6∑

i=1

a(ϑi(ζ))g(φi(η, ζ, ξ))
fi(ζ)

dηdζdξ.

(A.7)

Therefore we will be able to use standard quadrature schemes to approx-
imate the integral I. Note that in numerical quadrature we can use the
first expression in (A.7) for the integral I. The functions fi and a ◦ ϑi are
introduced here merely for the analysis purpose.

Since the integrand in (A.7) is polynomial with respect to the variables
ξ and η, we can always choose exact quadrature rules for integrations over
those variables.
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Proposition A.1. Approximate the integral (A.7) by a product quadrature
rule Qξ × Qζ × Qη, where Qξ and Qη are quadrature rules exact for the
integration over the variables ξ ∈ (0, 1) and η ∈ T , respectively, and Qζ is
a composite quadrature rule for the integration over ζ ∈ (0, 1) of varying
order p and fixed rank N . Then there exist a constant δ > 0 such that the
quadrature error satisfies

|E(Ξ, Ξ′)| <∼ 2−
3
2
(|λ|−|λ′|)(δN)−p. (A.8)

Choosing N such that δN > 1, we conclude that in this case Assumption
4.11 is fulfilled with d∗0 = −3

2 .

Proof. In view of Lemma 2.3, it suffices to consider the integration over ζ.
Using the analyticity of ζ 7→ a(ϑi(ζ))

fi(ζ) one derives

sup
ζ∈[0,1]

∣∣∣∣∂k
ζ

a(ϑi(ζ))
fi(ζ)

∣∣∣∣ <∼
k!
δk

for k ∈ IN0, i ∈ 1, 6,

for some constant δ > 0. From (A.4) and (A.6) we have for each i ∈ 1, 6
that g ◦ φi is a polynomial of order e and

|∂k
ζ (g ◦ φi)| <∼ 2−

5
2
|λ|+ 3

2
|λ′| for k ∈ 1, e− 1.

Now using Proposition 2.4 the proof is obtained.

A.2 Case of edge adjacent panels

Now we will discuss the case when Ξ and Ξ′ share exactly one common
edge. Without loss of generality, we assume that χΞ(x) = χΞ′(x) for all
x ∈ (0, 1)× {0}. Then, the difference r = χΞ′(y)− χΞ(x) is zero if and only
if

t = (t1, t2, t3) := (y1 − x1, x2, y2)

equals zero. Since χΞ and χΞ′ are affine, we can write

r = χΞ′(x1 + t1, t3)− χΞ(x1, t2) = 2−|λ|l1(t),

where l1 : IR3 → IR3 is a linear function depending only on the shapes
of Ξ and Ξ′. Introducing polar coordinates (ρ, θ) in IR3 by ρ = |t| and
θ = t/|t| ∈ S2, being the unit sphere in IR3, this difference r reads as

r = r(ρ, θ) = 2−|λ|ρl1(θ).

Since r is defined on a complete neighborhood of t = 0 in IR × IR2
≥0, the

function l1(θ) 6= 0 for any θ ∈ S2 with θ2, θ3 ≥ 0, allowing us to write

|r|−1 = 2|λ|ρ−1b(θ)
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with b(θ) := |l1(θ)|−1 which is analytic in a neighborhood of S2∩(
IR× IR2

≥0

)
.

Then the integrand of (A.3) can be written as

|r(x, y)|−1g(x, y) = 2|λ|ρ−1b(θ)g(x, y). (A.9)

Now we define the transformations φi : P→Si : (η, ζ, ξ) 7→ (x, y) for
i ∈ 1, 6.

φ1(η, ζ, ξ) =




(1− ξ)ζ + ξ
ξη2

(1− ξ)ζ + ξη1

ξη1


 , φ2(η, ζ, ξ) =




(1− ξ)ζ + ξ
ξη1

(1− ξ)ζ + ξη2

ξη2


 ,

φ3(η, ζ, ξ) =




(1− ξ)ζ + ξ
ξ

(1− ξ)ζ + ξη1

ξη2


 , (A.10)

and φi+3 := R ◦ φi for i = 1, 2, 3. For each transformation φi one can show
that the Jacobian equals ξ2(1− ξ), and that

ρ = ξfi(η), with an analytic fi(η)≥ 1√
2

for any η ∈ T .

For instance, for φ1 we have

ρ2 = ξ2(η2
1 + (1− η1)2 + η2

2) ≥ ξ2·12 .

Moreover, for each φi one can verify that θ = ϑi(η) with some analytic
function ϑi : T → S2.

In all, the Jacobian of the mapping φi annihilates the singularity in the
integrand (A.9), meaning that the integral I in (A.3) now can be written as
the following proper integral

I =
∫ 1

0

∫ 1

0

∫

T
ξ2(1− ξ)

6∑

i=1

g(φi(η, ζ, ξ))
|r(φi(η, ζ, ξ))|dηdζdξ

= 2|λ|
∫ 1

0

∫ 1

0

∫

T
ξ(1− ξ)

6∑

i=1

b(ϑi(η))g(φi(η, ζ, ξ))
fi(η)

dηdζdξ,

(A.11)

and thus the standard quadrature schemes on P can be applied.

Proposition A.2. Approximate the integral (A.11) by a product quadrature
rule Qξ × Qζ × Qη, where Qξ and Qζ are quadrature rules exact for the
integration over the variables ξ, ζ ∈ (0, 1), respectively, and Qη is a composite
quadrature rule for the integration over η ∈ T of varying order p and fixed
rank N . Then there exist a constant δ > 0 such that the quadrature error
satisfies

|E(Ξ, Ξ′)| <∼ 2−
3
2
(|λ|−|λ′|)(δN)−p. (A.12)

Choosing N such that δN > 1, we conclude that in this case Assumption
4.11 is fulfilled with d∗0 = −3

2 .
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The proof is obtained similarly to the proof of Proposition A.1.

A.3 Case of vertex adjacent panels

Let Ξ and Ξ′ share exactly one common point. Without loss of generality,
we assume that χΞ(0) = Ξ ∩ Ξ′ = χΞ′(0). Then obviously, the difference
r = r(x, y) = χΞ′(y) − χΞ(x) is zero if and only if t := (x, y) equals zero.
Since χΞ and χΞ′ are affine, we can write

r(x, y) = 2−|λ|l1(x, y),

where l1 : IR4 → IR3 is a linear function depending only on the shapes
of Ξ and Ξ′. Introducing polar coordinates (ρ, θ) in IR4 by ρ = |t| and
θ = t/|t| ∈ S3, being the unit sphere in IR4, this difference r reads as

r = r(ρ, θ) = 2−|λ|ρl1(θ).

Since r is defined on a complete neighborhood of t = 0 in {t ∈ IR4 : t1 ≥
t2 ≥ 0, t3 ≥ t4 ≥ 0}, the function l1(θ) 6= 0 for any θ ∈ S3 with θ1 ≥ θ2 ≥ 0
and θ3 ≥ θ4 ≥ 0, allowing us to write

|r|−1 = 2|λ|ρ−1c(θ)

with c(θ) := |l1(θ)|−1 which is analytic in a neighborhood of {θ ∈ S3 : θ1 ≥
θ2 ≥ 0, θ3 ≥ θ4 ≥ 0}. Then the integrand of (A.3) can be written as

|r(x, y)|−1g(x, y) = 2|λ|ρ−1c(θ)g(x, y). (A.13)

We define the transformations φ1 and φ2 that map the coordinates
(η, ζ, ξ) ∈ P onto the four dimensional pyramides D1 and D2 respectively.

φ1(η, ζ, ξ) = ξ(1, ζ, η1, η2), and φ2(η, ζ, ξ) = ξ(η1, η2, 1, ζ). (A.14)

Notice that φ1 = R ◦ φ2 with R being the reflection x↔y. For both of the
transformations, the Jacobian equals ξ3, and we have

ρ = ξf(η, ζ) with f(η, ζ) =
√

1 + η1
2 + η2

2 + ζ2.

Moreover, we have θ = ϑ1(η, ζ) := f(η, ζ)−1(1, ζ, η1, η2) for the transforma-
tion φ1, and θ = ϑ2(η, ζ) := Rϑ1(η, ζ) for the transformation φ2.

In all, the Jacobian of the mapping φi annihilates the singularity in the
integrand (A.13), meaning that the integral I in (A.3) now can be written
as the following proper integral

I =
∫ 1

0

∫ 1

0

∫

T
ξ3

2∑

i=1

g(φi(η, ζ, ξ))
|r(φi(η, ζ, ξ))|dηdζdξ

= 2|λ|
∫ 1

0

∫ h

0

∫

T
ξ2

2∑

i=1

c(ϑi(η, ζ))g(φi(η, ζ, ξ))
f(η, ξ)

dηdζdξ,

(A.15)

and thus the standard quadrature schemes on P can be applied.

29



Proposition A.3. Approximate the integral (A.15) by a product quadrature
rule Qξ×Qζ×Qη, where Qξ is a quadrature rule exact for the integration over
ξ ∈ (0, 1), and Qζ and Qη are composite quadrature rules for the integration
over ζ ∈ (0, 1) and η ∈ T , respectively, of varying order p and fixed rank N .
Then there exist a constant δ > 0 such that the quadrature error satisfies

|E(Ξ, Ξ′)| <∼ 2−
3
2
(|λ|−|λ′|)(δN)−p. (A.16)

Choosing N such that δN > 1, we conclude that in this case Assumption
4.11 is fulfilled with d∗0 = −3

2 .
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