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Definition Of The Subject And Its Importance

This chapter identifies the challenges posed to biologists, geneticists and other scientists by
advances in technology that have made the observation and study of biological systems increasingly
possible. High-throughput platforms have made routine the collection vast amounts of structural
and functional data, and have provided insights into the working cell, and helped to explain the role
of genetics in common diseases. Associated with the improvements in technology is the need for
statistical procedures that extract the biological information from the available data in a coherent
fashion, and perhaps more importantly, can quantify the certainty with which conclusions can
be made. This chapter outlines a biological hierarchy of structures, functions and interactions
that can now be observed, and detail the statistical procedures that are necessary for analyzing
the resulting data. The chapter has four main sections. The first section details the historical
connection between statistics and the analysis of biological and genetic data, and summarizes
fundamental concepts in biology and genetics. The second section outlines specific mathematical
and statistical methods that are useful in the modelling of data arising in bioinformatics. In sections
three and four, two particular issues are discussed in detail: functional genomics via microrray
analysis, and metabolomics. Section five identifies some future directions for biological research in
which statisticians will play a vital role.
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Systems Biology The holistic study of biological structure, function and organization 1
Probabilistic Graphical ModelA probabilistic model defining the relationships between variables in a

model by means of a graph, used to represent the relationships in a bi-
ological network or pathway

5

MCMC Markov chain Monte Carlo - a computational method for approximating
high-dimensional integrals using Markov chains to sample from probability
distributions, commonly used in Bayesian inference

8

Microarray A high-throughput experimental platform for collecting functional gene ex-
pression and other genomic data

11

Cluster Analysis A statistical method for discovering subgroups in data 14
Metabolomics The study of the metabolic content of tissues 20
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1. Introduction

The observation of biological systems, their processes and inter-reactions, is one of the most im-
portant activities in modern science. It has the capacity to provide direct insight into fundamental
aspects of biology, genetics, evolution, and indirectly will inform many aspects of public health. Re-
cent advances in technology - high-throughput measurement platforms, imaging - have brought a
new era of increasingly precise methods of investigation. In parallel to this, there is an increasingly
important focus on statistical methods that allow the information gathered to be processed and
synthesized. This chapter outlines key statistical techniques that allow the information gathered to
be used in an optimal fashion.

Although its origin is dated rather earlier, the term Systems Biology (see for example, [1, 2, 3]) has,
since 2000, been used to describe the study of the operation of biological systems, using tools from
mathematics, statistics and computer science, supplanting computational biology and bioinformatics
as an all-encompassing term for quantitative investigation in molecular biology. Most biological
systems are hugely complex, involving chemical and mechanical processes operating at different
scales. It is important therefore that information gathered is processed coherently, according to self-
consistent rules and practices, in the presence of the uncertainty induced by imperfect observation
of the underlying system. The most natural framework for coherent processing of information is
that of probabilistic modelling

1.1. Statistical versus Mathematical Modelling

There is a great tradition of mathematical and probabilistic modelling of biology and genetics; see
(author?) [4] for a thorough review. The mathematization of biology, evolution and heredity began
at the end of the nineteenth century, and continued for the first half of the twentieth century,
by far pre-dating the era of molecular biology and genetics that culminated at the turn of the
last millennium with the human genome project. Consequently, the mathematical models of, say,
evolutionary processes that were developed by Yule [5] and Fisher and Wright [6, 7, 8], and classical
models of heredity, could only be experimentally verified and developed many years after their
conception. It could also be convincingly argued that through the work of F. Galton, K. S. Pearson
and R. A. Fisher, modern statistics has its foundation in biology and genetics.

In parallel to statistical and stochastic formulation of models for biological systems, there has been
a more recent focus on the construction of deterministic models to describe observed biological phe-
nomena. Such models fall under the broad description Mathematical Biology, and have their roots
in applied mathematics and dynamical systems; see, for example, (author?) [9, 10] for a compre-
hensive treatment. The distinction between stochastic and deterministic models is important to
make, as the objectives and tools used often differ considerably. This chapter will restrict attention
to stochastic models, and the processing of observed data, and thus is perhaps more closely tied
to the immediate interests of the scientist, although some of the models utilized will be inspired by
mathematical models of the phenomena being observed.
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1.2. Fundamental Concepts in Biology and Genetics

To facilitate the discussion of statistical methods applied to systems biology, it is necessary to
introduce fundamental concepts from molecular biology and genetics; see the classic text (author?)
[11] for full details. Attention is restricted to eukaryotes, organisms whose cells are constructed to
contain a nucleus within coding information is encapsulated.

• The cell is a complex architecture containing several nuclear domains [12] whose organization
is not completely understood, but the fundamental activity that occurs within the nucleus is
the production and distribution of proteins.

• Dioxyribonucleic acid (DNA) is a long string of nucleotides that encodes biological informa-
tion, and that is copied or transcribed into ribonucleic acid (RNA), which in turn enables the
formation of proteins. Specific segments of the DNA, genes, encode the proteins, although
non-coding regions of DNA - for example, promoter regions, transcription factor binding sites -
also have important roles. Genetic variation at the nucleotide level, even involving a single nu-
cleotide, can disrupt cellular activity. In humans and most other complex organisms, DNA is
arranged into chromosomes, which are duplicated in the process of mitosis. The entire content
of the DNA of an organism is termed the genome.

• Proteins are macromolecules formed by the translation of RNA, comprising amino acids ar-
ranged (in primary structure) in a linear fashion, comprising domains with different roles, and
physically configured in three dimensional space. Proteins are responsible for all biological
activities that take place in the cell, although proteins may have different roles in different
tissues at different times, due to the regulation of transcription.

• Proteins interact with each other in different ways in different contexts in interaction networks
that may be dynamically organized. Genes are also regarded as having indirect interactions
through gene regulatory networks.

• Genetic variation amongst individuals in a population is due to mutation and selection, which
can be regarded as stochastic mechanisms. Genetic information in the form of DNA passes
from parent to offspring, which promulgates genetic variation. Individuals in a population
are typically related in evolutionary history. Similarly, proteins can also thought to be related
through evolutionary history.

• Genetic disorders are the result of genetic variation, but the nature of the genetic variation can
be large- or small-scale; at the smallest scale, variation in single nucleotides (single nucleotide
polymorphims (SNPs)) can contribute to the variation in observed traits.

Broadly, attention is focussed on the study of structure and function of DNA, genes and proteins, and
the nature of their interactions. It is useful, if simplistic, to view biological activities in terms of an
organizational hierarchy of inter-related chemical reactions at the level of DNA, protein, nucleus,
network and cellular levels. A holistic view of mathematical modelling and statistical inference
requires the experimenter to model simultaneously actions and interactions of all the component
features, whilst recognizing that the component features cannot observed directly, and can only
be studied through separate experiments on often widely different platforms. It is the role of the
bioinformatician or systems biologist to synthesize the data available from separate experiments in
an optimal fashion.
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2. Mathematical Representations of The Organizational
Hierarchy

A mathematical representation of a biological system is required that recognizes, first, the com-
plexity of the system, secondly, its potentially temporally changing nature, and thirdly the inherent
uncertainties that are present. It is the last feature that necessitates the use of probabilistic or
stochastic modelling.

An aphorism commonly ascribed to D.V. Lindley states that “Probability is the language of uncer-
tainty”; probability provides a coherent framework for processing information in the presence of
imperfect knowledge, and through the paradigm of Bayesian theory [13] provides the mathematical
template for statistical inference and prediction. In the modelling of complex systems, three sorts of
uncertainty are typically present

• Uncertainty of Structure: Imperfect knowledge of the connections between the interacting com-
ponents is typically present. For example, in a gene regulatory network, it may be possible via
the measurement of gene co-expression to establish which genes interact within the network,
but it may not be apparent precisely how the organization of regulation operates, that is which
genes regulate the expression of other genes.

• Uncertainty concerning Model Components : In any mathematical or probabilistic model of a bi-
ological system, there are model components (differential equations, probability distributions,
parameter settings) that must be chosen to facilitate implementation of the model. These
components reflect, but are not determined by, stuctural considerations.

• Uncertainty of Observation : Any experimental procedure carries with it uncertainty induced
by the measurement of underlying system, that is typically subject to random measurement
error, or noise. For example, many biological systems rely on imaging technology, and the
extraction of the level of signal of a fluorescent probe, for a representation of the amount of
biological material present. In microarray studies (see section §3.1.), comparative hybridization
of messenger RNA (mRNA) to a medium is a technique for measuring gene expression that is
noisy due to several factors (imaging noise, variation in hybridization) not attributable to a
biological cause.

The framework to be built must handle these types of uncertainty, and permit inference about
structure and model components.

2.1. Models derived from Differential Equations

A deterministic model reflecting the dynamic relationships often present in biological systems may
be based on the system of ordinary differential equations (ODEs)

ẋ(t) = g(x(t)) (1)

where x(t) = (x1(t), . . . ,xd(t))T represent the levels of d quantities being observed ẋ(t) represents
time derivative, and g is some potentially non-linear system of equations, that may be suggested
by biological prior knowledge or prior experimentation. The model in equation (1) is a classical
“Mathematical Biology” model, that has been successful in representing forms of organization in
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many biological systems (see, for example (author?) [14] for general applications). Suppressed in the
notation is a dependence on system parameters, θ, a k-dimensional vector that may be presumed
fixed, and “tuned” to replicate observed behaviour, or estimated from observed data. When data
representing a partial observation of the system are available, inferences about θ can be made, and
models defined by ODE systems are of growing interest to statisticians; see, for example, (author?)
[15, 16, 17]).

Equation (1) can be readily extended to a stochastic differential equation (SDE) system

ẋ(t) = g(x(t)) + dz(t) (2)

where z(t) is some stochastic process that renders the solution to equation (2) a stochastic pro-
cess (see, for example, (author?) [18] for a comprehensive recent summary of modelling approaches
and inference procedures, and a specific application in (author?) [19]). The final term dz(t) rep-
resents the infinitesimal stochastic increment in z(t). Such models, although particularly useful
for modelling activity at the molecular level, often rely on simplifying assumptions (linearity of g,
Gaussianity of z) and the fact that the relationship structure captured by g is known. Inference for
the parameters of the system can be made, but in general require advanced computational methods
(Monte Carlo (MC) and Markov chain Monte Carlo (MCMC)).

2.2. Probabilistic Graphical Models

A simple and often directly implementable approach is based on a probabilistic graphical model,
comprising a graph G = (N , E), described by a series of nodes N , edges E, and a collection of
random variables X = (X1, . . . , Xd)T placed at the nodes, all of which may be dynamically changing.
See, for example [20] for a recent summary, [21, Chapter 2] for mathematical details and [22] for a
biological application.

The objective of constructing such a model is to identify the joint probability structure of X given
the graph G, which possibly is parameterized by parameters φ, fX(x|φ,G). In many applications, X

is not directly observed, but is instead inferred from observed data, Y , arising as noisy observations
derived from X. Again, a k-dimensional parameter vector θ helps to characterize the stochastic
dependence of Y on X by parameterizing the conditional probability density fY |X(y|x,θ). The joint
probability model encapsulating the probabilistic structure of the model is

fX,Y (x, y|θ, φ,G) = fX(x|φ,G)fY |X(y|x,θ) (3)

The objectives of inference are to learn about G (the uncertain structural component) and parame-
ters (θ, φ) (the uncertain model parameters and observation components).

The graph structure G is described by N and E. In holistic models, G represents the interconnec-
tions between interacting modules (genomic modules, transcription modules, regulatory modules,
proteomic modules, metabolic modules etc.) and also the interconnections within modules in the
form of subgraphs. The nodes N (and hence X) represent influential variables in the model struc-
ture, and the edges E represent dependencies. The edge connecting two nodes, if present, may
be directed or undirected according to the nature of the influence; a directed edge indicates the
direction of causation, an undirected edge indicates a dependence.

Causality is a concept distinct from dependence (association, covariation or correlation), and rep-
resents the influence of one node on one or more other nodes (see, for example, [23] for a recent
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discussion of the distinction with examples, and [24, 25] for early influential papers discussing how
functional dependence may be learned from real data). A simple causal relationship between three
variables X1,X2, X3 can be represented
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which encodes a conditional independence relationship between X1 and X3 given X2, and a factor-
ization of the joint distribution
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(4)
Such simple model assumptions are the building blocks for the construction of highly complex
graphical representations of biological systems. There is an important difference between analyses
based purely on simultaneous observation of all components of the system, which can typically
on yield inference on dependencies (say, covariances measured in the joint probability model p(x)
- see for example [26, 27, 28] - and analyses based on interventions - genomic knock-out exper-
iments, chemical or biological challenges, transcriptional/translational peturbation such as RNA
interference (RNAi) - that may yield information on casual links; see, for example [29, 30].

2.3. Bayesian Statistical Inference

Given a statistical model for observed data such as equation (3), inference for the parameters (θ,φ)
and the graph structure G is required. The optimal coherent framework is that of Bayesian statis-
tical inference (see for example [31]), that requires computation of the posterior distribution for the
unknown (or unobservable) quantities given by

π(θ, φ,G|x,y) ∝ fX,Y (x, y|θ,φ,G)p(θ, φ,G) = L(θ,φ,G|x, y)p(θ,φ,G) (5)

a probability distribution from which can be computed parameter estimates with associated un-
certainties, and predictions from the model. The terms L(θ, φ,G|x, y) and p(θ,φ,G) are termed
likelihood and prior probability distribution respectively. The likelihood reflects the observed data,
and the prior distribution encapsulates biological prior knowledge about the system under study. If
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the graph structure is known in advance, the prior distribution for that component can be set to be
degenerate. If, as in many cases of probabilistic graphical models, the x are unobserved, then the
posterior distribution incorporates them also,

π(θ,φ,G, x|, y) ∝ fY |X(y|x,θ)fX(x|φ,G)p(θ, φ,G) (6)

yielding a latent or state-space model, otherwise interpreted as a missing data model.

The likelihood and prior can often be formulated in a hierarchical fashion to reflect believed causal or
conditional independence structures. If a graph G is separable into two subgraphs G1,G2 conditional
on a connecting node η, similar to the graph in (4), then the probability model also factorizes into a
similar fashion; for example, X1 might represent the amount of expressed mRNA of a gene that regu-
lates two separate functional modules, and X2 and X3 might be the levels of expression of collections
of related proteins. The hierarchical specification also extends to parameters in probability mod-
els; a standard formulation of a Bayesian hierarchical model involves specification of conditional
independence structures at multiple levels of within a graph. The following three-level hierarchical
model relates data Y = (Y1, . . . , Yp) at level 1, to a population of parameters θ = (θ1, . . . , θp)T at level
2, to hyperparameters ψ at level 3
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(7)

yielding the factorization of the Bayesian full joint distribution as

fX,Y ,ψ,θ(x, y,θ,ψ) = p(ψ)

{
p∏

i=1

p(θi|ψ)

}{
p∏

i=1

p(Yi|φi)

}
.

2.4. Bayesian Computation

The posterior distribution is, potentially, a high-dimensional multivariate function on a complicated
parameter space. The proportionality constant in equation (5) takes the form

fX,Y (x, y) =
∫

fX,Y (x, y|θ,φ,G)p(θ, φ,G) dθ dφ dG (8)

and in equation (6) takes the form

fY (y) =
∫

fX,Y (x, y|θ,φ,G)p(θ, φ,G) dθ dφ dG dx (9)

and is termed the marginal likelihood or prior predictive distribution for the observable quantities x

and y. In formal Bayesian theory, it is the representation of the distribution of the observable quan-
tities through the paradigm of exchangeability that justifies the decomposition in equation (8) into
likelihood and prior, and justifies, via asymptotic arguments, the use of the posterior distribution
for inference (see [13, Chapters 1-4] for full details). It is evident from these equations that exact
computation of the posterior distribution necessitates high-dimensional integration, and in many
cases this cannot be carried out analytically.
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2.4.1 Numerical Integration Approaches

Classical numerical integration methods, or analytic approximation methods are suitable only in
low dimensions. Stochastic numerical integration, for example Monte Carlo integration, approxi-
mates expectations by using empirical averages of functionals of samples obtained from the target
distribution; for probability distribution π(x), the approximation of Eπ[g(X)],

Eπ[g(X)] =
∫

g(x)π(x) dx < ∞

is achieved by randomly sampling x1, . . . , xN (N large) from π(), and using the estimate

Êπ[g(X)] =
1
N

n∑

i=1

g(xi).

An adaptation of the Monte Carlo method can be used if the functions g and π are not “similar” (in
the sense that g is large in magnitude where π is not, and vice versa); importance sampling uses the
representation

Eπ[g(X)] =
∫

g(x)π(x) dx =
∫

g(x)π(x)
p(x)

p(x) dx

for some pdf p() having common support with π, and constructs an estimate from a sample x1, . . . ,xN

from p() of the form

Êπ[g(X)] =
1
N

n∑

i=1

g(xi)π(xi)
p(xi)

.

Under standard regularity conditions, the corresponding estimators converge to the required expec-
tation. Further extensions are also useful:

• Sequential Monte Carlo : Sequential Monte Carlo (SMC) is an adaptive procedure that con-
structs a sequence of improving importance sampling distributions. SMC is a technique that
is especially useful for inference problems where data are collected sequentially in time, but is
also used in standard Monte Carlo problems. See [32].

• Quasi Monte Carlo : Quasi Monte Carlo (QMC) utilizes uniform but not random samples to
approximate the required expectations. It can be shown that QMC can produce estimators
with lower variance than standard Monte Carlo.

2.4.2 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a stochastic Monte Carlo method for sampling from a high-
dimensional probability distribution π(x), and using the samples to approximate expectations with
respect to that distribution. An ergodic, discrete-time Markov chain is defined on the support of π in
such a way that the stationary distribution of the chain exists, and is equal to π. Dependent samples
from π are obtained by collecting realized values of the chain after it has reached its stationary
phase, and then used as the basis of a Monte Carlo strategy.

The most common MCMC algorithm is known as the Metropolis-Hastings algorithm which proceeds
as follows. If the state of the d-dimensional chain {Xt} at iteration t is given by Xt = u, then a
candidate state v is generated from conditional density q(u, v) = q(v|u), and accepted as the new
state of the chain (that is, Xt+1

def= v) with probability α(u, v) given by

α(u, v) = min
{

1,
π(v)q(v,u)
π(u)q(u, v)

}
.
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A common MCMC approach involves using a Gibbs sampler strategy that performs iterative sam-
pling with updating from the collection of full conditional distributions

π(xj |x(j)) = π(xj |x1, . . . ,xj−1, xj+1, xd) =
π(x1, . . . ,xd)

π(x1, . . . , xj−1, xj+1, xd)
j = 1, . . . , d

rather than updating the components of x simultaneously. There is a vast literature on MCMC
theory and applications; see [33, 34] for comprehensive treatments.

MCMC re-focusses inferential interest from computing posterior analytic functional forms to pro-
ducing posterior samples. It is an extremely flexible framework for computational inference that
carries with it certain well-documented problems, most important amongst them being the assess-
ment of convergence. It is not always straightforward to assess when the Markov chain has reached
its stationary phase, so certain monitoring steps are usually carried out.

2.5. Bayesian Modelling: Examples

Three models that are especially useful in the modelling of systems biological data are regression
models, mixture models state-space models. Brief details of each type of model follow.

2.5.1 Regression Models

Linear regression models relate an observed response variable Y to a collection of predictor variables
X1, X2, . . . ,Xd via the model for the ith response

Yi = β0 +
d∑

j=1

βjXij + εi = XT
i β + εi

say, or in vector form, for Y = (Y1, . . . ,Yn)T,

Y = Xβ + ε

where β = (β0,β1, . . . , βd)T is a vector of real-valued parameters, and ε is a vector random variable
with zero-mean and variance-covariance matrix Σ. The objective in the analysis is to make inference
about β, to understand the influence of the predictors on the response, and to perform prediction
for Y . The linear regression model (or General Linear Model) is extremely flexible: the design matrix
X can be formed from arbitrary, possibly non-linear basis functions of the predictor variables.
By introducing a covariance structure into Σ, it is possible to allow for dependence amongst the
components of Y , and allows for the possibility of modelling repeated measures, longitudinal or
time-series data that might arise from multiple observation of the same experimental units.

An extension that is often also useful is to random effect or mixed models that take into account
any repeated measures aspect to the recorded data. If data on an individual (person, sample, gene
etc) is Yi = (Yi1, . . . , Yid)T, then

Yi = Xβ + ZUi + εi (10)

where Z is a d× p constant design matrix, and Ui is a p× 1 vector of random effects specific to indi-
vidual i. Typically the random effect vectors are assumed to be drawn from a common population.
Similar formulations can be used to construct semi-parametric models that are useful for flexible
modelling in regression.
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2.5.2 Mixture Models

A mixture model presumes that the probability distribution of variable Y can be written

fY |θ(y|θ) =
K∑

k=1

ωkfk(y|θk) (11)

where f1, f2, . . . , fK are distinct component densities indexed by parameters θ1, . . . , θK , and for all k,
0 < ωk < 1, with

K∑

k=1

ωk = 1.

The model can be interpreted as one that specifies that with probability ωk, Y is drawn from density
fk, for k = 1, . . . , K. Hence the model is suitable for modelling in cluster analysis problems.

This model can be extended to an infinite mixture model, which has close links with Bayesian non-
parametric modelling. A simple infinite mixture/Bayesian non-parametric model is the mixture of
Dirichlet processes (MDP) model [35, 36]: for parameter α > 0 and distribution function F0, an MDP
model can be specified using the following hierarchical specification: for a sample of size n, we have

Yi|θi ∼ fY |θ(y|θi) i = 1, . . . , n

θ1, . . . , θn ∼ DP (α, F0)

where DP (α, F0) denotes a Dirichlet process. The DP (α, F0) model may be sampled to produce
θ1, θ2, . . . , θn using the Polya-Urn scheme

θ1 ∼ F0

θk|θ1, . . . , θk−1 ∼ α

α + k − 1
F0 +

1
α + k − 1

k−1∑

j=1

δθj

where δx is a point mass at x. For θk, conditional on θ1, . . . , θk−1, the Polya-Urn scheme either
samples θk from F0 (with probability α/(α + k − 1)), or samples θk = θj for some j = 1, . . . , k − 1 (with
probability 1/(α + k − 1)). This model therefore induces clustering amongst the θ values, and hence
has a structure similar to the finite mixture model - the distinct values of θ1, . . . , θn are identified as
the cluster “centers” that index the component densities in the mixture model in equation (11). The
degree of clustering is determined by α; high values of α encourage large numbers of clusters.

The MDP model is a flexible model for statistical inference, and is used in a wide range of applica-
tions such as density estimation, cluster analysis, functional data analysis and survival analysis.
The component densities can be univariate or multivariate, and the model itself can be used to
represent the variability in observed data or as a prior density. Inference for such models is typi-
cally carried out using MCMC or SMC methods ([32, 33]). For applications in bioinformatics and
functional genomics, see [37, 38].

2.5.3 State-space Models

A state-space model is specified through a pair of equations that relate a collection of states, Xt, to
observations Yt that represent a system and how that system develops over time. For example, the
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relationship could be modelled as

Yt = f(Xt, Ut)

Xt+1 = g(Xt, Vt)

where f and g are vector-valued functions, and (Ut, Vt) are random error terms. A linear state-space
model takes the form

Yt = AtXt + ct + Ut

Xt+1 = BtXt + dt + Vt

for deterministic matrices At and Bt and vectors ct and dt. The Xt represent the values of unob-
served states, and the second equation represents the evolution of these states through time. See
[39].

State-space models can be used as models for scalar, vector and matrix-valued quantities. One
application is evolution of a covariance structure, for example, representing dependencies in a
biological network. If the network is dynamically changing through time, a model similar to those
above is required but where Xt is a square, positive-definite matrix. For such a network, therefore,
a probabilistic model for positive-definite matrices can be constructed from the Wishart/Inverse
Wishart distributions [40]. For example, we may have for t = 1, 2, . . .,

Yt ∼ Normal(0, Xt)

Xt+1 ∼ InverseWishart(νt,Xt)

where degrees of freedom parameter νt is chosen to induce desirable properties (stationarity, con-
stant expectation etc.) in the sequence of Xt matrices.

3. Transcriptomics & Functional Genomics

A key objective in the study of biological organization is to understand the mechanisms of the
transcription of genomic DNA into mRNA that initiates the production of proteins and hence lies at
the centre of the functioning of the nuclear engine. In a cell in a particular tissue at a particular
time, the nucleus contains the entire mRNA profile (transcriptome) which, if it could be measured,
would provide direct insight into the functioning of the cell. If this profile could be measured in
a dynamic fashion, then the patterns of gene regulation for one, several or many genes could be
studied. Broadly, if a gene is “active” at any time point, it is producing mRNA transcripts, sometimes
at a high rate, sometimes at a lower rate, and understanding the relationships between patterns of
up- and down-regulation lies at the heart of uncovering pathways, or networks of interacting genes.
Transcriptomics is the study of the entirety of recorded transcripts for a given genome in a given
condition. Functional genomics, broadly, is the study of gene function via measured expression
levels and how it relates to genome structure and protein expression.

3.1. Microarrays

A common biological problem is to detect differential expression levels of a gene in two or more
tissue or cell types, as any differences may contribute to the understanding of the cellular orga-
nization (pathways, regulatory networks), or may provide a mechanism for discrimination between
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future unlabelled samples. An important tool for the analysis of these aspects of gene function is
the microarray, a medium onto which DNA fragments (or probes) are placed or etched. Test sample
mRNA fragments are tagged with a fluorescent marker, and then allowed to bond or hybidize with
the matching DNA probes specific to that nucleotide sequence, according to the usual biochemical
bonding process. The microarray thus produces a measurement of the mRNA content of the test
sample for each of the large number of DNA sequences bound to the microarray as probes. Mi-
croarrays typically now contain tens of thousands of probes for simultaneous investigation of gene
expression in whole chromosomes, or even whole genomes for simple organisms. The hybridization
experiments are carried out under strict protocols, and every effort is made to regularize the produc-
tion procedures, from the preparation stage through to imaging. Typically, replicate experiments
are carried out.

Microarray experiments have made the study of gene expression routine; instantaneous measure-
ments of mRNA levels for large numbers of different genes can be obtained for different tissue or cell
types in a matter of hours. The most important aspects of a statistical analysis of gene expression
data are, therefore, twofold; the analysis should be readily implementable for large data sets (large
numbers of genes, and/or large numbers of samples), and should give representative, robust and
reliable results over a wide range of experiments.

Since their initial use as experimental platforms, microarrays have become increasingly sophis-
ticated allowing measurement of different important functional aspects. Arrays containing whole
genomes of organisms can be used for investigation of function, copy-number variation, SNP varia-
tion, deletion/insertion sites and other forms of DNA sequence variation (see [41] for a recent sum-
mary). High-throughput technologies similar in the form of printed arrays are now at the centre of
transcriptomic investigation in several different organisms, and also widely used for genome-wide
investigation of common diseases in humans [42, 43]. The statistical analysis of such data repre-
sents a major computational challenge. In the list below, a description of details of first and second
generation microarrays is given.

• First Generation Microarray Studies

From the mid 1990s, comparative hybridization experiments using microarrays or gene-chips
began to be widely used for the investigation of gene expression. The two principal types of
array used were cDNA arrays and oligonucleotide arrays:

– cDNA microarrays: In cDNA microarray competitive hybridization experiments, the mRNA
levels of a genes in a target sample are compared to the mRNA level of a control sample
by attaching fluorescent tags (usually red and green respectively for the two samples) and
measuring the relative fluorescence in the two channels. Thus, in a test sample (contain-
ing equal amounts of target and control material), differential expression relative to the
control is either in terms of up-regulation or down-regulation of the genes in the target
sample. Any genes that are up-regulated in the target compared to the control and hence
that have larger amounts of the relevant mRNA, will fluoresce as predominantly red, and
any that are down-regulated will fluoresce green. Absence of differences in regulation will
give equal amounts of red and green, giving a yellow fluor. Relative expression is measured
on the log scale

y = log
xTARGET

xCONTROL
= log

xR

xG
(12)

where xR and xG are the fluorescence levels in the RED and GREEN channels respectively.
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– Oligonucleotide arrays: The basic concept oligonucleotide arrays is that the array is
produced to interrogate specific target mRNAs or genes by means of a number of oligo
probes usually of length no longer than 25 bases; typically 10-15 probes are used to
hybridize to a specific mRNA, with each oligo probe designed to target a specific segment
of the mRNA sequence. Hybridization occurs between oligos and test DNA in the usual
way. The novel aspect of the oligonucleotide array is the means by which the absolute level
of the target mRNA is determined; each perfect match (PM) probe is paired with a mismatch
(MM) probe that is identical to the prefect match probe except for the nucleotide in the
centre of the probe, for which a mismatch nucleotide is substituted, as indicated in the
diagram below.

PM : ATGTATACTATT A TGCCTAGAGTAC

MM : ATGTATACTATT C TGCCTAGAGTAC

The logic is that the target mRNA, which has been fluorescently tagged, will bind perfectly
to the PM oligo, and not bind at all to the MM oligo, and hence the absolute amount of the
target mRNA present can be obtained as the difference xPM − xMM where xPM and xMM

are the measurements of for the PM and MM oligos respectively.

• Second Generation Microarrays

In the current decade, the number of array platforms has increased greatly. The principle
of of hybridization of transcripts to probes on a printed array is often still the fundamental
biological component, but the design of the new arrays is often radically different. Some of the
new types of array are described below (see [44] for a summary).

– ChiP-Chip: ChIP-chip (chromatin immunoprecipitation chip) arrays are tiling array with
genomic probes systematically covering whole genomes or chromosomes that is used to
relate protein expression to DNA sequence by mapping the binding sites of transcription
factor and other DNA-binding proteins. See [45] for an application and details of statistical
issues.

– ArrayCGH : Array comparative genome hybridization (ArrayCGH) is another form of tiling
array that is used to detect copy number variation (the variation in the numbers of repeated
DNA segments) in subgroups of individuals with the aim of detecting important variations
related to common diseases. See [46, 47]

– SAGE : Serial Analysis of Gene Expression (SAGE) is a platform for monitoring the pat-
terns of expression of many thousands of transcripts in one sample, which relies on the
sequencing of short cDNA tags that correspond to a sequence near one end of every tran-
script in a tissue sample. See [48, 49, 50].

– Single Molecule Arrays : Single Molecule Arrays rely on the binding of single mRNA
transcripts to the spots on the array surface, and thus allows for extremely precise mea-
surement of transcript levels: see [51]. Similar technology is used for precise protein
measurement and antibody detection. See [52]

3.2. Statistical Analysis Of Microarray Data

In a microarray experiment, the experimenter has access to expression/expression profile data,
possibly for a number of replicate experiments, for each of a (usually large) number of genes. Con-
ventional statistical analysis techniques and principles (hypothesis testing, significance testing,
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estimation, simulation methods/Monte Carlo procedures) are used in the analysis of microarray
data. The principal biological objectives of a typical microarray analysis are:

• Detection of differential expression: up- or down-regulation of genes in particular experi-
mental contexts, or in particular tissue samples, or cell lines at a given time instant.

• Understanding of temporal aspects of gene regulation: the representation and modelling of
patterns of changes in gene regulation over time.

• Discovery of gene clusters: the partitioning of large sets of genes into smaller sets that have
common patterns of regulation.

• Inference for gene networks/biological pathways: the analysis of co-regulation of genes,
and inference about the biological processes involving many genes concurrently.

There are typically several key issues and models that arise in the analysis of microarray data: such
methods are described in detail in [53, 54, 55, 56]. For a Bayesian modelling perspective, see [57].

• array normalization: arrays are often imaged under slightly different experimental condi-
tions, and therefore the data are often very different even from replicate to replicate. This is
a systematic experimental effect, and therefore needs to be adjusted for in the analysis of dif-
ferential expression. A misdiagnosis of differential expression may be made purely due to this
systematic experimental effect.

• measurement error: the reported (relative) gene expression levels models are only in fact prox-
ies for the true level gene expression in the sample. This requires a further level of variability
to be incorporated into the model.

• random effects modelling: it may be necessary to use mixed regression models, where gene
specific random-effects terms are incorporated into the model.

• multivariate analysis: the covariability of response measurements, in time course experi-
ments, or between PM and MM measurements for an oligonucleotide array experiment, is
best handled using multivariate modelling.

• testing: one- and two-sample hypothesis testing techniques, based on parametric and non-
parametric testing procedures can be used in the assessment of the presence of differential
expression. For detecting more complex (patterns of) differential expression, in more general
structured models, the tools of analysis of variance (ANOVA) can be used to identify the chief
sources of variability.

• multiple testing/False discovery: in microarray analysis, a classical statistical analysis us-
ing significance testing needs to take into account the fact that a very large number of tests
are carried out. Hence significance levels of tests must be chosen to maintain a required
family-wise error rate, and to control the false discovery rate.

• classification: the genetic information contained in a gene expression profile derived from
microarray experiments for, say, an individual tissue or tumour type may be sufficient to
enable the construction of a classification rule that will enable subsequent classification of
new tissue or tumour samples.
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• cluster analysis: discovery of subsets of sets of genes that have common patterns of regula-
tion can be achieved using the statistical techniques of cluster analysis (see section §3.3.).

• computer-intensive inference: for many testing and estimation procedures needed for mi-
croarray data analysis, simulation-based methods (bootstrap estimation, Monte Carlo and
permutation tests, Monte Carlo and MCMC) are often necessary, especially when complex
Bayesian models are used.

• data compression/feature extraction: the methods of principal components analysis and
extended linear modelling via basis functions can be used to extract the most pertinent features
of the large microarray data sets.

• experimental design: statistical experimental design can assist in determining the number
of replicates, the number of samples, the choice of time points at which the array data are
collected and many other aspects of microarray experiments. In addition, power and sample
size assessments can inform the experimenter as to the statistical worth of the microarray
experiments that have been carried out.

Typically, data derived from both types of microarray highly noise and artefact corrupted. The sta-
tistical analysis of such data is therefore quite a challenging process. In many cases, the replicate
experiments are very variable. The other main difficulty that arises in the statistical analysis of mi-
croarray data is the dimensionality; a vast number of gene expression measurements are available,
usually only on a relatively small number of individual observations or samples, and thus it is hard
to establish any general distributional models for the expression of a single gene.

3.3. Clustering

Cluster analysis is an unsupervised statistical procedure that aims to establish the presence of
identifiable subgroups (or clusters) in the data, so that objects belonging to the same cluster re-
semble each other more closely than objects in different clusters; see [58, 59] for comprehensive
summaries.

In two or three dimensions, clusters can be visualized by plotting the raw data. With more than
three dimensions, or in the case of dissimilarity data (see below), analytical assistance is needed.
Broadly, clustering algorithms fall into two categories:

• Partitioning Algorithms : A partitioning algorithm divides the data set into K clusters, where
and the algorithm is run for a range of K -values. Partitioning methods are based on spec-
ifying an initial number of groups, and iteratively reallocating observations between groups
until some equilibrium is attained. The most famous algorithm is the K -Means algorithm in
which the observations are iteratively classified as belonging to one of K groups, with group
membership is determined by calculating the centroid for each group (the multidimensional
version of the mean) and assigning each observation to the group with the closest centroid. The
K-means algorithm alternates between calculating the centroids based on the current group
memberships, and reassigning observations to groups based on the new centroids. A more
robust method uses mediods rather than centroids (that is, medians rather than means in
each dimension, and more generally, any distance-based allocation algorithm could be used.
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• Hierarchical Algorithms : A hierarchical algorithm yields an entire hierarchy of clusterings
for the given data set. Agglomerative methods start with each object in the data set in its own
cluster, and then successively merges clusters until only one large cluster remains. Divisive
methods start by considering the whole data set as one cluster, and then splits up clusters until
each object is separated. Hierarchical algorithms are discussed in detail in section §3.3.1.

Data sets for clustering of N observations can either take the form of an N × p data matrix, where
rows contain the different observations, and columns contain the different variables, or an N × N

dissimilarity matrix, whose (i, j)th element is dij, the distance or dissimilarity between observations i

and j that obeys the usual properties of a metric. Typical data distance measures between two data
points i and j with measurement vectors xi and xj are the L1 and L2 Euclidean distances, and the
grid-based Manhattan distance for discrete variables, or the Hamming distance for binary variables.
For ordinal (ordered categorical) or nominal (label) data, other dissimilarities can be defined.

3.3.1 Hierarchical Clustering

Agglomerative hierarchical clustering initially places each of the N items in its own cluster. At the
first level, two objects are to be clustered together, and the pair is selected such that the potential
function increases by the largest amount, leaving N − 1 clusters, one with two members, the re-
maining N − 2 each with one. At the next level, the optimal configuration of N − 2 clusters is found,
by joining two of the existing clusters. This process continuous until a single cluster remains con-
taining all N items. At each level of the hierarchy, the merger chosen is the one that leads to the
smallest increase in some objective function.

Classical versions of the hierarchical agglomeration algorithm are typically used with average, single
or complete linkage methods, depending on the nature of the merging mechanism. Such criteria
are inherently heuristic, and more formal model-based criteria can also be used. Model-based
clustering is based on the assumption that the data are generated by a mixture of underlying
probability distributions. Specifically, it is assumed that the population of interest consists of K

different subpopulations, and that the density of an observation from the the subpopulation is for
some unknown vector of parameters. Model-based clustering is described in more detail in section
§3.3.2.

The principal display plot for a clustering analysis is the dendrogram which plots all of the individual
data objects linked by means of a binary “tree”. The dendrogram represents the structure inferred
from a hierarchical clustering procedure which can be used to partition the data into subgroups
as required if it is cut at a certain “height” up the tree structure. As with many of the aspects of
the clustering procedures described above, it is more of a heuristic graphical representation rather
than formal inferential summary. However, the dendrogram is readily interpretable, and favoured
by biologists.

3.3.2 Model-Based Hierarchical Clustering

Another approach to hierarchical clustering is model-based clustering (see for example [60, 61]),
which is based on the assumption that the data are generated by a mixture of K underlying prob-
ability distributions as in equation (11). Given data matrix y = (y1, ..., yN )T, let γ =(γ1, ..., γN ) denote
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the cluster labels, where γi = k if the ith data point comes from the kth subpopulation. In the clas-
sification procedure, the maximum likelihood procedure is used to choose the parameters in the
model.

Commonly, the assumption is made that the data in the different subpopulations follow multivariate
normal distributions, with mean µk and covariance matrix Σk for cluster k, so that

fY |θ(y|θ) =
K∑

k=1

ωkfk(y|µk, Σk) =
K∑

k=1

ωk
1

(2π)d/2

1
|Σk|1/2

exp
{
−1

2
(y − µk)TΣ−1

k (y − µk)
}

where Pr[γi = k] = ωk. If Σk = σ2Ip is a p × p matrix, then maximizing the likelihood is the same as
minimizing the sum of within-group sums of squares and corresponds to the case of hyperspherical
clusters with the same variance. Other forms of Σk yield clustering methods that are appropriate
in different situations. The key to specifying this is the singular value or eigen decomposition of Σk,
given by eigenvalues λ1, ..., λp and eigenvectors v1, ...,vp, as in Principal Components Analysis (au-
thor?) [62]. The eigenvectors of Σk, specify the orientation of the kth cluster, the largest eigenvalue
λ1 specifies its variance or size, and the ratios of the other eigenvalues to the largest one specify its
shape. Further, if Σk = σ2

kIp, the criterion corresponds to hyperspherical clusters of different sizes,
and by fixing the eigenvalue ratios αj = λj/λ1 for j = 2, 3, ..., p across clusters, other cluster shapes
are encouraged.

3.4. Model-Based Analysis Of Gene Expression Profiles

The clustering problem for vector-valued observations can be formulated using models used to
represent the gene expression patterns via the extended linear model, that is, a linear model in
non-linear basis functions; see, for example, [63, 64] for details.

Generically, the aim of a statistical model is to capture the behaviour of the gene expression ratio
yt as a function of time t. The basis of the modelling strategy would be to use models that capture
the characteristic behaviour of expression profiles likely to be observed due to different forms of
regulation. A regression framework and model can be adopted. Suppose that Yt is modelled using a
linear model

Yt = Xtβ + εt

where Xt is (in general) a 1× p vector of specified functions of t, and β is a p× 1 parameter vector. In
vector representation, the gene expression profile over times t1, . . . , tT can be written Y = (Y1, . . . ,YT ),

Y = Xβ + ε (13)

The precise form of design matrix X will be specified to model the time-variation in signal. Typ-
ically the random error terms {εt} are taken as independent and identically distributed Normal
random variables with variance σ2, implying that the conditional distribution of the responses Y is
multivariate normal

Y |X,β, σ2 ∼ N
(
Xβ,σ2IT

)
(14)

where now X is T × p where IT is the T × T identity matrix.

In order to characterize the underlying gene expression profile, the parameter vector β must be
estimated. For this model, the maximum likelihood/ordinary least squares estimates of β and σ2

are
β̂ML =

(
XTX

)−1
XTy σ̂2 =

1
T − p

(y − ŷ)T (y − ŷ)
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for fitted values ŷ = Xβ̂ML = X
(
XTX

)−1
XTy.

3.4.1 Bayesian Analysis In Model-Based Clustering

In a Bayesian analysis of the model in (13) a joint prior distribution π
(
β, σ2

)
is specified for

(
β,σ2

)
,

and a posterior distribution conditional on the observed data is computed for the parameters. The
calculation proceeds using equation (5) (essentially with G fixed).

π
(
β,σ2|y,X

)
=

L
(
y; X, β, σ2

)
π

(
β,σ2

)
∫

L (y; X,β, σ2) π (β,σ2) dβ dσ2

where L
(
y; X,β, σ2

)
is the likelihood function. In the linear model context, a conjugate prior speci-

fication is used where

π
(
β|σ2

) ≡ Normal
(
v, σ2V

)
π

(
σ2

) ≡ IGamma
(α

2
,
γ

2

)
(15)

(v is p× 1, V is p× p positive-definite and symmetric, all other parameters are scalars) and IGamma
denotes the inverse Gamma distribution. Using this prior, standard Bayesian calculations show
that conditional on the data

π
(
β|y,σ2

) ≡ Normal
(
v∗,σ2V ∗) π

(
σ2|y) ≡ IGamma

(
T + α

2
,
c + γ

2

)
(16)

where
V ∗ =

(
XTX + V −1

)−1
v∗ =

(
XTX + V −1

)−1 (
XTy + V −1v

)

c = yTy + vTV −1v − (
XTy + V −1v

)T (
XTX + V −1

)−1 (
XTy + V −1v

)
(17)

In regression modelling, it is usual to consider a centered parameterization for β so that v = 0,
giving

v∗ =
(
XTX + V −1

)−1
XTy

c = yTy − yTXT
(
XTX + V −1

)−1
XTy = yT

(
IT −X

(
XTX + V −1

)−1
XT

)
y

A critical quantity in a Bayesian clustering procedure is the marginal likelihood, as in equation (8),
for the data in light of the model.

fY (y) =
∫

fY |β,σ2

(
y|β,σ2

)
π

(
β|σ2

)
π

(
σ2

)
dβdσ2. (18)

Combining terms above gives that

fY (y) =
(

1
π

)T/2 γα/2Γ
(

T + α

2

)

Γ
(α

2

) |V ∗|1/2

|V |1/2

1

{c + γ}(T+α)/2
(19)

This expression is the marginal likelihood for a single gene expression profile. For a collection of
profiles belonging to a single cluster, y1, ..., yN , equation (19) can again be evaluated and used as the
basis of a dissimilarity measure as an input into a hierarchical clustering procedure. The marginal
likelihood in equation (19) can easily be re-expressed for clustered data. The basis of the hierarchical
clustering method outlined in [64] proceeds by agglomeration of clusters from N to 1, with the two
clusters that lead to the greatest increase marginal likelihood score at each stage of the hierarchy.
This method works for profiles of arbitrary length, potentially with different observation time points,
however it is computationally most efficient when the time points are the same for each profile.
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The design matrix X is typically expressed via non-linear basis functions, for example truncated
polynomial splines, Fourier bases or wavelets. For T large, it is usually necessary to use a projection
through a lower number of bases; for example, for a single profile, X becomes T × p and β becomes
p × 1, for T > p. Using different designs, many flexible models for the expression profiles can be
fitted. In some cases, the linear mixed effect formulation in equation (10) can be used to construct
the spline-based models; in such models, some of the β parameters are themselves assumed to be
random effects. See [65].

For example, in harmonic regression, regression in the Fourier bases is carried out. Consider the
extended linear model

Yt =
p∑

j=0

βjgj(t) + εt

where g0(t) = 1 and

gj(t) =





cos(φjt) j odd

sin(φjt) j even

where p is an even number, p = 2k say, and φj , j = 1, 2, . . . , k are constants with φ1 < φ2 < · · · < φk.
For fixed t, cos(φjt) and sin(φjx) are also fixed and this model is a linear model in parameters

β = (β0, β1, . . . ,βp)T

This model can be readily fitted to time-course expression profiles. The plot below is a fit of the
model with k = 2 to a cluster of profiles extracted using the method described in [64] from the
malaria protozoa Plasmodium falciparum data set described in [66].

One major advantage of the Bayesian inferential approach is that any biological prior knowledge
that is available can be incorporated in a coherent fashion. For example, the data in Figure 1
illustrate periodic behaviour to the cyclical nature of cellular organization, and thus the choice of
the Fourier bases is a natural one.

3.4.2 Choosing The Number Of Clusters: Bayesian Information Criterion

A hierarchical clustering procedure gives the sequence by which the clusters are merged (in agglom-
erative clustering) or split (in divisive clustering) according the model or distance measure used, but
does not give an indication for the number of clusters that are present in the data (under the model
specification). This is obviously an important consideration. One advantage of the model-based
approach to clustering is that it allows the use of statistical model assessment procedures to assist
in the choice of the number of clusters. A common method is to use approximate Bayes factors
to compare models of different orders (i.e. models with different numbers of clusters), and gives a
systematic means of selecting the parameterization of the model, the clustering method, and also
the number of clusters. See [67].

The Bayes factor is the posterior odds for one model against the other assuming neither is favored
a priori. A reliable approximation to twice the log Bayes factor called the Bayesian Information
Criterion (BIC), which, for model M fitted to n data points is given by

BICM = −2 log LM (θ̂) + dM log n

where LM is the Bayesian marginal likelihood from equation (18), LM (θ̂) is the maximized log like-
lihood of the data for the model M , and dM is the number of parameters estimated in the model.
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Gene Expression Profiles for 43 genes

Figure 1: Cluster of gene expression profiles obtained using Bayesian hierarchical model-based
clustering: data from the intraerythrocytic developmental cycle of protozoa Plasmodium falciparum.
Clustering achieved using harmonic regression model with k = 2. Solid red line is posterior mean
for this cluster, dotted red lines are pointwise 95 % credible intervals for the cluster mean profile,
and dotted blue lines are pointwise 95 % credible intervals for the observations.

The number of clusters is not considered a parameter for the purposes of computing the BIC. The
smaller (more negative) the value of the BIC, the stronger the evidence for the model.

3.4.3 Classification Via Model-Based Clustering

Any clustering procedure can be used as the first step in the construction of classification rules.
Suppose that it, on the basis of an appropriate decision procedure, it is known that there are C

clusters, and that a set of existing expression profiles y1, ..., yN have been allocated in turn to the
clusters. Let z1, ..., zN be the cluster allocation labels for the profiles. Now, suppose further that
the C clusters can be decomposed further into two subsets of sizes C0 and C1, where the subsets
represent perhaps clusters having some common, known biological function or genomic origin. For
example, in a cDNA microarray, it might be known that the clones are distinguishable in terms of
the organism from which they were derived. A new objective could be to allocate a novel gene and
expression profile to one of the subsets, and one of the clusters within that subset. ,

Let yijk denote, for i = 0, 1, j = 1, 2, ..., Ci, k = 1, 2, ..., Nij denote the kth profile in cluster j in subset i.
Let y∗ denote a new profile to be classified, and ξ∗ be the binary classification-to-subset, and z∗ the
classification-to-cluster variable for y∗. Then, by Bayes Rule, for i = 1, 2,

P [ξ∗ = i|y∗, y, z] ∝ p (y∗|ξ∗ = i, y, z) P [ξ∗ = i|y, z] (20)
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The two terms in (20) can be determined on the basis of the clustering output.

4. Metabolomics

The term metabolome refers to the total metabolite content of an organic sample (tissue, blood,
urine etc) obtained from a living organism which represents the products of a higher level of bi-
ological interaction than that which occurs within the cell. Metabolomics and metabonomics are
the fields in biomedical investigation that combines the application of nuclear magnetic resonance
(NMR) spectroscopy with multivariate statistical analysis in studies of the composition of the sam-
ples. Metabonomics is often used in reference to the static chemical content of the sample, whereas
metabolomics is used to refer to the dynamic evolution of the metabolome. Both involve the mea-
surement of the metabolic response to interventions - see for example [68] - and applications of
metabolomics include several in public health and medicine [69, 70].

4.1. Statistical Methods for Spectral Data

The two principal spectroscopic measurement platforms, NMR and Mass Spectrometry (MS) yield al-
ternative representations of the metabolic spectrum. They produce spectra (or profiles) that consist
of several thousands of individual measurements at different resonances or masses. There are sev-
eral phases of processing of such data; pre-processing using smoothing, alignment and de-noising,
peak separation, registration and signal extraction. For an extensive discussion, see [62].

An NMR spectrum consists of measurements of the intensity or frequency of different biochemical
compounds (metabolites) represented by a set of resonances dependent upon the chemical struc-
ture, and can be regarded as a linear combination of peaks (nominally of various widths) that
correspond to singletons or multiple peaks according to the neighbouring chemical environment.
A typical spectrum extracted from rat urine is depicted in Figure 2; see [71]. Two dominant sharp
peaks are visible.

Features of the spectra that require specific statistical modelling include multiple peaks for a single
compound, variation in peak shape, and chemical shifts induced by variation in experimental pH
Signals from different metabolites can be highly overlapped and subject to peak position variation
due primarily to pH variations in the samples, and there are many small scale features (see Figure
3). Statistical methods of pre-processing NMR spectra for statistical analysis which address the
problems outlined above, using, for example, dynamic time warping to achieve alignment of reso-
nance peaks across replicate spectra as a form or spectral registration form part of the necessary
holistic Bayesian framework.

Classical statistical methods for metabolic spectra include the following:

• Principal Components Analysis (PCA) and Regression: a linear data projection method for
dimension reduction, feature extraction, and classification of samples in an unsupervised fash-
ion, that is, without reference to labelled cases.

• Partial Least Squares (PLS): a non-linear projection method similar to PCA, but implemented
in a supervised setting for sample discrimination.
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Figure 2: A normalised rat urine spectrum. The ordinate is parts per million, the abscissa is
intensity after standardization.

• Clustering Clusters of spectra, or peaks within spectra, can be discovered using similar tech-
niques to those described in section §3.3..

• Neural Networks: Flexible non-linear regression models constructed from simple mathemat-
ical functions that are learned from the observation of cases, that are ideal models for clas-
sification. The formulation of an neural involves three levels of interlinked variables; outputs,
inputs, and hidden variables, interpreted as a collection of unobserved random variables that
form the hidden link between inputs and outputs.

4.2. Bayesian Approaches

The Bayesian framework is a natural one for incorporating genuine biological prior knowledge into
the signal reconstruction, and typically useful prior information (about fluid composition, peak lo-
cation, peak multiplicity) is available. In addition, a hierarchical Bayesian model structure naturally
allows construction of plausible models for the spectra across experiments or individuals.

• Flexible Bayesian Models The NMR spectrum can be represented as a noisy signal derived
from some underlying and biologically important mechanism. Basis-function approaches
(specifically, wavelets) have been much used to represent non-stationary time-varying signals
[65, 72, 73, 71]. The sparse representation of the NMR spectrum in terms of wavelet coef-
ficients makes them an excellent tool in data compression, yet these coefficients can still be
easily transformed back to the spectral domain to give a natural interpretation in terms of the
underlying metabolites.
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Figure 3: Magnified portion of the spectrum showing small scale features.

Figure 4 depicts the reconstruction of the rat urine spectrum in the region between 2.5 and
2.8 ppm using wavelet methods; see [71].

• Bayesian Time Series Models for Complex Non-Stationary Signals: see for example [74].
The duality between semi-parametric modelling of functions and latent time series models
allows a view of the analysis of the underlying NMR spectrum not as a set of pointwise eval-
uations of a function, but rather as a (time-ordered) series of correlated observations with
some identifiable latent structure. Time series models, computed using dynamic calculation
(filtering), provide a method for representing the NMR spectra parsimoniously.

• Bayesian Mixture Models: A reasonable generative model for the spectra is one that con-
structs the spectra from a large number of symmetric peaks of varying size, corresponding to
the contributions of different biochemical compounds. This can be approximated using a finite
mixture model, where the number, magnitudes and locations, of the spectral contributions are
unknown. Much recent research has focussed on the implementation of computational strate-
gies for Bayesian mixtures, in particular Markov chain Monte Carlo (MCMC) and Sequential
Monte Carlo (SMC) have proved vital. The reconstruction of NMR spectra is a considerably
more challenging area than those for which mixture modelling is conventionally used, as many
more individual components are required. Flexible semi-parametric mixture models have been
utilized in [75, 76], whilst fully non-parametric mixture models similar to those described in
section §2.5.2 can also be used [73].

A major advantage of using the fully Bayesian framework is that, once again, all relevant informa-
tion (the spectral data itself, knowledge of the measurement processes for different experimental
platforms, the mechanisms via which multiple peaks and shifts are introduced) can be integrated in
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Figure 4: Wavelet reconstruction of a region of the spectrum results under the “Least Asymmetric
wavelet” with four vanishing moments using the hard thresholding (HT).

a coherent fashion. In addition, prior knowledge about the chemical composition of the samples can
be integrated via a prior distribution constructed by inspection of the profiles for training samples.
At a higher level of synthesis, the Bayesian paradigm offers a method for integrating metabolomic
data with other functional or structural data, such as gene expression or protein expression data.
Finally, the metabolic content of tissue changes temporally, so dynamic modelling of the spectra
could also be attempted.

5. Future Directions

Biological data relating to structure and function of genes, proteins and other biological substances
are now available from a wide variety of platforms. Researchers are beginning to develop methods
for coherent combination of data from different experimental processes to get an entire picture of
biological cause and effect. For example, the effective combination of gene expression and metabo-
nomic data will be of tremendous utility. A principal challenge is therefore the fusion of expression
data derived from different experimental platforms, and seeking links with sequence and ontological
information available. Such fusion will be critical in the future of statistical analysis of large scale
systems biology and bioinformatics data sets.

In terms of public health impact of systems biology and statistical genomics, perhaps the most
prominent is the study of common diseases through high-throughput genotyping of single nu-
cleotide polymorphisms (SNPs). In genomewide association studies, SNP locations that correlate
with disease status or quantitative trait value are sought. In such studies, the key statistical step
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involves the selection of a informative predictors (SNP or genomic loci) from a large collection of can-
didates. Many such genomewide studies have been completed or are ongoing (see [77, 78, 42, 43]).
Such studies represent huge challenges for statisticians and mathematical modellers, as the data
contain many subtle structures but also as the amount of information is much greater than that
available for typical statistical analyses.

Another major challenge to the quantitative analysis of biological data comes in the form of image
analysis and extraction. Many high throughput technologies rely on the extraction of information
from images, either in static form, or dynamically from a series of images. For example it is now
possible to track the expression level of mRNA transcripts in real-time ([79, 80, 81]), and to ob-
serve mRNA transcripts moving from transcription sites to translation sites (see for example [82]).
Imaging techniques can also offer insights into aspects of the dynamic organization of nuclear func-
tion by studying the positioning of nuclear compartments and how those compartments reposition
themselves in relation to each other through time. The challenges for the statistician are to develop
real-time analysis methods for tracking and quantifying the nature and content of such images, and
tools from spatial modelling and time series analysis will be required.

Finally, flow cytometry can measure characteristics of millions of cells simultaneously, and is a
technology that offers many promises for insights into biological organization and public health
implications. However, quantitative measurement and analysis methods are only yet in the early
stages of development, but offer much promise (see [83, 84]).
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