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Summary. We address the problem of MCMC analysis of a complex ecological system using a Bayesian inferential
approach. We describe a complete likelihood framework for the life history of the wavyleaf thistle, including missing
information and density dependence. We indicate how, to make inference on life history transitions involving both
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with each other and with priors to obtain expressions that can be directly sampled. This innovation and the principles
described could be extended to other species featuring such missing stage information, with potential for improving
inference relating to a range of ecological or evolutionary questions.
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1. Introduction

The study of the ecological and evolutionary dynamics of plant populations relies on demo-
graphic models based on repeated observations on individuals from natural populations (e.g.
Rees et al. (2001), Rose et al. (2005)). However, key demographic transitions often cannot
be directly observed without perturbing the study population, particularly in plant species
that reproduce vegetatively, that is, where production of offspring occurs by branching from
the taproot, which may take place deep below-ground. Nevertheless, understanding such de-
mographic transitions is critical in a number of fields. Successfully managing invasive plant
species requires accurate demographic models, and vegetative reproduction is often a key
element to rapid spread of such species (Radosevich et al., 1997). In evolutionary biology,
understanding persistence and maintenance of mixed reproductive strategies (i.e. those with
vegetative and sexual components) is a fundamental question (Gardner & Mangel, 1999).
However, difficulties associated with estimating allocation of finite resources between the dif-
ferent reproductive alternatives, particularly in the presence of unobserved states, mean that
evolutionary theory has rarely been aligned with complex real systems.
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The fundamental obstacle to statistical inference addressed here is the presence of the
missing data relating to the vegetative reproduction. In this paper, we develop a Bayesian
framework to capture all aspects of plant demography, including such missing information, and
apply it to an analysis of a large data set relating to the wavyleaf thistle, Cirsium undulatum.
The model formulation also directly reflects a demographic model which can be used for
population projection. Although there is a large body of work relating to the estimation of
demographic parameters from the study of marked individuals, including formal statistical (in
fact, Bayesian) approaches (Brooks et al., (2002, 2004)), explicit linkage to a full demographic
model is rare. Our model and analysis provide such linkage.

Inference from our model is performed using a Bayesian framework via Markov chain Monte
Carlo (MCMC). The most challenging aspect of the MCMC analysis is the imputation of
missing values that form critical parts of the model. For example, allocation of resources to
vegetative reproduction cannot be quantified without the unobserved number of vegetative off-
spring being incorporated explicitly into the model. We adopt the conventional computational
approach to Bayesian missing data problems, and extend the MCMC accordingly.

1.1. The wavyleaf thistle species and data

The wavyleaf thistle has two modes of reproduction: i) vegetative, where offspring are pro-
duced through branching from a parents’ underground root system and are therefore geneti-
cally identical to them, and ii) sexual, where offspring result from seeds which are dispersed
from flowers on the parent, and then establish in the soil - these latter are referred to as
seedlings, and can be distinguished from vegetatively produced offspring by the presence of
cotelydons, a special leaf form. The visible, above-ground plants in the field site are referred
to as ramets. Because of the existence of vegetative reproduction, a single genetic individual
may consist of several ramets, which branch off the same underground taproot. However, it is
difficult to identify genetic individuals as the roots connecting above-ground ramets are deep
under the ground. Consequently, in this work we take a single ramet as the focal individual
unit. Each ramet persists for a variable number of years until it either dies or flowers. Flow-
ering is generally fatal for a ramet of this species. Each ramet may itself produce vegetative
ramets throughout its lifetime. Thus a single longitudinal record for a ramet may typically
take the form presented in Table 1. Since demographic features are recorded at discrete in-
tervals (yearly) it is possible for a ramet to initiate a new ramet, and then be recorded as
dead the following year. It is of considerable biological interest to understand the nature of
each of these reproductive and temporal survival processes, and to understand whether ex-
ternal environmental factors exert any influence because of their ecological and evolutionary
implications.

The number of vegetative ramets produced is thought to vary stochastically, dependent
on the individual’s characteristics, such as root crown diameter, which is recorded each year
by using callipers to measure the diameter of the roots at a point taken directly above the
ground. Each new ramet becomes an individual to be followed up in its own right, appearing
in the population in the year following its production. In its flowering year, a number of
flowering heads and seeds may be produced in addition to vegetative ramets. A proportion
of the seeds successfully establish and become ramets to be followed up in their own right,
also appearing in the population in the year following their production. Seedlings and new
ramets are distinguishable, but the number of each that a ramet generates in any given year
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Table 1. Longitudinal Record for Typical Ramet: First
observed in Year 2 of study, producing 2,1,0 and 1 ram-
ets in Years 2 to 5, and flowering in Year 5 with 2 flower
heads. Although plants die on flowering, the mortality
risk that occurs independently of flowering is the main
interest in this paper. Death and flowering are conse-
quently modeled as competing hazards. If flowering oc-
curs, death does not.
Year 1 2 3 4 5 6

No. Ramets - 2 1 0 1 -
Flower (0=No,1=Yes) - 0 0 0 1 -
No. Flowering Heads - 0 0 0 2 -
Death (0=No,1=Yes) - 0 0 0 0 -

is not observed directly - only the total number of ramets and the total number of seedlings
are observed. However, in some cases a new vegetative ramet appears in physical proximity
to where a ramet flowered or died the previous year. It is then reasonable to assume that
the new ramet was produced by the deceased ramet and this information can be incorporated
into the life-cycle model.

In this paper, we study a large population of wavyleaf thistle located at seven sites within
a sand prairie nature reserve in midwestern USA (Louda & Potvin, 1995). The data studied
comprise a set of longitudinal data on plant size (root crown diameter) and status (dead,
flowering or living) of 3320 ramets taken across 12 years. A summary of the data notation
used is presented in the Appendix A.1.

1.2. Bayesian models in demography

Bayesian approaches have been used to model missing information and individual variation
based on longitudinal data from natural populations in ecology (Morgan, 2000; Cam et al.,
2002). There has been considerable work on techniques for estimating survival parameters
from capture-recapture data of bird populations (Brooks et al., 2002). Demographic mod-
elling has been more rarely directly allied to Bayesian techniques for forecasting, although
Clark (2003) and Clark et al. (2005) developed hierarchical models for capture-recapture
data encompassing estimation error, variability among individuals, and discrete population
structure and used them to predict population level outcomes. The propagation of stochas-
tic elements into population level forecasts improves realism of predictions (Clark, 2003).
A ubiquitous problem in demographic modelling is the presence of unobservable life-stages.
Mark-recapture approaches to model unobservable life stages have been developed (Kery et
al., 2005). However there have been no integrated models for modelling both life stages and
their effects on other demographic transitions. Furthermore, Bayesian population models that
are matched to models for forecasting where populations are structured along a continuous
variable (rather than discrete categories, Ellner & Rees, 2005) have not yet been developed.

1.3. Plan of paper
In Section 2, the probability model used is described in detail; in particular the specific
components for plant life history, growth, reproduction and flowering are detailed. In addition,
the relationship between the observed quantities (plant size, life events, number of ramets and
flowering heads produced) and unobserved quantities (number of ramets attempted) is defined.
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Prior distributions for the Bayesian analysis are described. In Section 3, details of the MCMC
computational algorithm are given, and in Section 4, a simulation study outlined. In Section
5 the analysis of the wavyleaf data set is described, and in Section 6, the ecological and
demographic implications of the findings are discussed.

2. Probability Models and Likelihood

The observed data comprise life history information, observations of plant size over the life
history (Figure 2(a)), and counts related to reproduction and flowering (Figure 2(b)). In
addition, there is a missing data component, relating to important but unobserved values
(ramet vegetative reproduction and interconnection). The goal of the Bayesian inference is
to sample from a joint posterior distribution defined by all these elements. Specifically, there
are four different components of the model to specify; stochastic models are required for:

(a) the lifetime distribution of the ramet, that is the number of years until the terminal
event, either death or flowering

(b) the growth in ramet size
(c) the number of flowering heads produced by a ramet
(d) the number of vegetative ramets produced by a ramet

In the following model description, we will make parametric and distributional assumptions
based on the observed data. Several of the underlying conditional distribution functions can
be described by discrete or continuous likelihoods, others are more complex. We note here
that the specific assumptions made may be relaxed or varied without significant increase in
inferential complexity, as the proposed computational solution is quite general. Once distri-
butional properties of all the separate components have been defined, the full expression is
assessed to identify any possible simplifications. In Section 2.7, we describe complete-data
likelihood and Bayesian prior components, and then in Section 3 describe how sampling from
the resulting posterior distribution is achieved via Metropolis-Hastings.

We consider both across-site models (where some parameters that appear in the models
are common across sites, and site-specific models, where the parameters that appear in the
proportional odds model, the growth model and the model for flowering heads are site specific.
This will allow us to assess whether the covariates have different influences at different sites.
Further details are given in Section 5.

2.1. Missing ramet data
The growth in size and number of flowering heads is likely to depend on the number of ramets
produced, because the resources available to each individual ramet are limited and must be
allocated to either action. Gaining understanding of this trade-off is essential to understanding
the evolution of reproductive strategies. One complication is that density dependence appears
to operate in this system, that is, the total number of individual ramets present at a given
geographical location directly affects the establishment rate of new vegetative ramets (Figure
1). In exploratory analysis, the slope of a linear regression linking log total number of new
vegetative ramets appearing at time t with number of ramets present at time t is significantly
less than 1 (0.88 ± 0.100, n = 82). Consequently, at high densities of ramets at t, there is
some evidence that the number of new vegetative ramets asymptotes. The most immediate
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Fig. 1. Relationship between total population size, R, and observed total ramet numbers per site, m suggesting density
dependent effects as the rate of increase in m declines with increasing R. The line indicates the fitted model from the
linear regression taken on a log scale (see text).

ecological explanation is density dependence: i.e., although ramets allocate resources towards
creating new vegetative ramets at equivalent rates at low and high densities, at high densities,
these new offspring fail to successfully establish and die before the next population census.
At high densities, resources such as space or nutrients are likely to be limiting, and the more
vulnerable smaller plants are likely to suffer the consequences. Ramets that are produced but
do not successfully establish are referred to as ramets “attempted”.

Such density dependence will lead to a discrepancy between the number of ramets observed
in the dataset, and the number that were initiated by the ramets present. It is the latter that
will affect growth in size and number of flowering heads; we therefore develop and describe an
appropriate model to estimate this component. We present probability models for each of the
four components needed to specify the model below, and then derive the full (complete-data)
likelihood.

In the remainder of the paper, although information from different sites is available, we
use notation that suppresses this site-dependence; we index plants by i and year by t, and for
convenience index by k when considering all combinations of indices i, t.

2.2. The lifetime distribution
To construct a general model for this situation, a discrete lifetime distribution in years is
considered; this will be denoted by q = (q1, q2, ...), where qa = P [Terminal event at age a] for
a = 1, 2, .... The survivor function Sa is defined by

Sa = P [X > a] = 1−
a∑

j=1

qj a = 1, 2, ...
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and discrete hazards ha are defined by the following conditional probability

ha = P [Terminal event at a|Survival until at least a] =
P [X = a]

P [X ≥ a]
=

qa

Sa−1

a = 1, 2, ...

The elementary relationship between these quantities is then

qa = ha

a−1∏
j=1

(1− hj) , Sa =
a∏

j=1

(1− hj)

for each a. The likelihood contribution for a ramet finally observed at age a is thus

qa = (1− h1) (1− h2) . . . (1− ha−1) ha if the terminal event occurs
Sa = (1− h1) (1− h2) . . . (1− ha−1) (1− ha) if the lifetime is censored

In fact, the terminal event can be either death or flowering, so the model must be extended
to allow for these competing risks. Let (ha, ga) denote the hazard probabilities of death and
flowering at age a respectively. For a ramet that (i) dies, (ii) flowers or (iii) is censored at age
a, the likelihood contributions are

(i) ha

a−1∏
j=1

(1− hj − gj) (ii) ga

a−1∏
j=1

(1− hj − gj) (iii)
a∏

j=1

(1− hj − gj) .

respectively. For the wavyleaf plants, there is rarely age-dependence in the hazard. That is,
the baseline hazard is presumed to be the same for all ages, so that ha = h0 for all a. This
assumption could readily relaxed for other species, however.

For plant i observed in the data in year t of the study, let Zi,t denote the random variable
indicating the outcome for that plant in that year, that is, we observe Zi,t = zi,t where

zi,t =

{
1 if the plant dies
2 if the plant flowers
0 if the plant survives

.

The likelihood contribution for plant i may be written by conditional independence as
∏

t

h
I{zi,t=1}
i,t g

I{zi,t=2}
i,t (1− hi,t − gi,t)

I{zi,t=0} (1)

where hi,t and gi,t are the plant-specific hazards at time t that incorporate information on the
age of the plant in that year, I{.} is the indicator function, and the index t extends over all years
in which the plant is observed. The hazard probabilities can be made dependent on covariates,
in a proportional odds model, where baseline hazards are modified using transformed linear
predictors. Hence we have

hi,t

1− hi,t − gi,t

= exp {βh1 + βh2yi,t} h0

1− h0 − g0

= exp {βh1 + βh2yi,t}ω0

gi,t

1− hi,t − gi,t

= exp {βg1 + βg2yi,t} g0

1− h0 − g0

= exp {βg1 + βg2yi,t}$0



Bayesian Inference in Ecology 7

1.0 1.5 2.0 2.5 3.0 3.5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

log(Size) y at time t

lo
g(

S
iz

e)
 y

 a
t t

im
e 

t+
1

(a) Growth in size data.
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(b) Flowering head data.

Fig. 2. Data for Site 2 for a) Ramet growth b) Ramet flowering head production.

where

ω0 =
h0

1− h0 − g0

$0 =
g0

1− h0 − g0

are the baseline odds on death and flowering respectively, and βh1, βh2 and βg1, βg2 determine
the dependence of the hazards on log size, yi,t. Inverting the relationships, we obtain

hi,t =
exp {βh1 + βh2yi,t}ω0

1 + exp {βh1 + βh2yi,t}ω0 + exp {βg1 + βg2yi,t}$0

and so on. If a single site is considered, parameters in the proportional odds model are only
identifiable if the constraint βh1 = βg1 = 0 (or equivalent) is used. If variation across sites is
to be considered, the model is only identifiable if we set βh1 = βg1 = 0 for some site - without
loss of generality, we use the first. We have also experimented with a random effects or frailty
specification across sites for this model component.

2.3. The growth of the ramet
The growth of a ramet over its lifetime will be modelled using a linear Gaussian autoregression
on the log scale (Metcalf et al. 2003, see Figure 2(a)). We use the following model; if
yi,t = log xi,t is the log-scale measure of ramet size, Ni,t is the number of ramets produced by
the same plant in the previous year, and {εi,t} are independent normal random errors, then
we have

yi,t+1 = γ0 + γ1yi,t + c1Ni,t + εi,t (2)

where the parameter c1 describes the degree to which ramet production affects growth. Pro-
duction of vegetative ramets might be expected to have a negative impact on growth as fewer
resources will be available for each ramet. This will have critical implications for the evolution
of mixed reproductive strategies.
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2.4. The number of flowering heads
To construct a model for the number of flowering heads, Wi,t, produced by each flowering
plant, which is size dependent and always greater than zero (Figure 2(b)), we model Wi,t

using a translated Poisson model, that is, Wi,t − 1 ∼ Poisson(exp(ηi,t)), where

ηi,t = η0 + η1yi,t + c2Ni,t (3)

consistent with the exploratory analysis in Figure 1(b), but including the number of ramets
produced at time t, Ni,t. The parameter c2 indicates the degree to which production of a
vegetative ramet reduces the number of flower heads produced. Following a similar argument
to that above, this parameter might be expected to be negative; resources are expended in
the production of ramets.

A model for Wi,t based on the zero-truncated Poisson distribution

P [W = w] =
λwe−λ

(1− e−λ)w!
=

1

w!
exp{w log λ− λ− log(1− e−λ)} w = 1, 2, . . . (4)

could also be used. The mean/variance relationship for the two models is different; if µ and
V (µ) represent the mean and variance for the models, then for the translated Poisson model
V (µ) = µ− 1, whereas for the truncated Poisson model,

µ =
λ

1− e−λ
V (µ) = µ

(
1− µe−λ

)
.

For large λ, the zero-truncated model reduces to the ordinary Poisson model with a linear
(identity) mean-variance relationship, but for small λ, the mean-variance relationship is con-
cave; we have to second-order for λ near zero

µ l 1 +
λ

2
+

λ2

12
V (µ) l λ

2
+

λ2

6

The zero-truncated Poisson is an Exponential Family distribution with canonical parameter
η = log λ, and thus a generalized linear model based on a linear predictor and log link for λ
could be used, and the likelihood is easily modified to reflect this. However, interpretation
of coefficients in the linear predictor is no longer so straightforward, due to the non-linear
dependence of µ on λ. Despite this, we report results for both models.

2.5. The number of seedlings
Data are also collected, on a site-by-year basis, on the total number of seedling recruits from
the seeds produced by the flowering heads when a plant flowers. Unfortunately, the number
of seeds produced is not observed on a plant-by-plant basis. We are therefore quite restricted
in the model that we can use to model the seedling recruits. However, these data do have
demographic importance in the ecological context, as we wish to infer the establishment rate
of seeds produced. Our strategy is therefore as follows; in any site/year, the total number of
seedling recruits the following year, Bt, which is directly observed in the data as bt, is presumed
to be the outcome of an independent binomial thinning process on the seeds produced by
flowering heads, that is, conditional on S, the total number of seeds produced in any year, we
have that Bt ∼ Binomial(S, pe) where pe is the probability that a seed successfully establishes.
The quantity S is not observed, but rather than build a missing data model, we assume that
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for each flowering head the number of seeds produced is a Poisson random variable with rate
λS, independently across plants. As a consequence, we can deduce the model for the observed
number of seedling recruits directly in terms of the observed number of flowering heads; in
fact, for any year

Bt ∼ Poisson(FλSpe)

where F is the total number of flowering ramets at that site in the previous year. A range of
other formulations is possible; this is the simplest and most realistic one. Seed production per
head is unlikely to vary strongly between sites, however, the model can be easily extended to
allow variation of the pe quantity across sites, in which case parameter λS and the collection
of pe quantities can be estimated from the data. We restrict attention to the simpler model,
in which the quantity λSe = λSpe is estimated from the available data, and represents the rate
of seedling establishment per flowering head.

2.6. The number of ramets
The number of ramets that are attempted to be produced vegetatively by plant i in year
t, Ni,t, is unobserved and thus is a variable that is treated as missing data in the analysis.
The model for the Ni,t is effectively a prior distribution; the observed data are likely only to
be minimally informative about the Ni,t, and so for our analysis we use a fixed Poisson(θ)
prior, where θ is selected to reflect biological prior opinion; this is discussed in section 2.8.
Extensions to this model are possible; for example, the rate parameter in this prior could be
made dependent on size, if sufficient extra information was available.

Although the number of ramets produced by each individual is not directly observed, we do
observe a total number of vegetative ramets appearing the following year. The data suggest the
action of density dependent processes, i.e., the observed total number of ramets is dependent
on the total number of individuals present in the population, Rt, at that site in that year (see
Figure 1). This indicates that the total number of ramets observed in each year, Mi,t, must
be less than the number that were attempted for that year, Ni,t. We presume that this occurs
according to a binomial probability model, specifically, Mi,t|Ni,t = ni,t ∼ Binomial (ni,t, πt),
where πt is the probability of success of attempted vegetative ramets, and is a decreasing
function of the total number of individuals present at each site at each time step, Rt. We
chose πt such that

πt = π(δ, Rt) = 1/(1 + eδRt). (5)

Finally, let

Ñt =
Rt∑
i=1

Ni,t M̃t =
Rt∑
i=1

Mi,t

denote the totals of ramets attempted and observed in each year. We do not have perfect
observation of the vegetative ramet production process, but the observed data comprise two

pieces of information; the total number, M̃t, of newly produced ramets that survive into the
following year at a given site in a given year is observed to be equal to m̃t, and an indicator
variable, Vi,t, for each ramet reflecting whether that ramet was observed to produce vegetative
ramets (Vi,t = 1) or not (Vi,t = 0) in any year. Across all sites, we have Vi,t = 1 for 1153
observations out of 6981, but there is no such information available for the remainder. Note
that even when V = 1, the total number of ramets produced by the individual ramet is not
observed in any instance.
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A diagrammatic summary of the inter-relationship between the various data sources and
related parameters for an individual plant through time is given below. This diagram reflects
the modelled conditional independencies and modelled links; with subscript i suppressed,
recall that Y indicates a log size, and Z indicates survival status.

t = 1 t = 2 t = 3 · · ·

(Y1, Z1)
(γ,σ,β)

(h0,g0)
//

ηθ
²²

(Y2, Z2) //

²²

(Y3, Z3) //

²²

· · ·

(N1,W1)

δ
²²

c1

88rrrrrrrrrr

c2
// (N2,W2)

²²

88rrrrrrrrrr
// (N3,W3)

²²

;;wwwwwwwwww
// · · ·

M1 M2 M3 · · ·

Information omitted from this diagram include site-level total numbers of plants attempted

and recorded in each year Ñt and M̃t, the number of seedling recruits bt, and other constraints
imposed by aspects of the observation process to be described earlier in this section.

2.7. Likelihood Construction and Prior Specification
2.7.1. The Complete Data Likelihood
Adopting the classical terminology of data augmentation problems, the full- or complete-data
likelihood, containing the observed data vectors y, w,z, b and the (augmenting, or missing)
latent data vectors n,m, is given by

`1 (y; γ, σ,n)×`2 (w; y, η, n)×`3 (n; y, θ)×`4 (m; n, δ)×`5 (z; y, h0, g0, β)×`6 (b; w, λSe) (6)

`1 corresponds to the growth model outlined in section 2.3, `2 corresponds to the flowering
heads model outlined in section 2.4, `3 and `4 are models for ramets produced and establishing
based around models introduced in section 2.6, `5 is the lifetime distribution model outlined
in section 2.2 and `6 is the seed establishment model outlined in section 2.5. Note that the
missing data, the number of ramets attempted, appears in `1 and `2, due to the presences of
the costs-on-resources parameters c1 and c2.

2.7.2. The Culling Model
The conditional specifications described above are predicated on knowledge the missing ramet
production data, (Mi,t, Ni,t), for all plants at all sites in all years. However, updating these
parameters by simulating from their full conditional via `3 and `4 is not straightforward.

Consider the ramet production model at a single site in a single year, and the form of `3 and
`4. For any given year t for plant i, for the number of ramets attempted, Ni,t, and the number
that succeed Mi,t, we have a likelihood that is the product of a Poisson, a binomial and a
multivariate hypergeometric distribution. We have the (prior) model for Ni,t, i = 1, . . . , Rt in
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year t given by
Rt∏
i=1

λ
Ni,t

i,t exp {−λi,t}
Ni,t!

where, from Section 2.6, λi,t = θ. Secondly, due to the culling model in section 2.7.2, we have
a binomial model (

Ñt

M̃t

)
πM̃t

t (1− πt)
Ñt−M̃t

where πt is given by equation (5). Note that M̃t is directly observed as m̃t, the number of
successful new ramets observed the following year; recall that πt = π(δ, Rt), and δ is included
as a further parameter of interest. Finally, we have that

(
Ñt

M̃t

)−1 Rt∏
i=1

(
Ni,t

Mi,t

)
(7)

that is, a multivariate hypergeometric distribution which reflects that the binomial process
operating at the level of each individual ramet in each site’s population each year occurs

with respect to a total Ñt. Taking the product of these three functions, we are left with a
distribution proportional to

{
Rt∏
i=1

λ
Ni,t

i,t exp {−λi,t}
Ni,t!

}
×

{(
Ñt

M̃t

)
πM̃t

t (1− πt)
Ñt−M̃t

}
×

{(
Ñt

M̃t

)−1 Rt∏
i=1

(
Ni,t

Mi,t

)}
(8)

for each year of the data in each site. This is a convenient representation, as we observe the

total M̃t = m̃t for each year at each site, and hence, when we sample the (M1,t, ..., MRt,t) for
any year conditional on (N1,t = n1,t, ..., NRt,t = nRt,t), we can propose any numbers that sum

to m̃t, such that Vi,t ≤ Mi,t ≤ Ni,t for i = 1, . . . , Rt. Note that Ñt can be replaced by
∑Rt

i=1 Ni,t

in equation (8) whenever the Ni,t values are being updated; see section 3.1.

2.8. Prior specification
To complete the Bayesian model specification, prior distributions should also be specified. In
the analysis we present below, for the various linear predictor coefficient parameters γ, η, β and
δ, and the cost parameters c1 and c2, priors were chosen to be relatively uninformative, aside
from certain known positivity constraints (see section 2.5). The likelihood components for
all these elements are straightforward, and a considerable amount of data pertaining directly
to these parameters at the first stage of the hierarchy are available, thus we utilized proper
but relatively diffuse prior distributions (independent Normal priors with variance 100) as
a standard objective specification. We did perform rudimentary sensitivity analysis within
this diffuse class of priors, but noticed little difference in inferences made. We note here that
improper priors were not considered for these parameters, partly because of the possibility of
impropriety in the resulting posterior distribution.

The prior for the autoregressive variance parameter σ2 was, in contrast, chosen to be
relatively informative. The size of ramets on the log-scale was thought, a priori, to vary in
the range 0 to 3. The prior distribution for σ2 was chosen to reflect this prior knowledge
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of the marginal distribution of Y . Consequently, we selected an Inverse Gamma prior with
parameters ασ = 2.5, βσ = 2 and mean 2/(2.5-1); this gave a prior probability of approximately
0.93 that 0 < σ2 < 3. Sensitivity analysis with respect to this prior was also carried out,
but again led to minimal changes in inference. Note that, here, a non-informative prior is
acceptable - that is, does not lead to an improper posterior - but not particularly attractive
as substantive, albeit generic, prior information is available.

The prior for the discrete baseline hazard probabilities in the lifetime distribution, (h0, g0),
was chosen to be a Dirichlet(1, 1, 1) distribution, uniform on the two dimensional simplex.

In the model for the unobserved ramet numbers Ni,t, the prior was chosen to reflect bio-
logical reality. With high probability, the number of ramets attempted by any plant is less
than ten; indeed, a more realistic upper bound would be five. With this in mind, we began
with a Poisson(1) prior, and examined sensitivity of results when this prior was changed to
be Poisson(2) and Poisson(5).

3. Markov chain Monte Carlo Implementation

We now describe the Markov chain Monte Carlo (MCMC) strategy used. Generically, the
simplest form of the Metropolis-Hastings algorithm for target posterior distribution Ψ, a
product of the likelihoods and the prior distributions described above proceeds as follows. If
the state of the chain {Xt} at iteration t is given by Xt = u, then a candidate state v is
generated from conditional density q(u, v) = q(v|u), and accepted as the new state of the
chain (that is, we set Xt+1 = v) with probability α(u, v) given by

α(u, v) = min

{
1,

Ψ(v)q(v, u)

Ψ(u)q(u, v)

}
.

The usual MCMC approach to missing data inference problems involves using a Gibbs sampler
strategy, and we adopt this strategy here. Specifically, we sample the parameters conditional
on the imputed missing values, and then sample the missing values conditional on the current
values of the parameters. Given knowledge of {Nk : k ∈ K}, where K is the set of all pairs of
indices of plant and year, it is straightforward to simulate values from the conditional posterior
distribution for system parameters (γ, η, β, δ, σ). In particular sampling is straightforward
using the Metropolis-Hastings with Gibbs algorithm; the Markov chain is initialized, and
then candidate values for subsets of the parameters are proposed and accepted or rejected
iteratively in the usual way, conditional on fixed values of the remaining parameters, with
the subsets being updated in turn. The most effective strategy that we found involved using
the Metropolis algorithm with a symmetric proposal density (q(u, v) = q(v, u)); we chose
to sample candidates from a normal distribution around the current parameter values, with
variance chosen by tuning from pilot runs. In some cases, updating from the full conditional
distribution of a parameter is possible; for example, the seed establishment rate quantity λSe

has a Gamma full conditional density which can be sampled directly.
Sampling some of the missing data values, in particular the Nk,Mk values described in

previous sections under the constraints of the model, in an efficient fashion is more problematic.
We study the related problems in the following subsections.

3.1. Sampling the Nk given that Mk = mk

The full conditional posterior distributions for Nk, k ∈ K can be obtained directly from the
complete-data likelihood in equation (6). We propose two methods for sampling these vari-
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ates. In Method I, we use a conventional Metropolis-Hastings proposal based on a Poisson
approximation. For Method II, we use truncation and exact sampling from the discrete full
conditional distribution; details are given in Appendix A.4. Results indicate that Method I
and Method II give identical posterior distributions for all the parameters, indicating that
the truncation has no effect on the inference. In all the results below, we utilize Method II
implemented for all plants in parallel, as the Nk are conditionally independent.

3.2. Sampling the Mi given the Ni.
¿From (8) we have that the full conditional distribution for (M1,t, ..., MRt,t) given the number

of ramets attempted (N1,t, . . . , NRt,t) = (n1,t, . . . , nRt,t), and given that the total M̃t = m̃t, is a
multivariate discrete distribution proportional to the term in equation (7), that is, proportional
to a multivariate hypergeometric distribution. However, a direct sampling approach using
the multivariate hypergeometric does not respect the constraints on Mi,t imposed by the
observed data. Rewriting equation (8), we have the full conditional joint mass function for
(M1,t, ..., MRt,t)

p(m1,t, . . . , mRt,t) =
Rt∏
i=1

{(
ni,t

mi,t

)
π

mi,t

t (1− πt)
ni,t−mi,t

}
. (9)

The objective is to sample Mi,t, i = 1, . . . , Rt subject to the model and the constraints; in
particular for a subset of plants, where Vi,t = 1, we have Mi,t > 0. Rather than update
using the full conditional joint mass function above, we sample the Mi,t in turn from their full

conditionals. To respect the constraint M̃t = m̃t, a pair of indices (i1, i2) is chosen uniformly
at each iteration, we then update Mi1,t and Mi2,t from their joint full conditional distribution,
given values of all other Mi,t fixed at mi,t. Now, Mi1,t can take any value x in the range
xl ≤ x ≤ xu defined by the constraints

(i) that the sum Mi1,t + Mi2,t = mi1,t + mi2,t = mi1,i2 must remain fixed during the update

(ii) Mi1,t ≤ ni1,t and Mi2,t ≤ ni2,t

(iii) Vi1,t ≤ Mi1,t and Vi2,t ≤ Mi2,t

Therefore, up to proportionality, the full conditional distribution of Mi1,t takes the form

p(Mi1,t = x|πt, ni1,t, ni2,t) ∝
(

ni1,t

x

)
πx

t (1− πt)
ni1,t−x

(
ni2,t

mi1,i2 − x

)
π

mi1,i2
−x

t (1− πt)
ni2,t−mi1,i2

+x

for x = xl, . . . , xu, which defines a discrete distribution on a finite range which may be sampled
directly.

4. Robustness Issues: Analysis of simulated data:

Before addressing the real data, we used a simplified simulation to explore the behaviour of
the model in order to assess the impact of different proportions of missing (unobserved) ramet
count data. We created a sample population of ramets, with a starting number of individuals
chosen to reflect the data (∼ 50 ramets for seven sites). Initial sizes for each individual
were obtained as deviates from a normal distribution with mean and variance given by the
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mean and variance in log size of individuals of age 1 in the data (µA = 1.49, σ2
A = 0.35).

The fate of each of these simulated ramets (survival, death, flowering) was generated using
chosen parameters, and the equations given in Section 2.1. Likewise, total numbers of ramets
attempted by each individual (Section 2.4), number of flowering heads (Section 2.3) for those
ramets whose fate was to flower, and new size for those ramets whose fate it was to neither die
nor flower (Section 2.2) were generated. The simulation was then initiated. All computation
was performed using the statistical language R.

At each time step, new individuals appear into the population: either as successful seedlings
from seeds produced the previous year and establishing according to the chosen parameter
value for probability of seed establishment pe (Section 2.3); or as ramets produced from ramets
present the previous year, which successfully establish according to the current total number
of ramets in the population and the chosen value of the parameter δ (Section 2.4). Starting
sizes are generated for these according to µA and σ2

A as above. The fate of these individuals
and individuals surviving from the previous year is then established, based on their size and
chosen parameter values, and, the process is repeated. We simulated twelve years across seven
sites to match the data available, obtaining a total of ∼ 10000 observations across ∼ 3000
individuals. We then applied the model described above to these simulated data to explore
the ability of our model to make inference from this type of data.

Since inference on missing values denoting vegetative reproduction was a particular focus
of this study, we tested our model assuming that different proportions of the Nk and Mk

observations were completely known. In three studies, the proportion of individual Mk and
Nk values assumed to be known was fixed at 80%, 50% and 0 % respectively; the remaining
Mk and Nk assumed to be missing were simulated from using the approaches outlined in
section 2.7.2. We then compared estimates of parameter values obtained by these MCMC
simulations with parameter values corresponding to the maximum-likelihood estimates for
the whole dataset, taking all missing information on Mk and Nk as known.

Results from the simulations (see Figure 3) indicate that although the accuracy (in terms of
posterior variance) of the Bayesian estimate decreases when less information is available, there
is little evidence of significant bias, and that the procedure has good frequentist coverage, that
is, the true value often falls within the 95 % posterior credible interval even if no information
is available on the Nk and Mk beyond the constraints available in the data. Similar results are
obtained for the δ parameter. This result is encouraging, and further confirms the potential
of a full Bayesian approach.

5. Analysis of the Wavyleaf Data

Preliminary exploration suggested that site-specific intercepts should be fitted to the growth,
flower heads, and size dependent hazard functions; we wished to test whether the extension
to the full site-specific model is supported by the observed data. For the wavyleaf data, we
therefore considered two types of model:

I The Across-Site Model : In this model, intercepts in the various linear predictors are as-
sumed to vary across sites, but the coefficients of the continuous covariates are common
across sites. For example, in the growth model from Section 2.3, we assume a site-specific
intercept γ0, but a common slope γ1, in the linear predictor. A similar assumption is
made for the proportional odds hazards model, with site-specific parameters βh1 and βg1 ,
and for the number of flowering heads via site-specific η0 parameters.
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Growth cost

−0.12 −0.10 −0.08 −0.06

(a) 80% of Mi and Ni known

Growth cost

−0.12 −0.10 −0.08 −0.06

(b) 50% of Mi and Ni known

Growth cost

−0.12 −0.10 −0.08 −0.06 −0.04

(c) 0% of Mi and Ni known

Fig. 3. Posterior distributions on the c1 parameter from the model for growth in size from simulated data with different
percentages of known information for the Mi and Ni, taken over 1000 iterations after a burn-in of 1000 iterations. A solid
vertical line indicates the maximum likelihood cost parameter value estimated by taking all Mi and Ni as known. Dotted
lines indicate quantiles of the posterior distributions.

In total, ignoring the missing data, this model has a total of 38 parameters when all
seven sites are analyzed simultaneously.

II The Site-Specific Model : In this model, both intercepts and slopes in the various linear
predictors are assumed to vary across sites. This model allows us to inspect whether
there are any site-to-site differences.

Ignoring the missing data, this model has a total of 62 parameters.

On the basis of ecological prior knowledge, the slopes of number of flowering heads, η1 in
equation (3), were constrained to be non-negative. Note also that the cost on growth and
the cost on flowering heads due to ramet production, c1 and c2 were presumed to be common
parameters across all sites, as were the growth variance parameter σ2, the culling parameter
δ, and the seedling establishment rate λSe, although these assumptions could also be relaxed.

5.1. Posterior Inference
We implemented the MCMC algorithm described above for the real data set, collecting samples
over runs of 50000 iterations after a burn in of 10000 iterations. For the posterior summaries,
we thinned the output by taking every twentieth sample; see Appendix A.3 for further details
of strategies and convergence assessment. Figure 6 shows growth parameters γ for Model I
and Model II for prior values of Nk ∼ Poisson(1). Cost parameters for Model I and Model
II for prior distributions of Nk ∼ Poisson(1), Nk ∼ Poisson(2) and Nk ∼ Poisson(5) are
shown in Figure 4; likewise for δ in Figure 5. Table 2 provides posterior means and standard
deviations for all parameters for all models at the second site. Overall posteriors are well
defined. The cost parameters and density dependent parameters are sensitive to priors on Nk,
but similar in the Across-Sites and Site-Specific Models. Other parameters show no major
changes across the models (e.g. Table 2).

Across all models considered, there is evidence that production of a ramet reduces ramet
growth in size (the 95 % posterior credible interval for c1 is entirely in the negative domain),
but increases number of flowering heads (the 95 % posterior credible interval for c2 is entirely in
the positive domain, Figure 4). Overall, the models associated with posterior means accurately
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Fig. 4. Posterior boxplots: (a) c1 in Across-Site (grey, left) and Site-Specific (white, right) models for prior mean values
set to Nk ∼ Poisson(1), Nk ∼ Poisson(2), and Nk ∼ Poisson(5) (shown on the x axis); (b) c2, likewise.

reflect the data (Figure 7). The only slight discrepancy is in the relationship between log size
and baseline flowering hazard (Figure 7(c), dashed line), which does not appear to fit well for
larger sizes. The reason for this discrepancy appears to be the plateau in the flowering hazard
for log sizes above 2.75, which is not captured in the via the logistic link proportional odds
model we have suggested; the posterior mean curve shown is essentially determined by two
parameters, which are being tied down by the data at the lower log sizes, whereas an extra
parameter is needed.

Across all models considered, there is also evidence for strong density dependence act-
ing during ramet establishment in these populations. At the most dense populations ob-
served (Rt ∼ 250, see Figure 1), even at the high end (e.g. Model II, with the prior set to
Nk ∼ Poisson(1), see Table 2, Figure 5) only 22 % of new vegetative ramets will successfully
establish.

5.2. Model Selection
To compare the (nested) Models I and II formally in this context is problematic due to the
presence of the missing data in the formulation. Neither the Bayes Information Criterion
(BIC) nor the Deviance Information Criterion (DIC) is ideally suited to model selection when
missing data are present (see Celeux et al. 2006). The BIC for standard (non-hierarchical)
models equal is equal to

−2 log ̂̀+ p log n

where ̂̀ is the maximized likelihood value, p is the number of fitted parameters and n = 6981
is the sample size. In our models, it is not clear whether the terms involving the missing
data should be included in the likelihood, although as the amount of missing data for the two
analyses is identical, the BIC values should not be too misleading.

For the two models fitted, using equation (6) to compute log `, approximate BIC values
can be computed from the MCMC output. If the largest value of log ` observed in the MCMC

run is used instead of log ̂̀, then, for the model in our base analysis where Nk ∼ Poisson(1),
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Fig. 5. Posterior boxplots for δ in Across-Site (grey, left) and Site-Specific (white, right) models for prior mean values set
to Nk ∼ Poisson(1), Nk ∼ Poisson(2), and Nk ∼ Poisson(5) (shown on the x axis).
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Fig. 6. Posterior boxplots: γ parameters in the (a) Across-Sites and the (b) Site-Specific Models, prior mean is set to
Nk ∼ Poisson(1)
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Table 2. Posterior summaries (mean and standard deviation) obtained for the second site using Markov chain
Monte Carlo, for Model I and Model II for each of the priors tested, Nk ∼ Poisson(1), Nk ∼ Poisson(2), and
Nk ∼ Poisson(5). Underlined parameters are common to all sites in all models.

Model I Model II
Prior Prior

1 2 5 1 2 5

Density parameter δ -4.393
(0.037)

-3.354
(0.027)

-2.241
(0.022)

-4.397
(0.036)

-3.356
(0.027)

-2.241
(0.021)

Intercept growth γ0 2.419
(0.033)

2.433
(0.036)

2.407
(0.041)

2.481
(0.037)

2.489
(0.043)

2.454
(0.048)

Slope growth γ1 0.472
(0.016)

0.475
(0.016)

0.470
(0.017)

0.499
(0.030)

0.504
(0.031)

0.498
(0.031)

Variance in growth σ2 0.193
(0.006)

0.196
(0.006)

0.201
(0.005)

0.183
(0.007)

0.191
(0.006)

0.199
(0.005)

Ramet cost on growth c1 -0.096
(0.020)

-0.057
(0.013)

-0.019
(0.006)

-0.134
(0.019)

-0.074
(0.014)

-0.025
(0.007)

Intercept head function η0 0.826
(0.074)

0.564
(0.082)

0.063
(0.100)

0.822
(0.074)

0.558
(0.083)

0.047
(0.102)

Slope head function η1 1.641
(0.086)

1.650
(0.096)

1.670
(0.094)

1.701
(0.198)

1.691
(0.201)

1.689
(0.200)

Ramet cost on heads c2 0.524
(0.029)

0.395
(0.021)

0.261
(0.014)

0.535
(0.030)

0.397
(0.021)

0.264
(0.013)

Baseline mort. hazard h0 0.208
(0.013)

0.208
(0.012)

0.207
(0.012)

0.193
(0.018)

0.191
(0.017)

0.191
(0.018)

Baseline flower. hazard g0 0.244
(0.023)

0.244
(0.022)

0.247
(0.024)

0.272
(0.027)

0.273
(0.029)

0.271
(0.026)

Size mortality intercept βh1 0.070
(0.081)

0.068
(0.080)

0.069
(0.079)

0.148
(0.155)

0.167
(0.155)

0.169
(0.163)

Size mortality slope βh2 -0.639
(0.049)

-0.638
(0.049)

-0.641
(0.050)

-0.608
(0.099)

-0.606
(0.101)

-0.606
(0.100)

Size flowering intercept βg1 0.225
(0.164)

0.223
(0.158)

0.208
(0.169)

0.075
(0.174)

0.079
(0.186)

0.088
(0.177)

Size flowering slope βg2 3.248
(0.126)

3.247
(0.127)

3.253
(0.128)

3.067
(0.252)

3.068
(0.258)

3.077
(0.253)

Seedling establishment pe 0.176
(0.007)

0.176
(0.007)

0.176
(0.007)

0.176
(0.007)

0.176
(0.007)

0.176
(0.007)
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Fig. 7. Data for Site 2 and predicted fits for models based on posteriors from the Site-Specific model with the prior mean
set to Nk ∼ Poisson(1) for Site 2 (See Table 2, 4th column).
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we have for one typical run

Model I : −2(−21819.32) + 38 log(6981) ≈ 43975

Model II : −2(−21700.02) + 62 log(6981) ≈ 43950

These results indicate that Model II provides a globally better fit, but should be treated with
caution due to the presence of missing data. For the sensitivity analyses with different prior
settings Nk ∼ Poisson(2) and Nk ∼ Poisson(5), on a typical run we obtained the approximate
BIC values displayed below:

Prior Mean Model I BIC Model II BIC
1 43974.98 43948.80
2 52422.28 52650.04
5 63183.04 63306.68

These results clearly indicate that the conclusion of the optimal model is prior dependent.
The differences arise as the comparisons are effectively being carried out on different data
sets, due to the presence of Nk in equations (2) and (3), and the changing priors on these
variables, render formal comparison difficult.

The zero-truncated Poisson model from equation (4) was also fitted; from a similarly long
run, the BIC for the Nk ∼ Poisson(1) prior was estimated to be 44120 (for Model I equivalent)
and 43820 (for Model II equivalent), indicating that although is rather less interpretable
due to the complicated mean-variance relationship and the relationship between mean and
linear predictor, the zero-truncated Poisson model may improve fit for Model II under the
Nk ∼ Poisson(1) prior. Posterior summaries for the parameters, for the translated and zero-
truncated models are included in Table 3. The ecologically substantive inferences remain
unchanged.

5.3. Goodness of Fit and Model Adequacy
We also performed a model adequacy assessment for certain model components. A fully
Bayesian assessment of model adequacy would be preferable, but although several approaches
- based on well-defined posterior expectations, or posterior predictive quantities - have been
suggested, there are reservations attached to each of them - see Appendix A.5 for a discussion.

Here we instead adopt the following strategy, and appeal to an asymptotic justification.
In large samples, for regular models, any consistent estimator (Bayesian or otherwise) will
yield a reasonable estimate of the data-generating parameter, which suggests that rather than
computing a posterior expectation by averaging over the posterior samples, we might use a
plug-in estimate of the parameter before computing conventional residuals (or p-values). This
pragmatic approach is also open to criticism, but yields a readily interpretable result, and
reflects more accurately the objectives of the researcher.

Accordingly, to test goodness of fit, we generated a distribution of residuals from the models
for growth in size and flowering heads using posterior means for parameters. We mixed over
the Nk component by generating a random deviate from the Poisson distribution with mean
set by the prior Nk for every observed size (i.e. every individual at every time step), denoted
ni,t. For growth, residuals for every individual at every time step were generated as

(yi,t+1 − γ̂0 − γ̂1yi,t − ĉ1ni,t)/σ̂, (10)
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Table 3. Posterior summaries (mean and standard deviation) for Model II with the Nk ∼ Poisson(1) prior under
the translated and zero-truncated models. Note that, due to the different relationships between mean and linear
predictor in the two models, direct comparison of parameters η1, η2 and c2 is not straightforward.

Translated Zero Truncated

Density parameter δ -4.397
(0.036)

-4.397
(0.036)

Intercept growth γ0 2.481
(0.037)

2.494
(0.057)

Slope growth γ1 0.499
(0.030)

0.504
(0.034)

Variance in growth σ2 0.183
(0.007)

0.181
(0.010)

Ramet cost on growth c1 -0.134
(0.019)

-0.140
(0.032)

Intercept head function η0 0.822
(0.074)

1.151
(0.068)

Slope head function η1 1.701
(0.198)

1.439
(0.171)

Ramet cost on heads c2 0.535
(0.030)

0.439
(0.028)

Baseline mort. hazard h0 0.193
(0.018)

0.191
(0.019)

Baseline flower. hazard g0 0.272
(0.027)

0.027
(0.028)

Size mortality intercept βh1 0.148
(0.155)

0.155
(0.161)

Size mortality slope βh2 -0.608
(0.099)

-0.697
(0.111)

Size flowering intercept βg1 0.075
(0.174)

0.057
(0.181)

Size flowering slope βg2 3.067
(0.252)

4.097
(0.373)

Seedling establishment pe 0.176
(0.007)

0.175
(0.007)
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Fig. 8. Q-Q plot residuals for Site 2, Site-Specific model for the model for ramet growth in size.

where the γ̂0, γ̂1, etc. are posterior means. Likewise, for flowering head production, if λ̂S,i,t =
exp(η̂0 + η̂1yi,t + ĉ2ni,t), and wi,t is the observed number of flowering heads, the residuals were
generated as

(wi,t − 1− λ̂S,i,t)/
√

λS,i,t (11)

To mix over the prior, we generated five hundred values for ni,t and calculated residuals as
above. We then took the resulting full distribution for growth and flowering, and calculated
the associated mean and standard deviation. For all sites, for both ramet growth and flowering
head production, this did not deviate to any large degree from a Normal(0, 1) sample; see
Figure 8 for an example.

6. Discussion

The statistical model we describe here incorporates all important demographic aspects of this
species’ life history and it allows linkage between different demographic rates to be explicitly
considered. It also allows explicit parametrization of density dependence of ramet production,
despite considerable missing information. This ecological component has key implications
for population spread. The posteriors of the parameter δ indicate that density dependence
has a considerable effect. For the Site-Specific model with a prior set to Nk ∼ Poisson(1)
successful establishment of new vegetative ramets has a probability varying between 0.98
when population densities are low and 0.36 when population densities are high. For Nk ∼
Poisson(5) these probabilities become 0.82 and 0.03. All the evidence points to population
spread through vegetative reproduction decelerating rapidly at high densities, a key piece of
inference in understanding ecological systems.

Species’ demographic rates are necessarily inter-dependent, as in most systems resources
will be limited, so this will be critical for understanding ecological and evolutionary outcomes.
Most interestingly, although the results provide support for a negative effect of vegetative
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ramet production on growth in size (c1 < 0), the effect on flowering head production is
positive (c2 > 0). Unexplained heterogeneity across individuals might explain this pattern.
Some individuals might be in spatial areas of high resource availability, allowing them to
produce high numbers of both vegetative ramets and flowering heads. In particular, since
flowering and ramet production occur at the same time census, instant resource availability
per individual could be very important. By contrast, since growth in size is the result of
the entire period between census periods, the cumulative effect of resource expenditure is
more likely to become apparent, particularly if vegetative ramets remain connected to their
parent plants and continue to deplete their parents’ resources. This could be explored by
including individual effects through a mixed modelling approach. More detailed physiological
information on these species would also shed light on this. It would also help clarify which
prior specification for Nk should be favoured.

The detection of trade-offs between growth and asexual reproduction (i.e., c1 < 0) has
important implications for evolutionary outcomes as well as population dynamics and spread.
Conveniently, the statistical framework is an exact reflection of the theoretic demographic
model that could be used to predict population outcomes, the Integral Projection Model,
a key tool for ecological forecasting and evolutionary developments (Ellner & Rees, 2005),
facilitating the transition from parametrization to forecasting. The sensitivity of forecasting
to priors on Nk will both be an important part of this analysis, but also feed back into informing
which prior values are the most likely, from the population dynamics patterns obtained.

Statistically, a key innovation of the model is its direct incorporation both of missing
stages, and how they are affected by population level processes. Understanding the operation
of density dependence is one of the key challenges in population modelling (Lande et al., 2006).
The framework we present is generally applicable to systems with missing information on life
stages where density dependence is thought to be operating, and extensions such as those
suggested above are readily incorporated. This approach therefore may be of considerable use
in developing novel inference fundamental to addressing a range of ecological or evolutionary
questions.

Both the statistical model used, and the computational strategy seem to be effective in
the analysis of the wavyleaf data. The MCMC approach used is especially suited to solving
missing data problems where the constraints in the model are relatively complicated. The
imputation of the large number of missing values, the numbers of ramets attempted and
produced, is perhaps the most problematic step in terms of computation and speed of conver-
gence, and could be improved upon if a simultaneous update of all the missing values could
be achieved. In principle, this is straightforward as the full conditional distribution is dis-
crete, but the constraints render the support of this distribution rather awkward, as does its
high-dimensionality.

Finally, in our analysis, we have largely restricted ourselves to Poisson models for count
data, utilizing log-linear models for the Poisson rates, and with Binomial culling models. In
principle, it is straightforward to extend these models to more general ones without complicat-
ing the computational approach to any great degree. In other applications and for simulated
data, for example, we have implemented models with Negative Binomial likelihoods and plant-
specific random effects in the linear predictor. An extension of the constant baseline hazard
rate model to a time-dependent baseline hazard is also straightforward to implement, and
although this is not useful for the wavyleaf data, it may well be useful in other applications.
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Appendices

Appendix A.1. Notation Summary
• Data: for each ramet i in each year t

– the size yi,t and size the following year yi,t+1

– the survival status zi,t (1=death, 2=flower, 0=neither)

– the number of flowering heads wi,t if the ramet flowered

• Data: for each year t at each site

– the total number of recruits from seed bt

– the total number of recruits from vegetative ramets m̃t

• Missing Data: for each ramet i in each year t

– the number of ramets attempted Ni,t

– the number of ramets produced Mi,t

• The constraints:

– the total number of ramets produced at a site in any year is observed, that is, we
observe

Rt∑
i=1

Mi,t = m̃t

where Rt is the number of ramets at the site in the current year. Furthermore, we
observe, for some ramets, the fact that the ramet did produce ramets; that is, for
some i and t, we observe Mi,t > 0, or equivalently Vi,t = 1.

Appendix A.2. The model and likelihood components
In the following we consider data for a single site across all plants i and years t, and let
K ≡ {All combinations of i and t}.
• Growth in size: Under the Gaussian autoregressive model, we have

Yi,t+1|yi,t, γ, σ, ni,t ∼ Normal
(
γ0 + γ1yi,t + c1ni,t, σ

2
)

Therefore `1 (y; γ, σ, c1,n) is given by

`1 (y; γ, σ, c1,n) =
11∏

t=1

{
At∏
i=1

f1 (yi,t+1; yi,t, γ, c1, σ,n)

}
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with f1 the normal density, At the total number of individuals that survive in each year
t, and yi,t is a measure of ramet size. The initial state of the system, yi,1 is taken to be
fixed and determined by the observed distribution of sizes at the first time step. In the
final year of the study, no data are available for sizes the following year, so t < 12.

• Flowering heads: For k ∈ K
Wk|yk, η, c2, nk ∼ 1 + Poisson (exp{η0 + η1yk + c2nk})

As above, `2 (w; y, η, c2, n) is therefore

`2 (w; y, η, c2, n) =
12∏

t=1

{
Ft∏
i=1

f2 (wi,t − 1; yi,t, η, c2, ni,t)

}

with f2 the Poisson mass function, Ft the total number of flowering ramets in each year
t, and yi,t is the log size.

• Ramets Attempted: For k ∈ K
Nk|yk, θ ∼ Poisson (θ)

Then `3 (n; y, θ) is given by

`3 (n; y, θ) =
11∏

t=1

{
Rt∏
i=1

f3 (ni,t; yi,t, θ)

}

with f3 the Poisson mass function, Rt the total number of ramets in each year t, and yi,t

is a the log size. In the final year of the study, no data are available for total number of
ramets attempted and successfully establishing the following year, so t < 12.

• Ramets Observed: For k ∈ K,

Mk|Nk = nk, δ ∼ Binomial (nk, π (δ, R))

independently, therefore `4(m; n, δ) is given by

`4(m; n, δ) =
11∏

t=1

{
Rt∏
i=1

f4 (mi,t; ni,t, δ)

}

where f4 is deduced from the binomial model and the parameter δ determines the de-
creasing probability of ramet establishment with increasing Rt.

• The lifetime distribution: In the constant baseline hazard model, the distribu-
tion of zi,t|yi,t, βh, βg, h0, g0 has baseline hazards h0, g0 modified in a proportional odds
model by the log size, yi,t. The likelihood contribution for the lifetime component is
`5 (z; y, βh, βg, h0, g0) is therefore given by

`5 (z; y, βh, βg, h0, g0) =
12∏

t=1

{
Rt∏
i=1

f5 (zi,t; yi,t, βh, βg, h0, g0)

}

where f5 is the multinomial term appearing in the product in equation (1), with con-
tribution dictated by the indicator zi,t and individual terms described in Section 2.2.
Candidates for h0 and g0 were proposed in one of three ways:
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(i) from a symmetric Dirichlet distribution with parameters (1, 1, 1) corresponding to
the prior distribution for (h0, g0).

(ii) using an independence proposal from a Dirichlet distribution chosen from pilot runs.

(iii) using a local Metropolis-Hastings proposal on the logistic scale.

The acceptance probability was altered appropriately for each method, including a term
for the Jacobian of the transformation in (iii).

• Seed establishment: For each site in any year, assuming that each flowering head in the
previous year produces a number of seeds that is Poisson(λS) distributed independently
of all other plants, the total number of seeds produced S, and the number of seedlings
that establish, Bt, are related in the following hierarchical model by

S ∼ Poisson(FλS) Bt|pe, S ∼ Binomial (S, pe)

where F is the number of flowering heads from the previous year, and where Bt = bt is
directly observed in the data. Marginalizing over the unobserved S, we have that

Bt ∼ Poisson(FλSpe)

and hence in the simple model used where pe is presumed constant across sites, and
λSe = λSpe, the likelihood `6 (b; w, λSe) can be written down explicitly. In the final year
of the study, no data are available for total number of seedlings that successfully establish
the following year. The full conditional posterior for λSe can be obtained in closed form;
we have that

`6 (b; w, λSe) =
∏

l

(FlλSe)
bl

bl!
exp{−FlλSe} ∝ λ

∑
l bl

Se exp

{
−

∑

l

FlλSe

}

where l indexes the site/year combinations. Hence the full conditional takes the form

λSe|b,w ∼ Gamma

(∑

l

bl + αSe,
∑

l

Fl + βSe

)

where αSe = βSe = 1 are our chosen hyperparameters.

Appendix A.3. MCMC Implementation Details
The MCMC algorithm was implemented according to a tailored version of the strategy de-
scribed in the main paper (Section 3). The strategy was as follows; we performed pilot runs of
the algorithm using only local move Metropolis-Hastings steps, and then restarted the algo-
rithm from high posterior density region and used joint updates of the parameters in blocks,
with proposals tuned to capture the posterior correlation amongst the parameters. In the
final run, a burn-in of 10000 was used, and then the posterior samples were collected every
20 iterations to further minimize the serial autocorrelation. For most of the parameters, this
procedure was sufficient to practically remove all serial correlation from the collected samples.
The entire operation was implemented several times to check that the posterior was being
sampled appropriately.

For all analyses, we centered the variable yt to improve performance of the algorithms.
Site-specific means are
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Site 1 2 3 4 5 6 7
y 2.46 2.42 2.31 2.57 2.48 2.53 2.53

In every output sample we examined, after the pilot runs and tuning had been implemented,
the posterior trace plots had stabilized after 50000 iterations. Formal convergence was assessed
using Raftery and Lewis’s convergence diagnostic (Raftery and Lewis (1992)) and Heidelberger
and Welch’s convergence diagnostic (Heidelberger and Welch (1983)), both implemented using
the coda package in R for the MCMC for all parameters. The former is a single chain approach
focussed on the precision of estimation of certain posterior quantiles; we used the default coda
settings. The latter approach consists of testing the null hypothesis that the sampled values
come from a stationary distribution, using the Cramer-von-Mises statistic; and then using
confidence intervals on the proportion of the chain that passed the stationarity test to verify
that the chain is sufficiently long to capture variability in the mean. All tests were passed for
all parameters.

Appendix A.4. Sampling the Unobserved Ramets Attempted from Section 3.1
Two methods were used to sample the Ni quantities from their full conditional distribution:

• Method I: For each Ni,t, bearing in mind equation (8), the full conditional mass function
for Ni,t given Mi,t = mi,t is proportional to

`1(n)`2(n)× λn
i,t exp {−λi,t}

n!
× (1− πt)

n × n!

(n−mi,t)!
(12)

which is proportional to `1(n)`2(n)× gN (n) where

gN (n) =
{λi,t (1− πt)}n

(n−mi,t)!
∝ {λi,t (1− πt)}n−mi,t

(n−mi,t)!
n ≥ mi,t.

The function gN defines a probability distribution for Ni,t on {mi,t,mi,t + 1, ...} that can
be sampled directly, as

Nnew
i,t

L
= Poisson (λi,t (1− πt)) + mi,t

Sampling from this model as a proposal for Ni,t leaves the acceptance probability as

α(N old
i,t , Nnew

i,t ) = min

{
1,

`1

(
Nnew

i,t

)
`2

(
Nnew

i,t

)

`1

(
N old

i,t

)
`2

(
N old

i,t

)
}

.

Note that, by construction of gN , all other terms that are normally present in numera-
tor and denominator of the Hastings ratio cancel: generically, if density function π(x)
factorizes

π(x) ∝ f(x)g(x)

then a Metropolis-Hastings proposal with q(u, v) ≡ g(v) has Hastings ratio

α(u, v) = min

{
1,

π(v)q(v, u)

π(u)q(u, v)

}
= min

{
1,

f(v)g(v)g(u)

f(u)g(u)g(v)

}
= min

{
1,

f(v)

f(u)

}
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In our application f(N) = `1(N)`2(N) and g(N) = gN(N), so the acceptance probability
is

min

{
1,

`1 (Nnew
i ) `2 (Nnew

i )

`1

(
N old

i

)
`2

(
N old

i

)
}

.

• Method II: The full conditional posterior distribution for Ni,t, i = 1, . . . , Rt obtained from
(12) is a discrete distribution on {mi,t,mi,t + 1, . . .}. If we truncate the support at some
suitable value (say 20 or 30), then the distribution can be sampled directly using cdf
inversion; we can compute the distribution pointwise up to proportionality, and then
compute the normalizing constant by summing over the finite range.

Other proposal Metropolis-Hastings mechanisms can be used. Independent proposals subject
to the constraints can be readily implemented, with the concomitant change in the acceptance
probability. Typically, we would believe that the number of ramets attempted Ni,t is not
considerably larger than the number of ramets successful Mi,t, and a Geometric proposal
restricted to Ni,t ≥ mi,t would be suitable. Note that, given that Mi,t = mi,t, the set of Ni,t

values are conditionally independent, so can be updated in parallel.

Appendix A.5. Assessing Model Adequacy using Bayesian p-values
There is no universally accepted method for model assessment in a Bayesian setting; so-called
Bayesian p-values (see, for example, Gelman et al. (1996), de la Horra and Rodriguez-Bernal
(2001)) can be useful exploratory tools, but they can be difficult to interpret. As most typically
calculated, the Bayesian p-value is a posterior (predictive) average quantity, and is model and
sample size dependent. Generically, for observed data y and parameter θ, the posterior
predictive (or Bayesian) p-value is defined as the posterior probability

P [D(Y rep, θ, y) > 0|y] =

∫
D(Y rep, θ, y)p(θ|y) dθ

where Y rep is a hypothetical future data set, comparable with observed data y, D is an
antisymmetric discrepancy measure. This is a well-defined posterior predictive probability
which, intuitively, would be small if the model (likelihood and prior combined) does not
predict the data well. This quantity is readily computed from MCMC output and is a useful
exploratory tool. In any specific application, the user is required so specify the discrepancy
function D, and also potentially the portion of y that is to be used for comparison. For
example, for the wavyleaf data, we might consider the log size data component, and use a
discrepancy based on the sum of prediction errors across the entire data set

D(yrep, θ, y) =
∑
i,t

(
yrep

i,t − yi,t

)
(13)

where the collection of yrep
i,t values are sampled at each MCMC iteration from the conditional

distribution given as before, in the autoregressive model, as

Y rep
i,t |yi,t−1, γ, σ, ni,t−1 ∼ N

(
γ0 + γ1yi,t−1 + c1ni,t−1, σ

2
)

By construction, the distribution of the random quantity D(Y rep, θ, y) should be centered
at zero, and the Bayesian p-value should be near zero or one only if there is an appreciable
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difference between yrep and y, that is, if the observed data and the hypothetical data generated
under the model differ greatly. It is usually straightforward to propose and compute such a
suitable discrepancy for different aspects of the observed data.

We computed the Bayesian p-value for the the wavyleaf data, under Model II with the
Poisson(1) prior for Nk. We implemented this approach with the discrepancy in equation (13)
for the log size data, and obtained a Bayesian p-value of 0.50 with a Monte Carlo standard
error of 0.01. The distribution of D(Y rep, θ, y) is displayed in Figure 9.

Distribution of D(Yrep, θ, y)
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Fig. 9. Distribution of sampled D(Y rep, θ, y)

However, despite being suitable in certain circumstances for identifying major model mis-
specification (see Gelman (2003) for persuasive support), Bayesian p-values remain contro-
versial. In addition to the potential difficulties of implementation (for example, the choice of
discrepancy), the mathematical properties of the Bayesian p-value are somewhat problematic;
see Hjort et al. (2006) and Bayarri and Castellanos (2007) for a discussion and extensions.
Unlike the frequentist p-value, which is uniformly distributed if the fitted model is correct (and
under standard asymptotic assumptions), the Bayesian p-value has, in general, no specific dis-
tribution even if the model being fitted is the correct (data-generating) model. For small data
sets, bootstrap methods can be used to calibrate the p-value correctly, as its distribution un-
der hypothetical replicate data sets can be constructed, but this is extremely computationally
demanding and not feasible for large data sets. Overall the Bayesian p-value is not well-suited
to formal model assessment.

Similar arguments apply to “Bayesian residuals”; a possible (and commonly implemented)
MCMC strategy is to compute classical residuals at each iteration, and to store and then
summarize the resulting posterior samples of the residuals; again, the distribution of the
resulting samples, or sample summaries, is not straightforward to understand.

In both cases, it is the Bayesian posterior averaging that is causing difficulties in interpre-
tation. Thus, despite being potentially useful as an informal diagnostic, there is little formal
(decision-theoretic) justification for the use of Bayesian p-values.
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