557: Mathematical Statistics II Large Sample and Asymptotic Results

We now assess the properties of statistical procedures when the sample size n becomes large (large sample theory), or in the limit as n tends to infinity (asymptotic theory).

5.1 Point Estimators

Consider a potentially infinite sequence of random variables $X_{1}, X_{2}, \ldots, X_{n}, \ldots$, and a corresponding sequence of estimators $\left\{T_{n}, n \geq 1\right\}$ of parameter $\tau(\theta)$, where, for each n,

$$
T_{n} \equiv T_{n}\left(X_{1}, \ldots, X_{n}\right) .
$$

Consistency and Asymptotic Unbiasedness

The sequence $\left\{T_{n}, n \geq 1\right\}$ is consistent for $\tau(\theta)$ if

$$
T_{n} \longrightarrow \tau(\theta) \quad \forall \theta
$$

in probability (weak consistency), almost surely (strong consistency), or in r th mean for some r (for $r=2$, mean-square consistency). The sequence of estimators is asymptotically unbiased for $\tau(\theta)$ if

$$
\lim _{n \longrightarrow \infty} \mathrm{E}_{f_{T_{n} \mid \theta}}\left[T_{n} \mid \theta\right]=\tau(\theta) .
$$

Recall that $X_{n} \xrightarrow{r=2} X \Longrightarrow X_{n} \xrightarrow{p} X$, so that mean-square consistency implies weak consistency. Then

$$
\mathrm{E}_{f_{T_{n} \mid \theta}}\left[\left(T_{n}-\tau(\theta)\right)^{2} \mid \theta\right]=\operatorname{Var}_{f_{T_{n} \mid \theta}}\left[T_{n} \mid \theta\right]+\left(\mathrm{E}_{f_{T_{n} \mid \theta}}\left[T_{n}-\tau(\theta) \mid \theta\right]\right)^{2}
$$

so mean-square consistency follows if T_{n} is asymptotically unbiased and has variance converging to zero. The asymptotic variance of T_{n} is σ^{2} if, for some sequence of constants $\left\{k_{n}\right\}$,

$$
\lim _{n \longrightarrow \infty} k_{n} \operatorname{Var}_{f_{T_{n} \mid \theta}}\left[T_{n} \mid \theta\right]=\sigma^{2}<\infty
$$

Efficiency
A sequence of asymptotically unbiased estimators $T_{n}=T_{n}(\underset{\sim}{X})$ of $\tau(\theta)$ is efficient if the variance of $\sqrt{n}\left(T_{n}-\tau(\theta)\right)$ converges to the lower bound on variance dictated by the Cramér-Rao result, that is

$$
\lim _{n \longrightarrow \infty} n \mathrm{E}_{f_{T_{n} \mid \theta}}\left[\left(T_{n}-\tau(\theta)\right)^{2} \mid \theta\right]=(\dot{\tau}(\theta))^{2} \mathcal{I}(\theta)^{-1}
$$

Note: For finite n, an unbiased estimator T is sometimes termed efficient if its variance attains the Cramér-Rao lower bound; the efficiency, $e_{T}(\theta)$, of an unbiased estimator of θ is defined by

$$
e_{T}(\theta)=\frac{\mathcal{I}(\theta)^{-1}}{\operatorname{Var}_{f_{T \mid \theta}}[T \mid \theta]}
$$

These definitions can be extended to the multivariate case.

Asymptotic Relative Efficiency

Consider two estimators $\tau(\theta), T_{1 n}=T_{1 n}(\underset{\sim}{X})$ and $T_{2 n}=T_{2 n}(\underset{\sim}{X})$. The Asymptotic Relative Efficiency (ARE) of $T_{1 n}$ with respect to $T_{2 n}$ is defined as the ratio of their asymptotic mean-square errors (AMSE)

$$
\operatorname{ARE}_{\theta}\left(T_{1 n}, T_{2 n}\right)=\frac{\operatorname{AMSE}_{\theta}\left(T_{2 n}\right)}{\operatorname{AMSE}_{\theta}\left(T_{1 n}\right)}=\frac{\lim _{\longrightarrow} \mathrm{E}_{f_{T_{2 n} \mid \theta}}\left[\left(T_{2 n}-\tau(\theta)\right)^{2}\right]}{\lim _{\longrightarrow} \mathrm{E}_{f_{T_{1 n} \mid \theta}}\left[\left(T_{1 n}-\tau(\theta)\right)^{2}\right]} .
$$

For two asymptotically unbiased estimators, the ARE is the ratio of the asymptotic variances.

Asymptotic Behaviour Of The Maximum Likelihood Estimator

Consider a random sample x_{1}, \ldots, x_{n} from a probability model indexed by parameter $\underset{\sim}{\theta} \in \Theta \subseteq \mathbb{R}^{d}$, with density denoted $f_{X \mid \theta}$ with support \mathbb{X}. Denote the true value of $\underset{\sim}{\theta}$ by ${\underset{\sim}{\theta}}_{0}^{\theta}$. Denote by $L(\underset{\sim}{\theta} \mid \underset{\sim}{x})$ and $l(\theta \mid \underset{\sim}{x})$ the likelihood and \log likelihood respectively, and denote by

$$
i_{j}(\underset{\sim}{\theta})=\frac{\partial l(\underset{\theta}{\theta} \mid x)}{\partial \theta_{j}} \quad \ddot{l}_{j k}(\underset{\sim}{\theta} \mid x)=\frac{\partial^{2} l(\underset{\theta}{\theta} \mid x)}{\partial \theta_{j} \partial \theta_{k}} \quad \dddot{l}_{j k l}(\underset{\sim}{\theta} \mid x)=\frac{\partial^{3} l(\underset{\theta}{\theta} \mid x)}{\partial \theta_{j} \partial \theta_{k} \partial \theta_{l}}
$$

the partial derivatives up to order three of $l(\underset{\sim}{\mid x} \mid x)=\log f_{X \mid \theta}(x \mid \underset{\sim}{\theta})$. Note that

$$
l_{n}(\underset{\sim}{\theta})=l\left(\underset{\sim}{\theta} \mid x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} l\left(\underset{\sim}{\theta} \mid x_{i}\right)
$$

and, for the

$$
\begin{equation*}
i_{n}(\theta)=\underset{\sim}{\dot{i}}\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \dot{i}\left(\theta \mid x_{i}\right)=\sum_{i=1}^{n} \frac{\dot{f}_{X \mid \theta}\left(x_{i} \mid \underset{\sim}{\theta}\right)}{f_{X \mid \underline{\theta}}\left(x_{i} \mid \underset{\sim}{\theta}\right)} \tag{1}
\end{equation*}
$$

with similar results for the other derivatives. Under mild regularity conditions, we prove that a solution to the equation found by equating (1) to zero provides an estimate for which the corresponding estimator that is weakly consistent for θ_{0}.

Regularity Conditions:

A1. Identifiability : $f_{X \mid \theta_{1}}\left(x \mid{\underset{\sim}{\theta}}_{1}\right)=f_{X \mid \theta_{2}}\left(x \mid{\underset{\sim}{\theta}}_{2}\right) \forall x \in \mathbb{X} \quad \Longleftrightarrow \quad{\underset{\sim}{\theta}}_{1}=\underset{\sim}{\theta_{2}}$
A2. \mathbb{X} does not depend on $\underset{\sim}{\theta}$.
A3. Θ contains an open neighbourhood, $\Theta_{0} \subset \mathbb{R}^{d}$, of θ_{0}
To find the maximum likelihood estimate, we solve the system of likelihood equations

$$
\begin{equation*}
\dot{\underline{i}}_{n}(\theta)=\underset{\sim}{\dot{i}}(\theta \mid x)=0 \tag{LE}
\end{equation*}
$$

that is, a system of d equations based on the first partial derivative vector $\underset{\sim}{i}$.
First, note that if $\underset{\sim}{\theta} \neq \underbrace{}_{0}$,

$$
T_{n}\left(\underset{\sim}{x},{\underset{\sim}{\theta}}_{0}, \underset{\sim}{\theta}\right)=\frac{1}{n} \frac{l_{n}(\underset{\sim}{\theta})}{l_{n}({\underset{\theta}{0}})}=\frac{1}{n} \sum_{i=1}^{n} \log \left\{\frac{f_{X \mid \theta}(x \mid \underset{\theta}{\theta})}{f_{X \mid \theta}\left(x \mid \theta_{0}\right)}\right\}
$$

then, as $n \longrightarrow \infty$, by the weak law of large numbers (WLLN), say,
where $K\left(\theta_{0}, \underset{\sim}{\theta}\right)$ is the Kullback-Leibler divergence between the pdfs with parameters ${\underset{\sim}{0}}_{0}$ and $\underset{\sim}{\theta}$. Hence, by A1, $T_{n}(\underset{\sim}{X}, \underset{\sim}{\theta}, \underset{\sim}{\theta})$ converges to something negative. Thus, for all $\underset{\sim}{\theta} \neq{\underset{\sim}{\theta}}_{0}$,

$$
\begin{equation*}
\operatorname{Pr}\left[L\left({\underset{\sim}{\theta}}_{0} \mid \underset{\sim}{X}\right)>L(\underset{\sim}{\theta} \mid \underset{\sim}{X}) \mid{\underset{\sim}{\theta}}_{0}\right] \longrightarrow 1 \tag{2}
\end{equation*}
$$

as $n \longrightarrow \infty$; with probability converging to 1 , the likelihood at θ_{0} is greater than the likelihood elsewhere in Θ.

Consistency and Asymptotic Normality: Univariate Case

In the case $d=1$, it is now straightforward to show that a solution - not necessarily the maximum likelihood solution - to the equation (LE) is weakly consistent for θ_{0}, under additional regularity conditions: provided that the log-likelihood is suitably differentiable with respect to θ on Θ_{0}.

A3. Θ contains an open neighbourhood, $\Theta_{0} \subset \mathbb{R}$, of θ_{0} on which
(i) $l(\theta \mid x)$ is twice continuously differentiable with respect to θ for all $x \in \mathbb{X}$.
(ii) Third derivatives of $l(\theta \mid x)$ exist and are absolutely bounded, that is for $\theta \in \Theta_{0}$

$$
|\dddot{l}(\theta \mid x)| \leq M(x) \quad \text { where } \quad \mathrm{E}_{f_{X \mid \theta}}\left[M(X) \mid \theta_{0}\right]<m<\infty
$$

A4.

$$
E_{f_{X \mid \theta}}\left[i\left(\theta_{0} \mid X\right)\right]=0 \quad E_{f_{X \mid \theta}}\left[\left(i\left(\theta_{0} \mid X\right)\right)^{2}\right]<\infty
$$

Consistency: Let $a>0$ and consider the set

$$
B_{a} \equiv\left\{\underset{\sim}{x}: L\left(\theta_{0}-a \mid \underset{\sim}{x}\right)<L\left(\theta_{0} \mid \underset{\sim}{x}\right) \text { and } L\left(\theta_{0}+a \mid \underset{\sim}{x}\right)<L\left(\theta_{0} \mid \underset{\sim}{x}\right)\right\} \subset \Theta_{0}
$$

By equation (2), $\operatorname{Pr}\left(B_{a}\right) \longrightarrow 1$ as $n \longrightarrow \infty$. Therefore, with probability tending to one,

$$
L\left(\theta_{0}-a \mid \underset{\sim}{x}\right)<L\left(\theta_{0} \mid \underset{\sim}{x}\right)>L\left(\theta_{0}+a \mid x\right) .
$$

As the log-likelihood is differentiable in a neighbourhood of $\theta_{0}, L(\theta \mid x)$ has a local maximum, $\widetilde{\theta}_{n}(a)$, in the set $\left(\theta_{0}-a, \theta_{0}+a\right)$, at which

$$
i_{n}\left(\widetilde{\theta}_{n}(a)\right)=0 .
$$

Hence, for a arbitrarily small

$$
\operatorname{Pr}\left[\left|\widetilde{\theta}_{n}(a)-\theta_{0}\right|<a \mid \theta_{0}\right] \longrightarrow 1
$$

as $n \longrightarrow \infty$, so therefore the sequence of estimators $\left\{\widetilde{\theta}_{n}(a), n \geq 1\right\}$ converges in probability to θ_{0}. To obtain the required result independent of $a, \operatorname{let} \widetilde{\theta}_{n}$ be the root of the likelihood equations closest to θ_{0}.
Note that this portion of the proof only requires differentiability of $f_{X \mid \theta}(x \mid \theta)$ on an open neighbourhood Θ_{0}, and not the remaining parts of $A 3$ and $A 4$.
Asymptotic Normality: Consider a Taylor expansion of $\dot{l_{n}}(\theta)$ around θ_{0}

$$
i_{n}(\theta)=\dot{l}_{n}\left(\theta_{0}\right)+\left(\theta-\theta_{0}\right) \ddot{l}_{n}\left(\theta_{0}\right)+\frac{1}{2}\left(\theta-\theta_{0}\right)^{2} \dddot{l}_{n}\left(\theta^{\star}\right)
$$

where θ^{\star} lies between θ_{0} and θ. Evaluating this at $\theta=\widetilde{\theta}_{n}$, a root of the likelihood equation, we have

$$
0=\dot{l}_{n}\left(\widetilde{\theta}_{n}\right)=\dot{l}_{n}\left(\theta_{0}\right)+\left(\widetilde{\theta}_{n}-\theta_{0}\right) \ddot{l}_{n}\left(\theta_{0}\right)+\frac{1}{2}\left(\widetilde{\theta}_{n}-\theta_{0}\right)^{2} \dddot{l}_{n}\left(\theta_{n}^{\star}\right)
$$

so that on rearrangement

$$
\sqrt{n}\left(\widetilde{\theta}_{n}-\theta_{0}\right)=\frac{i_{n}\left(\theta_{0}\right) / \sqrt{n}}{-(1 / n) \ddot{l}_{n}\left(\theta_{0}\right)-(1 / 2 n)\left(\widetilde{\theta}_{n}-\theta_{0}\right) \dddot{l}_{n}\left(\theta_{n}^{\star}\right)}
$$

Now, in terms of X_{1}, \ldots, X_{n} as $n \longrightarrow \infty$, by the Central Limit Theorem

$$
\frac{1}{\sqrt{n}} \dot{l}_{n}\left(\theta_{0}\right)=\sqrt{n} \frac{1}{n}\left\{\sum_{i=1}^{n} \frac{\dot{f}_{X \mid \theta}\left(X_{i} \mid \theta_{0}\right)}{f_{X \mid \theta}\left(X_{i} \mid \theta_{0}\right)}\right\}=\sqrt{n} S\left(\underset{\sim}{X} ; \theta_{0}\right) \xrightarrow{d} Z \sim \operatorname{Normal}\left(0, V\left(\theta_{0}\right)\right)
$$

where

$$
V\left(\theta_{0}\right)=\operatorname{Var}_{f_{X \mid \theta}}\left[S\left(X ; \theta_{0}\right)\right]=\mathcal{I}\left(\theta_{0}\right) .
$$

Similarly, by the Weak Law of Large Numbers, as $n \longrightarrow \infty$,

$$
-\frac{1}{n} \ddot{l}_{n}\left(\theta_{0}\right)=\frac{1}{n} \sum_{i=1}^{n} \Psi\left(\theta_{0} ; X_{i}\right) \xrightarrow{p} \mathcal{I}\left(\theta_{0}\right) .
$$

Finally, with probability tending to 1 ,

$$
\left|\frac{1}{n} \dddot{l}_{n}\left(\theta_{n}^{\star}\right)\right|=\left|\frac{1}{n} \sum_{i=1}^{n} \dddot{l}\left(\theta_{n}^{\star} ; X_{i}\right)\right|<\frac{1}{n} \sum_{i=1}^{n} M\left(X_{i}\right) \xrightarrow{p} \mathrm{E}_{f_{X \mid \theta}}\left[M(X) \mid \theta_{0}\right] .
$$

Hence, as $\widetilde{\theta}_{n} \longrightarrow \theta_{0},\left(\widetilde{\theta}_{n}-\theta_{0}\right) \xrightarrow{p} 0$, and

$$
\frac{1}{n}\left(\widetilde{\theta}_{n}-\theta_{0}\right) \dddot{l}_{n}\left(\theta_{n}^{\star}\right) \xrightarrow{p} 0 .
$$

Thus, by Slutsky's Theorem

$$
\sqrt{n}\left(\widetilde{\theta}_{n}-\theta_{0}\right) \xrightarrow{d} \operatorname{Normal}\left(0, \mathcal{I}\left(\theta_{0}\right)^{-1}\right)
$$

Extension to the Multivariate Case

With extensions to the regularity conditions, we can provide a similar result in the multivariate case.

Extended Regularity Conditions:

A3. Θ contains an open neighbourhood, $\Theta_{0} \subset \mathbb{R}^{d}$, of ${\underset{\sim}{~}}_{0}$ on which
(i) $l(\underset{\sim}{\theta} \mid x)$ is twice continuously differentiable with respect to θ for all $x \in \mathbb{X}$.
(ii) Third derivatives of $l(\theta \mid x)$ exist and are absolutely bounded, that is

$$
\left|\dddot{l}_{j k l}(\underset{\sim}{\theta} \mid x)\right| \leq M_{j k l}(x) \quad \underset{\sim}{\theta} \in \Theta_{0}
$$

for all j, k, l, for some function $M_{j k l}(x)$ where

$$
E_{f_{X \mid \theta_{0}}}\left[M_{j k l}(X) \mid{\underset{\sim}{0}}_{0}\right]<m_{j k l}<\infty
$$

A4. (i) $E_{f_{X \mid \theta_{0}}}\left[i_{j}\left(\theta_{0} \mid X\right)\right]=0$ for $j=1, \ldots, d$.
(ii) $E_{f_{X \mid \oplus_{0}}}\left[\left(i_{j}\left(\theta_{0} \mid X\right)\right)^{2}\right]<\infty$ for $j=1, \ldots, d$.
(iii) The $k \times k$ Fisher information matrix $\mathcal{I}\left({\underset{\sim}{0}}_{0}\right)$ with $(j, k)^{\text {th }}$ entry

$$
\mathcal{I}_{j k}\left(\theta_{0}\right)=E_{f_{X \mid \theta_{0}}}\left[-\ddot{l}_{j k}\left(\theta_{0} \mid X\right)\right]
$$

is positive definite.

Existence, Consistency and Asymptotic Normality of a Root of the Likelihood Equations

Suppose that conditions A1 to A4 hold. Then, as $n \longrightarrow \infty$, with probability converging to 1 , there exist solutions $\tilde{\theta}_{n}$ of the likelihood equations (LE) such that

$$
\tilde{\theta}_{n} \xrightarrow{p}{\underset{\theta}{0}}_{0} .
$$

In addition

$$
\sqrt{n}\left(\tilde{\theta}_{n}-{\underset{\sim}{\theta}}_{0}\right) \xrightarrow{d} \operatorname{Normal}\left(\underset{\sim}{0}, \mathcal{I}\left(\theta_{0}\right)^{-1}\right)
$$

Proof (NOT EXAMINABLE)

Let $a>0$, and define Q_{a} such that $Q_{a}=\left\{\underset{\sim}{\theta} \in \Theta:\left\|\underset{\sim}{\theta}-{\underset{\sim}{\theta}}_{0}\right\|=a\right\}$. Consider a third order Taylor expansion of ${\underset{\sim}{l}}_{n}(\underset{\sim}{\theta})$ of around θ_{0}. Rearranging, and dividing by n, we have

$$
\begin{align*}
\frac{1}{n}\left(l_{n}(\underset{\sim}{\theta})-l_{n}\left({\underset{\sim}{0}}_{0}\right)\right) & =\frac{1}{n} \sum_{j=1}^{k} A_{j}(\underset{\sim}{x})\left(\theta_{j}-\theta_{0 j}\right)+\frac{1}{2 n} \sum_{j=1}^{d} \sum_{k=1}^{d} B_{j k}(\underset{\sim}{x})\left(\theta_{j}-\theta_{0 j}\right)\left(\theta_{k}-\theta_{0 k}\right) \\
& +\frac{1}{6 n} \sum_{j=1}^{d} \sum_{k=1}^{d} \sum_{l=1}^{d}\left(\theta_{j}-\theta_{j 0}\right)\left(\theta_{k}-\theta_{k 0}\right)\left(\theta_{l}-\theta_{l 0}\right)\left\{\sum_{i=1}^{n} \gamma_{j k l}\left(x_{i}\right) M_{j k l}\left(x_{i}\right)\right\} \tag{3}\\
& =s_{1}+s_{2}+s_{3}
\end{align*}
$$

say, where $0 \leq\left|\gamma_{j k l}(x)\right| \leq 1$, and, for $j, k=1, \ldots, d$,

$$
A_{j}(\underset{\sim}{x})=i_{j}\left(\theta_{0} \mid x\right) \quad B_{j k}(\underset{\sim}{x})=\ddot{l}_{j k}\left(\theta_{0} \mid x\right)
$$

Let S_{1}, S_{2} and S_{3} be the random variables corresponding to the quantities s_{1}, s_{2} and s_{3}. We aim to show that the supremum of $\left(l_{n}(\underset{\sim}{\theta})-l_{n}\left(\theta_{0}\right)\right) / n$ on Q_{a} is negative with probability tending to 1 if a is sufficiently small; to do this, we show that the supremum of S_{2} is negative, while S_{1} and S_{2} are negligible compared to S_{2}. Now, by the WLLN and assumption A3(i),

$$
\begin{equation*}
\frac{1}{n} A_{j}(\underset{\sim}{X})=\frac{1}{n} i_{j}\left(\theta_{0} \mid \underset{\sim}{X}\right) \xrightarrow{p} \mathrm{E}_{f_{X \mid \theta_{0}}}\left[i_{j}\left(\theta_{0} \mid X\right)\right]=0 \tag{4}
\end{equation*}
$$

and by the WLLN

$$
\begin{equation*}
\frac{1}{n} B_{j k}(\underset{\sim}{X})=\frac{1}{n} \ddot{l}_{j k}\left(\theta_{0} \mid x\right) \xrightarrow{p} \mathrm{E}_{f_{X| |_{0}}}\left[\ddot{l}_{j k}\left(\theta_{0} \mid X\right)\right]=-\mathcal{I}_{j k}\left(\theta_{0}\right) \tag{5}
\end{equation*}
$$

On Q_{a}, we have

$$
\left|S_{1}\right| \leq \frac{1}{n} a \sum_{j=1}^{d}\left|A_{j}(\underset{\sim}{X})\right|
$$

so that for any a, as $n \longrightarrow \infty$, from equation (4), with probability tending to 1 ,

$$
\frac{1}{n}\left|A_{j}(\underset{\sim}{X})\right|<a^{2} \quad \therefore \quad\left|S_{1}\right|<s a^{3}
$$

Secondly,

$$
\begin{aligned}
2 S_{2} & =\frac{1}{n} \sum_{j=1}^{d} \sum_{k=1}^{d} B_{j k}(\underset{\sim}{X})\left(\theta_{j}-\theta_{0 j}\right)\left(\theta_{k}-\theta_{0 k}\right) \\
& =\sum_{j=1}^{d} \sum_{k=1}^{d}\left(\frac{1}{n} B_{j k}(\underset{\sim}{X})-\left(-\mathcal{I}_{j k}\left({\underset{\sim}{0}}_{0}\right)\right)\right)\left(\theta_{j}-\theta_{0 j}\right)\left(\theta_{k}-\theta_{0 k}\right)+\sum_{j=1}^{d} \sum_{k=1}^{d}\left(-\mathcal{I}_{j k}\left({\underset{\sim}{0}}_{0}\right)\right)\left(\theta_{j}-\theta_{0 j}\right)\left(\theta_{k}-\theta_{0 k}\right)
\end{aligned}
$$

As before, as $n \longrightarrow \infty$, from equation (5), with probability tending to 1 ,

$$
\begin{equation*}
\left|\sum_{j=1}^{d} \sum_{k=1}^{d}\left(\frac{1}{n} B_{j k}(\underset{\sim}{X})-\left(-\mathcal{I}_{j k}\left({\underset{\sim}{0}}^{0}\right)\right)\right)\left(\theta_{j}-\theta_{0 j}\right)\left(\theta_{k}-\theta_{0 k}\right)\right|<s^{2} a^{3} \tag{6}
\end{equation*}
$$

whereas the second term is the constant quadratic form

$$
\sum_{j=1}^{d} \sum_{k=1}^{d}\left(-\mathcal{I}_{j k}\left({\underset{\sim}{\theta}}_{0}\right)\right)\left(\theta_{j}-\theta_{0 j}\right)\left(\theta_{k}-\theta_{0 k}\right)=-\left(\underset{\sim}{\theta}-{\underset{\sim}{\theta}}_{0}\right)^{\top} \mathcal{I}\left({\underset{\sim}{\theta}}_{0}\right)\left(\underset{\sim}{\theta}-{\underset{\sim}{\theta}}_{0}\right) .
$$

Now, as $\mathcal{I}\left(\theta_{0}\right)$ is positive definite, it has a singular value decomposition $\mathcal{I}\left(\theta_{0}\right)=V^{\top} D V$, where D is the diagonal eigenvalue matrix $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$, with $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{d}$, and V is the matrix of eigenvectors, with $V^{\top} V=I_{d}$. Thus

$$
-\left(\underset{\sim}{\theta}-{\underset{\sim}{\theta}}_{0}\right)^{\top} \mathcal{I}\left({\underset{\sim}{\theta}}_{0}\right)\left(\underset{\sim}{\theta}-{\underset{\sim}{\theta}}_{0}\right)=-\sum_{j=1}^{d} \lambda_{j} \xi_{j}\left({\underset{\sim}{0}}_{0}, \underset{\sim}{\theta}\right)^{2}
$$

where $\underset{\sim}{\xi}\left({\underset{\sim}{\theta}}_{0}, \underset{\sim}{\theta}\right)=V\left(\underset{\sim}{\theta}-{\underset{\sim}{\theta}}_{0}\right)$, so that

$$
\sum_{j=1}^{d} \xi_{j}\left(\underline{\theta}_{0}, \underset{\sim}{\theta}\right)^{2}=\underset{\sim}{\xi}\left(\theta_{0}, \underset{\sim}{\theta}\right)^{\boldsymbol{\top}} \underset{\sim}{\xi}\left(\theta_{0}, \underset{\sim}{\theta}\right)=\left(\underset{\sim}{\theta}-{\underset{\sim}{\theta}}_{0}\right)^{\top} V^{\boldsymbol{\top}} V\left(\underset{\sim}{\theta}-\underline{\theta}_{0}\right)=\left(\underset{\sim}{\theta}-\underline{\theta}_{0}\right)^{\top}\left(\underset{\sim}{\theta}-\underline{\theta}_{0}\right)=\sum_{j=1}^{d}\left(\theta_{j}-\theta_{0 j}\right)^{2}
$$

Now, on the surface of the hypersphere $Q_{a},\left\|\left(\underset{\sim}{\theta}-{\underset{\sim}{\theta}}_{0}\right)\right\|=a$ so

$$
\begin{equation*}
\sum_{j=1}^{d} \xi_{j}\left({\underset{\sim}{\theta}}_{0}, \underset{\sim}{\theta}\right)^{2}=a^{2} \geq \lambda_{1} \sum_{j=1}^{d} \xi_{j}\left({\underset{\sim}{\theta}}_{0}, \underset{\sim}{\theta}\right)^{2} \geq \lambda_{1} a^{2} \quad \therefore \quad-\left(\underset{\sim}{\theta}-{\underset{\sim}{\theta}}_{0}\right)^{\top} \mathcal{I}\left({\underset{\sim}{\theta}}_{0}\right)\left(\underset{\sim}{\theta}-{\underset{\sim}{\theta}}_{0}\right) \leq-\lambda_{1}^{2} a^{2} \tag{7}
\end{equation*}
$$

Hence, combining equations (6) and (7), with probability tending to 1, for a small enough, $S_{2}<-c a^{2}$. Finally, for S_{3}, with probability tending to 1,

$$
\left|\frac{1}{n} \sum_{i=1}^{n} M_{j k l}\right|<2 m_{j k l} \quad \therefore \quad\left|S_{3}\right|<\frac{1}{6} s^{3} a^{3} \sum_{j=1}^{d} \sum_{k=1}^{d} \sum_{l=1}^{d} m_{j k l}=b a^{3}
$$

say. Thus, combining results we have

$$
\sup _{\theta \in Q_{a}}\left(S_{1}+S_{2}+S_{3}\right) \leq \sup _{\theta \in Q_{a}} S_{2}+\sup _{\theta \in Q_{a}}\left\|S_{1}+S_{3}\right\|<-c a^{2}+(b+s) a^{2}
$$

which is negative if $a<c /(b+s)$. Thus, l has a local maximum inside Q_{a}, as for n large enough, with probability at least $1-\epsilon$ that is, as $\left(l_{n}(\underset{\sim}{\theta})-l_{n}\left(\theta_{0}\right)\right) / n<0$, or equivalently,

$$
\operatorname{Pr}\left[l_{n}(\underset{\sim}{\theta})<l_{n}\left({\underset{\sim}{\theta}}_{0}\right) \text { for all } \underset{\sim}{\theta} \in Q_{a} \mid{\underset{\sim}{\theta}}_{0}\right] \longrightarrow 1 \quad \text { as } \quad n \longrightarrow \infty .
$$

Therefore, as the likelihood equations (LE) are satisfied at local maxima, it follows that (with probability converging to 1 as $n \longrightarrow \infty$) there exists a solution, $\tilde{\theta}_{n}(a)$, inside Q_{a}, for any a small enough. Thus the result follows as

$$
\lim _{n \longrightarrow \infty} \operatorname{Pr}\left[\left\|\tilde{\theta}_{n}(a)-{\underset{\theta}{\theta}}\right\|<a\right]=1 \quad \therefore \quad \quad \underset{\sim}{\tilde{\theta}_{n}}(a) \xrightarrow{p}{\underset{\sim}{\theta}}_{0} .
$$

The proof of asymptotic normality proceeds in a similar fashion to the univariate case; by multivariate Taylor's Theorem in the $d \times 1$ system of equations

$$
\frac{1}{\sqrt{n}} \dot{l}_{n}\left(\ddot{\theta}_{0}\right)=-\frac{1}{\sqrt{n}} \ddot{l}_{n}\left({\underset{\theta}{\theta}}_{0}\right)\left({\underset{\theta}{\theta}}_{n}-{\underset{\sim}{\theta}}_{0}\right)-\frac{1}{2 \sqrt{n}}\left(\widetilde{\theta}_{n}-{\underset{\sim}{\theta}}_{0}\right)^{\top} \ddot{\sim}_{n}\left(\theta_{\sim}^{\star}\right)\left(\widetilde{\theta}_{n}-{\underset{\sim}{\theta}}_{0}\right)
$$

The left hand side converges in probability (and in distribution) to $Z \sim \operatorname{Normal}\left(\underset{\sim}{0}, \mathcal{I}\left(\theta_{0}\right)\right)$, and for the right hand side,

$$
-\frac{1}{n}\left[\ddot{\ddot{\ddot{m}}}_{n}\left({\underset{\sim}{0}}_{0}\right)+\frac{1}{2}\left(\widetilde{\theta}_{n}-{\underset{\sim}{\theta}}_{0}\right)^{\top} \dddot{\sim}_{n}\left({\underset{\sim}{\theta}}_{n}^{\star}\right)\right] \xrightarrow{p} \mathcal{I}\left(\theta_{0}\right)
$$

by analogy with the univariate case. Hence by Slutsky's Theorem, for large n,

$$
-\frac{1}{\sqrt{n}}\left[\ddot{\ddot{l}}_{n}\left({\underset{\sim}{\theta}}_{0}\right)+\frac{1}{2}\left(\widetilde{\theta}_{n}-{\underset{\sim}{\theta}}_{0}\right)^{\top} \dddot{\sim}_{n}\left({\underset{\sim}{\theta}}_{n}^{\star}\right)\right]\left(\widetilde{\theta}_{n}-{\underset{\sim}{\theta}}_{0}\right)=\mathcal{I}\left({\underset{\sim}{\theta}}_{0}\right) \sqrt{n}\left(\widetilde{\theta}_{n}-{\underset{\sim}{\theta}}_{0}\right)+\mathbf{o}_{P}(1)
$$

where $\mathrm{o}_{P}(1)$ represents a term that converges in probability to zero. Hence

$$
\sqrt{n}\left(\widetilde{\theta}_{n}-{\underset{\sim}{\theta}}_{0}\right) \xrightarrow{p} Z \sim \operatorname{Normal}\left(\underset{\sim}{0}, \mathcal{I}\left({\underset{\sim}{0}}_{0}\right)^{-1}\right)
$$

and the result is proved.

