
557: MATHEMATICAL STATISTICS II
LARGE SAMPLE AND ASYMPTOTIC RESULTS

We now assess the properties of statistical procedures when the sample size n becomes large (large
sample theory), or in the limit as n tends to infinity (asymptotic theory).

5.1 Point Estimators
Consider a potentially infinite sequence of random variables X1, X2, . . . , Xn, . . ., and a corresponding
sequence of estimators {Tn, n ≥ 1} of parameter τ(θ), where, for each n,

Tn ≡ Tn(X1, . . . , Xn).

Consistency and Asymptotic Unbiasedness
The sequence {Tn, n ≥ 1} is consistent for τ(θ) if

Tn −→ τ(θ) ∀ θ

in probability (weak consistency), almost surely (strong consistency), or in rth mean for some r (for r = 2,
mean-square consistency). The sequence of estimators is asymptotically unbiased for τ(θ) if

lim
n−→∞EfTn|θ [Tn|θ] = τ(θ).

Recall that Xn
r=2−→ X =⇒ Xn

p−→ X , so that mean-square consistency implies weak consistency. Then

EfTn|θ [(Tn − τ(θ))2|θ] = VarfTn|θ [Tn|θ] +
(

EfTn|θ [Tn − τ(θ)|θ]
)2

so mean-square consistency follows if Tn is asymptotically unbiased and has variance converging to
zero. The asymptotic variance of Tn is σ2 if, for some sequence of constants {kn},

lim
n−→∞ knVarfTn|θ [Tn|θ] = σ2 < ∞

Efficiency
A sequence of asymptotically unbiased estimators Tn = Tn(X˜ ) of τ(θ) is efficient if the variance of√

n (Tn − τ(θ)) converges to the lower bound on variance dictated by the Cramér-Rao result, that is

lim
n−→∞n EfTn|θ [(Tn − τ(θ))2|θ] = (τ̇(θ))2 I(θ)−1

Note: For finite n, an unbiased estimator T is sometimes termed efficient if its variance attains the
Cramér-Rao lower bound; the efficiency, eT (θ), of an unbiased estimator of θ is defined by

eT (θ) =
I(θ)−1

VarfT |θ [T |θ]
.

These definitions can be extended to the multivariate case.

Asymptotic Relative Efficiency
Consider two estimators τ(θ), T1n = T1n(X˜ ) and T2n = T2n(X˜ ). The Asymptotic Relative Efficiency
(ARE) of T1n with respect to T2n is defined as the ratio of their asymptotic mean-square errors (AMSE)

AREθ(T1n, T2n) =
AMSEθ(T2n)
AMSEθ(T1n)

=
lim

n−→∞EfT2n|θ
[(T2n − τ(θ))2]

lim
n−→∞EfT1n|θ

[(T1n − τ(θ))2]
.

For two asymptotically unbiased estimators, the ARE is the ratio of the asymptotic variances.
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Asymptotic Behaviour Of The Maximum Likelihood Estimator
Consider a random sample x1, . . . , xn from a probability model indexed by parameter θ˜ ∈ Θ ⊆ Rd,
with density denoted fX|θ˜

with support X. Denote the true value of θ˜ by θ˜0. Denote by L(θ˜|x˜) and
l(θ˜|x˜) the likelihood and log likelihood respectively, and denote by

l̇j(θ˜) =
∂l(θ˜|x)

∂θj
l̈jk(θ˜|x) =

∂2l(θ˜|x)
∂θj∂θk

...
l jkl (θ˜|x) =

∂3l(θ˜|x)
∂θj∂θk∂θl

the partial derivatives up to order three of l(θ˜|x) = log fX|θ˜
(x|θ˜). Note that

ln(θ˜) = l(θ˜|x1, . . . , xn) =
n∑

i=1

l(θ˜|xi)

and, for the

l̇n(θ) = l̇˜(θ˜|x1, . . . , xn) =
n∑

i=1

l̇(θ˜|xi) =
n∑

i=1

ḟX|θ˜
(xi|θ˜)

fX|θ˜
(xi|θ˜)

(1)

with similar results for the other derivatives. Under mild regularity conditions, we prove that a solu-
tion to the equation found by equating (1) to zero provides an estimate for which the corresponding
estimator that is weakly consistent for θ˜0.

Regularity Conditions:

A1. Identifiability : fX|θ˜1
(x|θ˜1) = fX|θ˜2

(x|θ˜2) ∀ x ∈ X ⇐⇒ θ˜1 = θ˜2

A2. X does not depend on θ˜.

A3. Θ contains an open neighbourhood, Θ0 ⊂ Rd, of θ˜0

To find the maximum likelihood estimate, we solve the system of likelihood equations

l̇˜n(θ˜) = l̇˜(θ˜|x˜) = 0 (LE)

that is, a system of d equations based on the first partial derivative vector l̇˜.

First, note that if θ˜ 6= θ˜0,

Tn(x˜, θ˜0, θ˜) =
1
n

ln(θ˜)
ln(θ˜0)

=
1
n

n∑

i=1

log

{
fX|θ(x|θ˜)
fX|θ˜

(x|θ˜0)

}

then, as n −→∞, by the weak law of large numbers (WLLN), say,

Tn(X˜ , θ˜0, θ˜)
p−→ EfX|θ˜

[
log

fX|θ˜
(X|θ˜)

fX|θ˜
(X|θ˜0)

]
=

∫
log

{
fX|θ(x|θ˜)
fX|θ˜

(x|θ˜0)

}
fX|θ˜

(x|θ˜0) dx = −K(θ˜0, θ˜) < 0

where K(θ˜0, θ˜) is the Kullback-Leibler divergence between the pdfs with parameters θ˜0 and θ˜. Hence,
by A1, Tn(X˜ , θ˜0, θ˜) converges to something negative. Thus, for all θ˜ 6= θ˜0,

Pr[L(θ˜0|X˜ ) > L(θ˜|X˜ )|θ˜0] −→ 1 (2)

as n −→ ∞; with probability converging to 1, the likelihood at θ˜0 is greater than the likelihood else-
where in Θ.
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Consistency and Asymptotic Normality: Univariate Case
In the case d = 1, it is now straightforward to show that a solution - not necessarily the maximum likeli-
hood solution - to the equation (LE) is weakly consistent for θ0, under additional regularity conditions:
provided that the log-likelihood is suitably differentiable with respect to θ on Θ0.

A3. Θ contains an open neighbourhood, Θ0 ⊂ R, of θ0 on which
(i) l(θ|x) is twice continuously differentiable with respect to θ for all x ∈ X.

(ii) Third derivatives of l(θ|x) exist and are absolutely bounded, that is for θ ∈ Θ0

∣∣∣...l (θ|x)
∣∣∣ ≤ M(x) where EfX|θ [M(X)| θ0] < m < ∞

A4.
EfX|θ

[
l̇(θ0|X)

]
= 0 EfX|θ

[
(l̇(θ0|X))2

]
< ∞.

Consistency: Let a > 0 and consider the set

Ba ≡
{
x˜ : L(θ0 − a|x˜) < L(θ0|x˜) and L(θ0 + a|x˜) < L(θ0|x˜)

} ⊂ Θ0

By equation (2), Pr(Ba) −→ 1 as n −→∞. Therefore, with probability tending to one,

L(θ0 − a|x˜) < L(θ0|x˜) > L(θ0 + a|x˜).

As the log-likelihood is differentiable in a neighbourhood of θ0, L(θ|x˜) has a local maximum, θ̃n(a), in
the set (θ0 − a, θ0 + a), at which

l̇n(θ̃n(a)) = 0.

Hence, for a arbitrarily small
Pr[|θ̃n(a)− θ0| < a|θ0] −→ 1

as n −→ ∞, so therefore the sequence of estimators {θ̃n(a), n ≥ 1} converges in probability to θ0. To
obtain the required result independent of a, let θ̃n be the root of the likelihood equations closest to θ0.

Note that this portion of the proof only requires differentiability of fX|θ(x|θ) on an open neighbourhood Θ0, and
not the remaining parts of A3 and A4.

Asymptotic Normality: Consider a Taylor expansion of ˙ln(θ) around θ0

l̇n(θ) = l̇n(θ0) + (θ − θ0)l̈n(θ0) +
1
2
(θ − θ0)2

...
l n (θ?)

where θ? lies between θ0 and θ. Evaluating this at θ = θ̃n, a root of the likelihood equation, we have

0 = l̇n(θ̃n) = l̇n(θ0) + (θ̃n − θ0)l̈n(θ0) +
1
2
(θ̃n − θ0)2

...
l n (θ?

n)

so that on rearrangement

√
n(θ̃n − θ0) =

l̇n(θ0)/
√

n

−(1/n)l̈n(θ0)− (1/2n)(θ̃n − θ0)
...
l n (θ?

n)

Now, in terms of X1, . . . , Xn as n −→∞, by the Central Limit Theorem

1√
n

l̇n(θ0) =
√

n
1
n

{
n∑

i=1

ḟX|θ(Xi|θ0)
fX|θ(Xi|θ0)

}
=
√

nS(X˜ ; θ0)
d−→ Z ∼ Normal(0, V (θ0))

3



where
V (θ0) = VarfX|θ [S(X; θ0)] = I(θ0).

Similarly, by the Weak Law of Large Numbers, as n −→∞,

− 1
n

l̈n(θ0) =
1
n

n∑

i=1

Ψ(θ0; Xi)
p−→ I(θ0).

Finally, with probability tending to 1,
∣∣∣∣
1
n

...
l n (θ?

n)
∣∣∣∣ =

∣∣∣∣∣
1
n

n∑

i=1

...
l (θ?

n; Xi)

∣∣∣∣∣ <
1
n

n∑

i=1

M(Xi)
p−→ EfX|θ [M(X)|θ0].

Hence, as θ̃n −→ θ0, (θ̃n − θ0)
p−→ 0, and

1
n

(θ̃n − θ0)
...
l n (θ?

n)
p−→ 0.

Thus, by Slutsky’s Theorem √
n(θ̃n − θ0)

d−→ Normal(0, I(θ0)−1)

Extension to the Multivariate Case

With extensions to the regularity conditions, we can provide a similar result in the multivariate case.

Extended Regularity Conditions:

A3. Θ contains an open neighbourhood, Θ0 ⊂ Rd, of θ˜0 on which
(i) l(θ˜|x) is twice continuously differentiable with respect to θ˜ for all x ∈ X.

(ii) Third derivatives of l(θ˜|x) exist and are absolutely bounded, that is
∣∣∣...l jkl (θ˜|x)

∣∣∣ ≤ Mjkl(x) θ˜ ∈ Θ0

for all j, k, l, for some function Mjkl(x) where

EfX|θ˜0
[Mjkl(X)| θ˜0] < mjkl < ∞

A4. (i) EfX|θ˜0

[
l̇j(θ˜0|X)

]
= 0 for j = 1, . . . , d.

(ii) EfX|θ˜0

[
(l̇j(θ˜0|X))2

]
< ∞ for j = 1, . . . , d.

(iii) The k × k Fisher information matrix I(θ˜0) with (j, k)th entry

Ijk(θ˜0) = EfX|θ˜0

[
−l̈jk(θ˜0|X)

]

is positive definite.

Existence, Consistency and Asymptotic Normality of a Root of the Likelihood Equations
Suppose that conditions A1 to A4 hold. Then, as n −→∞, with probability converging to 1, there exist
solutions θ̃˜n of the likelihood equations (LE) such that

θ̃˜n
p−→ θ˜0.

In addition √
n(θ̃˜n − θ˜0)

d−→ Normal(0
˜
, I(θ˜0)−1)
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Proof (NOT EXAMINABLE)
Let a > 0, and define Qa such that Qa = {θ˜ ∈ Θ : ‖θ˜− θ˜0‖ = a}. Consider a third order Taylor
expansion of l˜n

(θ˜) of around θ˜0. Rearranging, and dividing by n, we have

1
n

(ln(θ˜)− ln(θ˜0)) =
1
n

k∑

j=1

Aj(x˜)(θj − θ0j) +
1
2n

d∑

j=1

d∑

k=1

Bjk(x˜)(θj − θ0j)(θk − θ0k)

+
1
6n

d∑

j=1

d∑

k=1

d∑

l=1

(θj − θj0)(θk − θk0)(θl − θl0)

{
n∑

i=1

γjkl(xi)Mjkl(xi)

}
(3)

= s1 + s2 + s3

say, where 0 ≤ |γjkl(x)| ≤ 1, and, for j, k = 1, . . . , d,

Aj(x˜) = l̇j(θ˜0|x˜) Bjk(x˜) = l̈jk(θ˜0|x˜)

Let S1, S2 and S3 be the random variables corresponding to the quantities s1, s2 and s3. We aim to
show that the supremum of (ln(θ˜)− ln(θ˜0))/n on Qa is negative with probability tending to 1 if a is
sufficiently small; to do this, we show that the supremum of S2 is negative, while S1 and S2 are
negligible compared to S2. Now, by the WLLN and assumption A3(i),

1
n

Aj(X˜ ) =
1
n

l̇j(θ˜0|X˜ )
p−→ EfX|θ˜0

[l̇j(θ˜0|X)] = 0 (4)

and by the WLLN
1
n

Bjk(X˜ ) =
1
n

l̈jk(θ˜0|x˜)
p−→ EfX|θ˜0

[l̈jk(θ˜0|X)] = −Ijk(θ˜0) (5)

On Qa, we have

|S1| ≤ 1
n

a
d∑

j=1

|Aj(X˜ )|

so that for any a, as n −→∞, from equation (4), with probability tending to 1,

1
n
|Aj(X˜ )| < a2 ∴ |S1| < sa3

Secondly,

2S2 =
1
n

d∑

j=1

d∑

k=1

Bjk(X˜ )(θj − θ0j)(θk − θ0k)

=
d∑

j=1

d∑

k=1

(
1
n

Bjk(X˜ )− (−Ijk(θ˜0))
)

(θj − θ0j)(θk − θ0k) +
d∑

j=1

d∑

k=1

(−Ijk(θ˜0))(θj − θ0j)(θk − θ0k)

As before, as n −→∞, from equation (5), with probability tending to 1,
∣∣∣∣∣∣

d∑

j=1

d∑

k=1

(
1
n

Bjk(X˜ )− (−Ijk(θ˜0))
)

(θj − θ0j)(θk − θ0k)

∣∣∣∣∣∣
< s2a3 (6)

whereas the second term is the constant quadratic form

d∑

j=1

d∑

k=1

(−Ijk(θ˜0))(θj − θ0j)(θk − θ0k) = −(θ˜− θ˜0)TI(θ˜0)(θ˜− θ˜0).
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Now, as I(θ˜0) is positive definite, it has a singular value decomposition I(θ˜0) = V TDV , where D is
the diagonal eigenvalue matrix D = diag(λ1, . . . , λd), with 0 < λ1 ≤ λ2 ≤ · · · ≤ λd, and V is the
matrix of eigenvectors, with V TV = Id. Thus

−(θ˜− θ˜0)TI(θ˜0)(θ˜− θ˜0) = −
d∑

j=1

λj ξj(θ˜0, θ˜)2

where ξ
˜
(θ˜0, θ˜) = V (θ˜− θ˜0), so that

d∑

j=1

ξj(θ˜0, θ˜)2 = ξ
˜
(θ˜0, θ˜)Tξ

˜
(θ˜0, θ˜) = (θ˜− θ˜0)TV TV (θ˜− θ˜0) = (θ˜− θ˜0)T(θ˜− θ˜0) =

d∑

j=1

(θj − θ0j)2

Now, on the surface of the hypersphere Qa, ‖(θ˜− θ˜0)‖ = a so
d∑

j=1

ξj(θ˜0, θ˜)2 = a2 ≥ λ1

d∑

j=1

ξj(θ˜0, θ˜)2 ≥ λ1 a2 ∴ −(θ˜− θ˜0)TI(θ˜0)(θ˜− θ˜0) ≤ −λ2
1a

2 (7)

Hence, combining equations (6) and (7), with probability tending to 1, for a small enough, S2 < −ca2.
Finally, for S3, with probability tending to 1,

∣∣∣∣∣
1
n

n∑

i=1

Mjkl

∣∣∣∣∣ < 2mjkl ∴ |S3| < 1
6
s3a3

d∑

j=1

d∑

k=1

d∑

l=1

mjkl = ba3

say. Thus, combining results we have

sup
θ˜∈Qa

(S1 + S2 + S3) ≤ sup
θ˜∈Qa

S2 + sup
θ˜∈Qa

‖S1 + S3‖ < −ca2 + (b + s)a2

which is negative if a < c/(b + s). Thus, l has a local maximum inside Qa, as for n large enough, with
probability at least 1− ε that is, as (ln(θ˜)− ln(θ˜0))/n < 0, or equivalently,

Pr
[

ln(θ˜) < ln(θ˜0) for all θ˜ ∈ Qa | θ˜0

] −→ 1 as n −→∞.

Therefore, as the likelihood equations (LE) are satisfied at local maxima, it follows that (with
probability converging to 1 as n −→∞) there exists a solution, θ̃˜n(a), inside Qa, for any a small
enough. Thus the result follows as

lim
n−→∞Pr[ ‖θ̃˜n(a)− θ˜0‖ < a ] = 1 ∴ θ̃˜n(a)

p−→ θ˜0.

The proof of asymptotic normality proceeds in a similar fashion to the univariate case; by
multivariate Taylor’s Theorem in the d× 1 system of equations

1√
n

l̇˜n(θ˜0) = − 1√
n

l̈˜n(θ˜0)(θ̃˜n − θ˜0)− 1
2
√

n
(θ̃n − θ˜0)T

...
l˜n(θ˜

?
n
)(θ̃n − θ˜0)

The left hand side converges in probability (and in distribution) to Z ∼ Normal(0
˜
, I(θ˜0)), and for the

right hand side,

− 1
n

[
l̈˜n(θ˜0) +

1
2
(θ̃n − θ˜0)T

...
l˜n(θ˜

?
n
)
]

p−→ I(θ˜0)

by analogy with the univariate case. Hence by Slutsky’s Theorem, for large n,

− 1√
n

[
l̈˜n(θ˜0) +

1
2
(θ̃n − θ˜0)T

...
l˜n(θ˜

?
n
)
]

(θ̃n − θ˜0) = I(θ˜0)
√

n(θ̃n − θ˜0) + oP (1)

where oP (1) represents a term that converges in probability to zero. Hence
√

n(θ̃n − θ˜0)
p−→ Z ∼ Normal(0

˜
, I(θ˜0)−1)

and the result is proved.
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