
557: MATHEMATICAL STATISTICS II
INTERVAL ESTIMATION

For a random sample X1, . . . , Xn from parametric probability model fX|θ(x|θ), an interval estimator
for scalar parameter θ comprises a pair of statistics, (L(X˜ ), U(X˜ )), such that for all x˜ ∈ X ,

L(x˜) ≤ U(x˜).

Specifically, the interval estimator for θ is the random closed interval [L(X˜ ), U(X˜ )]; for data x˜, the
reported inference is that L(x˜) ≤ θ ≤ U(x˜). Note that L(.) and U(.) may take the value infinity
yielding one-sided intervals, and that open intervals may be used on occasion.

For interval estimator [L(X˜ ), U(X˜ )], the following quantities describe the properties of the estimator:

• Coverage Probability: The coverage probability is defined as

γL,U (θ) = Pr[θ ∈ [L(X˜ ), U(X˜ )]|θ] =
∫

Xθ

fX˜ |θ
(x˜|θ) dx˜

where
Xθ ≡ {x˜ : L(x˜) ≤ θ ≤ U(x˜)}

defines a region in X .

• Confidence Coefficient or Level : The confidence coefficient or level is defined as

inf
θ∈Θ

γL,U (θ)

Often, the interval estimator is selected so that the confidence level is equal to some fixed target
value, say 1−α. In practice, this is the only procedure that is possible, as in general the true value
of θ is unknown, so that although the coverage probability function γL,U (θ) can be identified, the
specific value at which it should be evaluated is not typically known.

Interval estimators are also referred to as confidence intervals. Note that, more generally confidence
sets could be considered if the set x˜ ∈ X is not a single interval, but is instead the union of intervals
in R. When constructing interval estimators, it may be necessary to use procedures that cannot be
guaranteed to return a single interval.

4.1 Methods of Finding Interval Estimators
Four methods of constructing interval estimators are typically used:

(I) Procedures based on Hypothesis Test Rejection Regions : Consider a test T at level α of simple
null hypothesis

H0 : θ = θ0

for θ0 ∈ Θ. Let A(θ0) ≡ R(θ0)′ denote the acceptance region (the complement of the rejection
region) associated with the test for each value of θ0. For x˜ ∈ X , define

C(x˜) ≡ {θ0 : x˜ ∈ A(θ0)}
to be a subset of Θ; for fixed data x˜, C(x˜) is the set of θ0 values that would not lead to rejection of
the null hypothesis under T . Then by construction

Pr[X˜ /∈ A(θ0) | θ0] = Pr[X˜ ∈ R(θ0) | θ0] ≤ α =⇒ Pr[X˜ ∈ A(θ0) | θ0] ≥ 1− α

But, by construction, for any θ ∈ Θ, the coverage probability of C(X˜ ) is

Pr[θ ∈ C(X˜ ) | θ] ≡ Pr[X˜ ∈ A(θ) | θ] ≥ 1− α
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so therefore C(X˜ ) is a 1− α confidence set. Conversely, if C(X˜ ) is a 1− α confidence set, then we
can reverse the argument to see that if

A(θ0) ≡ {x˜ : θ0 ∈ C(x˜)} and R(θ0) ≡ A(θ0)′

then
Pr[X˜ ∈ R(θ0) | θ0] = Pr[X˜ /∈ A(θ0) | θ0] ≡ Pr[θ0 /∈ C(X˜ ) | θ0] ≤ α

so the test of H0 : θ = θ0 based on rejection region R(θ0) is an α level test.

Note that a confidence set constructed by inverting the acceptance region of a test may be an
interval, or the union of disjoint intervals of R.

(II) Procedures based on Pivotal Quantities : A pivotal quantity is a random quantity Q(X˜ , θ)
whose distribution fQ does not depend on θ. For any set A, the probability

Pr[Q(X˜ , θ) ∈ A] =
∫

A
fQ(x˜) dx˜

does not depend on θ. An interval estimator for θ can be constructed by examining

C(x˜) ≡ {θ : Q(x˜, θ) ∈ A}.

(III) Procedures based on CDFs : Suppose that T (X˜ ) is a statistic with continuous cdf FT |θ(t|θ). Then,
provided that FT |θ exhibits monotonicity in θ, a confidence interval can be constructed directly.
• FT |θ is stochastically decreasing in θ if for θ1 < θ2,

FT |θ(t|θ1) < FT |θ(t|θ2) ∀t ∈ T .

For example, any location family model is stochastically decreasing in the location parame-
ter θ; for instance, the logistic location family cdf is a decreasing function of θ for all t:

FT |θ(t|θ) =
e(t−θ)

1 + e(t−θ)
=

1
1 + e−(t−θ)

t ∈ R (1)

• FT |θ is stochastically increasing in θ if for θ1 < θ2,

FT |θ(t|θ1) > FT |θ(t|θ2) ∀t ∈ T
For instance, the Exponential(θ) distribution cdf is an increasing function of θ for all t:

FT |θ(t|θ) = 1− e−θt t ∈ R+ (2)

Let 0 < α1, α2 < 1 with 0 < α1 + α2 < 1, and set α = α1 + α2. In the monotonic case, define the
quantities θL(t) and θU (t) by
• if FT |θ is decreasing in θ

FT |θ(t|θU (t)) = α1 FT |θ(t|θL(t)) = 1− α2

• if FT |θ is increasing in θ

FT |θ(t|θU (t)) = 1− α2 FT |θ(t|θL(t)) = α1

Then the random interval [θL(T ), θU (T )] is a 1 − α confidence interval for θ. The plot in Figure
1 depicts the computation of the θU and θL quantities for specific value of t in the two models
described above.
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(a) Logistic Model: 95 % interval for parameter θ given that
t = −0.75.
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(b) Exponential Model: 95 % interval for parameter θ given
that t = 2.2.

Figure 1: Inversion of the cdf in the monotone cases of the Logistic model (1) (decreasing in θ)) and
Exponential model (2) (increasing in θ).

(IV) Bayesian Procedures : A Bayesian interval estimator can be constructed directly from the poste-
rior distribution πθ|X˜

; for data x˜, interval [θL(x˜), θU (x˜)] in Θ is a 1− α credible interval if

Pr[θ ∈ [θL(x˜), θU (x˜) | x˜] =
∫ θU (x˜)

θL(x˜)
πθ|X˜

(θ|x˜) dθ = 1− α

Typically, the 1 − α credible interval is not uniquely defined; for example, any interval corre-
sponding to the α1 and α2 quantiles of the posterior distribution is a 1 − α credible interval if
α2 − α1 = 1− α.

4.2 Methods of Evaluating Interval Estimators
We seek methods for assessing the quality of an interval estimator that has coverage/confidence at
least 1− α.

(I) Length
One criterion is the length of the interval; we choose the 1−α interval that is as short as possible,
that is, such that (U(X˜ ) − L(X˜ )) is minimized in expectation. Now, if f(x) is a unimodal pdf
with mode x?, and ∫ b

a
f(x) dx = 1− α

with f(a) = f(b) > 0 so that a ≤ x? ≤ b, then [a, b] is the shortest 1− α probability interval for f .
Furthermore, if f is symmetric x?, then it follows that the shortest interval containing probability
1− α is the one that sets

a = F−1(α/2) b = F−1(1− α/2)

yielding a symmetric interval about x?; for a 1−α interval, we look for the α/2 and 1−α/2 quan-
tiiles of f . These results allows use to construct shortest intervals in each of the four construction
methods above.
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(II) Optimality via Test Equivalence
Suppose that C(x˜) is a 1−α confidence set constructed using the equivalence with a test rejection
region, Rθ, or acceptance region Aθ. For true value θ, and any other value θ′ ∈ Θ, define the
probability of false coverage, ϕ(θ, θ′), by

ϕ(θ, θ′) =





Pr[θ′ ∈ C(X˜ )|θ], θ′ 6= θ if C(X˜ ) ≡ [L(X˜ ), U(X˜ )]

Pr[θ′ ∈ C(X˜ )|θ], θ′ < θ if C(X˜ ) ≡ [L(X˜ ),∞]

Pr[θ′ ∈ C(X˜ )|θ], θ′ > θ if C(X˜ ) ≡ [∞, U(X˜ )]

The confidence set that minimizes ϕ(θ, θ′) across is termed the uniformly most accurate (UMA)
confidence set, which can be shown to arise in parallel to UMP tests. Therefore, most UMA
confidence sets are one-sided intervals, as this is the context in which UMP tests arise.

Theorem Suppose that X˜ ∼ fX˜ |θ
(x˜|θ), and consider a test of the hypotheses

H0 : θ = θ0

H1 : θ > θ0

for θ0 ∈ Θ. Let T ? be the UMP level α test, let A?(θ0) be the acceptance region for T ?, and let
C?(x˜) be the corresponding 1− α confidence set. Then for any other 1− α confidence set C(X˜ ),
and for all θ′ < θ,

Pr[θ′ ∈ C?(X˜ )|θ] ≤ Pr[θ′ ∈ C(X˜ )|θ]

Proof Let θ′ < θ, and let A(θ′) be the acceptance region of the level α test of H0 : θ = θ′
obtained by inverting C(x˜). Now, as A?(θ′) is the UMP acceptance region for testing

H0 : θ = θ′

H1 : θ > θ′

we have

Pr[θ′ ∈ C?(X˜ )|θ] ≡ PrX˜ ∈ A?(θ′)|θ] ≤ Pr[X˜ ∈ A(θ′)|θ] ≡ Pr[θ′ ∈ C(X˜ )|θ]
as T ? is UMP.

(III) Bayesian Optimality
If the posterior density πθ|X˜

is unimodal, then the previous result allows us to construct the
shortest 1− α credible interval as H(x˜) ≡ [L(x˜), U(x˜)] defined by

H(x˜) ≡ {θ : πθ|X˜
(θ|x˜) ≥ k}

so that ∫

H(x˜)
πθ|X˜

(θ|x˜) dθ = 1− α

H is termed the highest posterior density (HPD) region

(IV) Optimality via Loss Functions
Once a suitable loss function for interval estimation is selected, the optimal interval estimator
that minimizes the expected loss under the given probability model can be computed. The loss
function should reflect both the length of the interval (shorter intervals are better) and the accu-
racy of the interval (the true value of θ should lie in the interval).

4


