557: MATHEMATICAL STATISTICS II Hypothesis Testing

A statistical hypothesis test is a **decision rule** that takes as an input observed sample data and returns an action relating to two mutually exclusive **hypotheses** that reflect two competing hypothetical states of nature. The decision rule partitions the sample space \mathcal{X} into two regions that respectively reflect support for the two hypotheses. The following terminology is used:

- Two hypotheses characterize the two possible states of nature. The null hypothesis is denoted *H*₀, the alternative hypothesis is denoted *H*₁.
- In parametric models, the null and alternative hypotheses define a partition of the (effective) parameter space Θ . Suppose that disjoint subsets Θ_0, Θ_1 correspond to H_0 and H_1 respectively. We write

$$\begin{array}{rcl} H_0 & : & \theta \in \Theta_0 \\ H_1 & : & \theta \in \Theta_1 \end{array}$$

- A test, *τ*, of *H*₀ versus *H*₁ defines a partition of sample space *X* into two regions. The hypothesis *H*₀ is rejected in favour of *H*₁ in the test depending on where the data *x* (or a suitably chosen statistic *T*(*x*)) fall within *X*.
- A **test statistic**, $T(\underline{x})$, is the function of data \underline{x} used in a statistical hypothesis test.
- The **critical region**, \mathcal{R} , is the region within which $T(\underline{x})$ must lie in order for hypothesis H_0 to be rejected in favour of H_1 The complement of \mathcal{R} will be written \mathcal{R}' .
- A **test function**, $\phi_{\mathcal{R}}(T(\underline{x}))$, is an indicator function that reports the result of the test,

$$\phi_{\mathcal{R}}(T(\underline{x})) = \begin{cases} 1 & T(\underline{x}) \in \mathcal{R} \\ 0 & T(\underline{x}) \in \mathcal{R}' \end{cases}$$

- A Type I error occurs when the null hypothesis H_0 is rejected when it is in fact true.
- A **Type II error** occurs when the null hypothesis *H*₀ is **accepted** when it is in fact **false**.
- For test with test statistic *T* and critical region $\mathcal{R} \subset \mathcal{X}$, and $\theta \in \Theta_0$, define the **Type I error probability** $\xi(\theta)$ by

$$\xi(\theta) = \Pr\left[T \in \mathcal{R}|\theta\right] \qquad \theta \in \Theta_0 \tag{1}$$

If Θ_0 comprises a single value, then

$$\xi = \Pr\left[T \in \mathcal{R} | \theta = \theta_0\right]$$

• The size of a statistical test is

$$\overline{\alpha} = \sup_{\theta \in \Theta_0} \xi(\theta)$$

which is equal to ξ if Θ_0 comprises a single value.

- Suppose $\alpha \geq \overline{\alpha}$. If $T(\underline{x}) \in \mathcal{R}$, then H_0 is rejected at level α , and rejected at level $\alpha + \epsilon$ for $\epsilon > 0$.
- The **power function**, $\beta(\theta)$, is defined by

$$\beta(\theta) = \Pr\left[T \in \mathcal{R}|\theta\right] \qquad \theta \in \Theta$$

so that $\beta(\theta) = \xi(\theta)$ for $\theta \in \Theta_0$.

Note that this notation is not universally used; commonly the **power** of a statistical test is denoted $1 - \beta(\theta)$ and computed for $\theta \in \Theta_1$, whereas the **Type II error probability** is $\beta(\theta)$ for $\theta \in \Theta_1$.

Most Powerful Tests: The Neyman-Pearson Lemma

To construct and assess the quality of a statistical test, we consider the power function $\beta(\theta)$. Consider a family tests C for testing H_0 and H_1 with corresponding subsets Θ_0 and Θ_1 .

The uniformly most powerful (UMP) test *τ* is the test whose power function β(θ) dominates the power function, β[†](θ), of any other test *τ*[†] ∈ *C* at all θ ∈ Θ₁,

$$\beta(\theta) \ge \beta^{\dagger}(\theta) \qquad \forall \, \theta \in \Theta_1.$$

• A test with power function $\beta(\theta)$ is **unbiased** if

$$\beta(\theta_1) \ge \beta(\theta_0)$$
 for all $\theta_0 \in \Theta_0, \theta_1 \in \Theta_1$

• A simple hypothesis is one which specifies the distribution of the data completely. Consider a parametric model $f_{X|\theta}(x|\theta)$ with parameter space $\Theta = \{\theta_0, \theta_1\}$, and the test of

$$H_0 : \theta = \theta_0$$

$$H_1 : \theta = \theta_1$$

Then both H_0 and H_1 are simple hypotheses.

• A parametric model $f_{X|\theta}(x|\theta)$ for $\theta \in \Theta$ is identifiable if

$$f_{X|\theta}(x|\theta_0) = f_{X|\theta}(x|\theta_1) \quad \text{for all } x \in \mathbb{R} \qquad \Longleftrightarrow \qquad \theta_0 = \theta_1.$$

Theorem (The Neyman-Pearson Lemma)

Consider a parametric model $f_{X|\theta}(x|\theta)$ with parameter space $\Theta = \{\theta_0, \theta_1\}$. A test of

$$H_0 : \theta = \theta_0$$

$$H_1 : \theta = \theta_1$$

is required. Consider a test T with rejection region \mathcal{R} that satisfies

$$f_{\underline{X}|\theta}(\underline{x}|\theta_1) > kf_{\underline{X}|\theta}(\underline{x}|\theta_0) \implies \underline{x} \in \mathcal{R}$$
$$f_{X|\theta}(\underline{x}|\theta_1) < kf_{X|\theta}(\underline{x}|\theta_0) \implies \underline{x} \in \mathcal{R}'$$

for some $k \ge 0$, and $\Pr[X \in \mathcal{R} | \theta = \theta_0] = \alpha$. Then \mathcal{T} is UMP in the class, \mathcal{C}_{α} , of tests at level α . Further, if such a test exists with k > 0, then **all** tests at level α also have size α (that is, α is the least upper bound of the power function $\beta(\theta)$), and have rejection region identical to that of \mathcal{T} , except perhaps if $x \in A$ and

$$\Pr[X \in A | \theta = \theta_0] = \Pr[X \in A | \theta = \theta_1] = 0.$$

Proof As $\Pr[X \in \mathcal{R} | \theta = \theta_0] = \alpha$, the test \mathcal{T} has size and level α . Consider the test function $\phi_{\mathcal{R}}(\underline{x})$ for this test, and $\phi_{\mathcal{R}^{\dagger}}(\underline{x})$ be the test function for any other α level test, \mathcal{T}^{\dagger} . Denote by $\beta(\theta)$ and $\beta^{\dagger}(\theta)$ be the power functions for these two tests. Now

$$g(\underline{x}) = (\phi_{\mathcal{R}}(\underline{x}) - \phi_{\mathcal{R}^{\dagger}}(\underline{x}))(f_{X|\theta}(\underline{x}|\theta_1) - kf_{X|\theta}(\underline{x}|\theta_0)) \ge 0$$

as

$$\begin{split} x \in \mathcal{R} \cap \mathcal{R}^{\dagger} & \implies \phi_{\mathcal{R}}(x) = \phi_{\mathcal{R}^{\dagger}}(x) = 1 \therefore g(x) = 0 \\ x \in \mathcal{R} \cap \mathcal{R}^{\dagger} & \implies \phi_{\mathcal{R}}(x) = 1, \phi_{\mathcal{R}^{\dagger}}(x) = 0, f_{X|\theta}(x|\theta_1) > k f_{X|\theta}(x|\theta_0) \therefore g(x) > 0 \\ x \in \mathcal{R}' \cap \mathcal{R}^{\dagger} & \implies \phi_{\mathcal{R}}(x) = 0, \phi_{\mathcal{R}^{\dagger}}(x) = 1, f_{X|\theta}(x|\theta_1) < k f_{X|\theta}(x|\theta_0) \therefore g(x) > 0 \\ x \in \mathcal{R}' \cap \mathcal{R}^{\dagger'} & \implies \phi_{\mathcal{R}}(x) = \phi_{\mathcal{R}^{\dagger}}(x) = 0 \therefore g(x) = 0. \end{split}$$

Thus

$$\int_{\mathcal{X}} (\phi_{\mathcal{R}}(\underline{x}) - \phi_{\mathcal{R}^{\dagger}}(\underline{x})) (f_{\underline{X}|\theta}(\underline{x}|\theta_1) - k f_{\underline{X}|\theta}(\underline{x}|\theta_0)) \ d\underline{x} \ge 0$$

but this inequality can be written in terms of the power functions as

$$(\beta(\theta_1) - \beta^{\dagger}(\theta_1)) - k(\beta(\theta_0) - \beta^{\dagger}(\theta_0)) \ge 0$$
⁽²⁾

As $\beta(\theta)$ and $\beta^{\dagger}(\theta)$ are bounded above by α , and $\beta(\theta_0) = \alpha$ as \mathcal{T} is a size α , we have that

$$\beta(\theta_0) - \beta^{\dagger}(\theta_0) = \alpha - \beta^{\dagger}(\theta_0) \ge 0$$
 \therefore $\beta(\theta_1) - \beta^{\dagger}(\theta_1) \ge 0$

Thus $\beta(\theta_1) \ge \beta^{\dagger}(\theta_1)$, and hence \mathcal{T} is UMP, as θ_1 is the only point in Θ_1 , and the test with power function β^{\dagger} is arbitrarily chosen.

Now consider any UMP test $\mathcal{T}^{\dagger} \in \mathcal{C}_{\alpha}$. By the result above, \mathcal{T} is UMP at level α , so $\beta(\theta_1) = \beta^{\dagger}(\theta_1)$. In this case, if k > 0, we have from equation (2) that

$$\beta(\theta_0) - \beta^{\dagger}(\theta_0) = \alpha - \beta^{\dagger}(\theta_0) \le 0$$

But, by assumption, \mathcal{T}^{\dagger} is a level α test, so we also have

$$\alpha - \beta^{\dagger}(\theta_0) \ge 0$$

and hence $\beta^{\dagger}(\theta_0) = \alpha$, that is, \mathcal{T}^{\dagger} is also a size α test. Therefore

$$\int_{\mathcal{X}} (\phi_{\mathcal{R}}(\underline{x}) - \phi_{\mathcal{R}^{\dagger}}(\underline{x})) (f_{\underline{X}|\theta}(\underline{x}|\theta_1) - k f_{\underline{X}|\theta}(\underline{x}|\theta_0)) \, d\underline{x} = 0 \tag{3}$$

where the integrand in equation (3) is a non-negative function. Let \mathcal{A} be the collection of sets of probability (that is, density) zero under both $f_{X|\theta}(\underline{x}|\theta_0)$ and $f_{X|\theta}(\underline{x}|\theta_1)$, then

$$\int_{A} (\phi_{\mathcal{R}}(\underline{x}) - \phi_{\mathcal{R}^{\dagger}}(\underline{x})) (f_{\underline{X}|\theta}(\underline{x}|\theta_{1}) - kf_{\underline{X}|\theta}(\underline{x}|\theta_{0})) \, d\underline{x} = 0 \qquad A \in \mathcal{A}$$

irrespective of the nature of \mathcal{R}^{\dagger} , so the functions $\phi_{\mathcal{R}}(\underline{x})$ and $\phi_{\mathcal{R}^{\dagger}}(\underline{x})$ may not be equal for \underline{x} in such a set A. Apart from that specific case, the integral in equation (3) can only be zero if at least one of the two factors is identically zero for all \underline{x} . The second factor cannot be identically zero for all \underline{x} , as the densities must integrate to one. Thus, for all $\underline{x} \in \mathcal{X} \setminus \mathcal{A}$

$$\phi_{\mathcal{R}}(\underline{x}) = \phi_{\mathcal{R}^{\dagger}}(\underline{x}),$$

and hence \mathcal{R}^{\dagger} , satisfies the same conditions as \mathcal{R} .

- To evaluate the value of constant k that appears in the Theorem, we need to compute $\Pr\left[X \in \mathcal{R} | \theta_0\right]$ for a fixed level/size α .
- It is possible that, for given alternative hypotheses, no UMP test exists. Also, for discrete data, it may not be possible to solve the equation Pr [X ∈ R|θ₀] = α for every value of α, and hence only specific values of α may be attained.
- The test can be reformulated in terms of the statistic $\lambda(\underline{x})$ where

$$\lambda(\underline{x}) = \frac{f_{\underline{x}|\theta}(\underline{x}|\theta_1)}{f_{X|\theta}(\underline{x}|\theta_0)}$$

where $x \in \mathcal{R} \iff \lambda(x) \in \mathcal{R}_{\lambda}$, where $\mathcal{R}_{\lambda} \equiv \{t \in \mathbb{R}^+ : t > k\}$

• If $T(\underline{X})$ is a sufficient statistic for θ , then by the Neyman factorization theorem

$$\frac{f_{\widetilde{\chi}|\theta}(\underline{x}|\theta_1)}{f_{\widetilde{\chi}|\theta}(\underline{x}|\theta_0)} = \frac{g(T(\underline{x})|\theta_1)h(\underline{x})}{g(T(\underline{x})|\theta_0)h(\underline{x})} = \frac{g(T(\underline{x})|\theta_1)}{g(T(\underline{x})|\theta_0)}$$

so that

$$\lambda(\underline{x}) \in \mathcal{R}_{\lambda} \qquad \Longleftrightarrow \qquad T(\underline{x}) \in \mathcal{R}_{T}$$

say. Thus any test based on $T(\underline{x})$ with critical region \mathcal{R}_T is a UMP α level test, and

$$\alpha = \Pr[T(\underline{X}) \in \mathcal{R}_T | \theta_0]$$

Composite Null Hypotheses

Often the null and alternative hypotheses do not specify the distribution of the data completely. For example, the specification

$$\begin{array}{rcl} H_0 & : & \theta = \theta_0 \\ H_1 & : & \theta \neq \theta_0 \end{array}$$

could be of interest. If, in general, a UMP test of size α is required, then its power must equal the power of the most powerful test of

$$\begin{array}{rcl} H_0 & : & \theta = \theta_0 \\ H_1 & : & \theta = \theta_1 \end{array}$$

for all $\theta_1 \in \Theta_1$.

For one class of models, finding UMP tests for composite hypotheses is possible in general. A parametric family \mathcal{F} of probability models indexed by parameter $\theta \in \Theta$ has a **monotone likelihood ratio** if for $\theta_2 > \theta_1$, and for x in the union of the supports of the two densities $f_{X|\theta}(x|\theta_1)$ and $f_{X|\theta}(x|\theta_2)$,

$$\lambda(x) = \frac{f_{X|\theta}(x|\theta_2)}{f_{X|\theta}(x|\theta_1)}$$

is a monotone function of x.

Theorem (Karlin-Rubin Theorem)

Suppose that a test of the hypotheses

$$\begin{array}{rcl} H_0 & : & \theta \leq \theta_0 \\ H_1 & : & \theta > \theta_0 \end{array}$$

is required. Suppose that $T(\underline{X})$ is a sufficient statistic for θ , and that $f_{T|\theta}$ for $\theta \in \Theta$ has a monotone non-decreasing likelihood ratio, that is for $\theta_2 \ge \theta_1$ and $t_2 \ge t_1$

$$\frac{f_{T|\theta}(t_2|\theta_2)}{f_{T|\theta}(t_2|\theta_1)} \ge \frac{f_{T|\theta}(t_1|\theta_2)}{f_{T|\theta}(t_1|\theta_1)}.$$

Then for any t_0 , the test T with critical region \mathcal{R}_T defined by

$$T(\underline{x}) > t_0 \implies T(\underline{x}) \in \mathcal{R}_T$$

$$T(\underline{x}) \le t_0 \implies T(\underline{x}) \in \mathcal{R}'_T$$

is a UMP α level test, where

$$\alpha = \Pr[T > t_0 | \theta_0].$$

Proof Let $\beta(\theta)$ be the power function of \mathcal{T} . Now, for $t_2 \ge t_1$,

$$\frac{f_{T|\theta}(t_2|\theta_2)}{f_{T|\theta}(t_2|\theta_1)} \ge \frac{f_{T|\theta}(t_1|\theta_2)}{f_{T|\theta}(t_1|\theta_1)} \iff f_{T|\theta}(t_1|\theta_1) \\ f_{T|\theta}(t_2|\theta_2) \ge f_{T|\theta}(t_1|\theta_2) \\ f_{T|\theta}(t_2|\theta_1) \tag{4}$$

Integrating both sides with respect to t_1 on $(-\infty, t_2)$, we obtain

$$F_{T|\theta}(t_2|\theta_1)f_{T|\theta}(t_2|\theta_2) \ge F_{T|\theta}(t_2|\theta_2)f_{T|\theta}(t_2|\theta_1) \qquad \therefore \qquad \frac{f_{T|\theta}(t_2|\theta_2)}{f_{T|\theta}(t_2|\theta_1)} \ge \frac{F_{T|\theta}(t_2|\theta_2)}{F_{T|\theta}(t_2|\theta_1)}$$

Alternatively, integrating both sides of equation (4) with respect to t_2 on (t_1, ∞) , we similarly obtain

$$\frac{f_{T|\theta}(t_1|\theta_2)}{f_{T|\theta}(t_1|\theta_1)} \le \frac{1 - F_{T|\theta}(t_1|\theta_2)}{1 - F_{T|\theta}(t_1|\theta_1)}$$

But setting $t_1 = t_2 = t$ in these two inequalities yields

$$\frac{1 - F_{T|\theta}(t|\theta_2)}{1 - F_{T|\theta}(t|\theta_1)} \geq \frac{F_{T|\theta}(t|\theta_2)}{F_{T|\theta}(t|\theta_1)}$$

which, on rearrangement yields

$$\frac{1 - F_{T|\theta}(t|\theta_2)}{F_{T|\theta}(t|\theta_2)} \ge \frac{1 - F_{T|\theta}(t|\theta_1)}{F_{T|\theta}(t|\theta_1)} \qquad \therefore \qquad F_{T|\theta}(t|\theta_2) \le F_{T|\theta}(t|\theta_1) \tag{5}$$

as $F_{T|\theta}(t|\theta)$ is non-decreasing in t, and the function g(x) = (1 - x)/x is non-increasing for 0 < x < 1. Finally,

$$\beta(\theta_2) - \beta(\theta_1) = \Pr[T > t_0 | \theta_2] - \Pr[T > t_0 | \theta_1] = (1 - F_{T|\theta}(t|\theta_2)) - (1 - F_{T|\theta}(t|\theta_1)) = F_{T|\theta}(t|\theta_1) - F_{T|\theta}(t|\theta_2) \ge 0$$

so $\beta(\theta)$ is non-decreasing in θ . Hence

$$\sup_{\theta \le \theta_0} \beta(\theta) = \beta(\theta_0) = \Pr[T > t_0 | \theta_0] = \alpha$$

so \mathcal{T} is an α level test. Now, let $\theta^* > \theta_0$, and consider the simple hypotheses

$$\begin{array}{rcl} H_0^{\star} & : & \theta = \theta_0 \\ H_1^{\star} & : & \theta = \theta^{\star}. \end{array}$$

Let k^* be defined by

$$k^{\star} = \inf_{t \in \mathcal{T}_0} \frac{f_{T|\theta}(t|\theta^{\star})}{f_{T|\theta}(t|\theta_0)}$$

where $T_0 = \{t : t > t_0, \text{ and } f_{T|\theta}(t|\theta^*) > 0 \text{ or } f_{T|\theta}(t|\theta_0) > 0\}$. Then

$$T > t_0 \quad \Longleftrightarrow \quad \frac{f_{T|\theta}(t|\theta^{\star})}{f_{T|\theta}(t|\theta_0)} > k^{\star}$$

so that, by the Neyman-Pearson Lemma, \mathcal{T} is UMP for testing H_0^* versus H_1^* ; for **any** other test \mathcal{T}^* of H_0^* at level α with power function β^* that satisfies $\beta^*(\theta_0) \leq \alpha$, we have that $\beta(\theta^*) \geq \beta^*(\theta^*)$. But for any α level test \mathcal{T}^{\dagger} of H_0 , we have $\beta^{\dagger}(\theta_0) \leq \alpha$. Thus taking $\mathcal{T}^* \equiv \mathcal{T}^{\dagger}$, we can conclude that

$$\beta(\theta^{\star}) \ge \beta^{\dagger}(\theta^{\star}).$$

This inequality holds for all $\theta^* \in \Theta_1$, so \mathcal{T} must be UMP at level α .

The Likelihood Ratio Test

The **Likelihood Ratio Test (LRT)** statistic for testing H_0 against H_1

$$\begin{array}{rcl} H_0 & : & \theta \in \Theta_0 \\ H_1 & : & \theta \in \Theta_1 \end{array}$$

is based on the statistic

$$\lambda_{\underline{\chi}}(\underline{x}) = \frac{\sup_{\theta \in \Theta_0} f_{\underline{\chi}|\theta}(\underline{x}|\theta)}{\sup_{\theta \in \Theta_1} f_{\underline{\chi}|\theta}(\underline{x}|\theta)} = \frac{L(\widehat{\theta}_0 \mid \underline{x})}{L(\widehat{\theta}_1 \mid \underline{x})}$$

and H_0 is **rejected** if $\lambda_X(\underline{x})$ is **small enough**, that is, $\lambda_X(\underline{x}) \leq k$ for some k to be defined.

Theorem If $T(\underline{X})$ is a sufficient statistic for θ , then

$$\lambda_{\widetilde{X}}(\underline{x}) = \lambda_T(T(\underline{x})) = \frac{\sup_{\theta \in \Theta_0} f_{T|\theta}(T(\underline{x})|\theta)}{\sup_{\theta \in \Theta_1} f_{T|\theta}(T(\underline{x})|\theta)} \qquad \forall \, \underline{x} \in \mathcal{X}$$

Proof As $T(\underline{X})$ is sufficient, for any θ_0, θ_1 ,

$$\frac{L(\theta_0 \mid \underline{x})}{L(\theta_1 \mid \underline{x})} = \frac{f_{\underline{X}\mid\theta}(\underline{x} \mid \theta_0)}{f_{\underline{X}\mid\theta}(\underline{x} \mid \theta_1)} = \frac{g(T(\underline{x})\mid\theta_0)h(\underline{x})}{g(T(\underline{x});\theta_1)h(\underline{x})} = \frac{g(T(\underline{x})\mid\theta_0)}{g(T(\underline{x})\mid\theta_1)} = \frac{f_{T\mid\theta}(T(\underline{x})\mid\theta_0)}{f_{T\mid\theta}(T(\underline{x})\mid\theta_1)}$$

by the Neyman factorization theorem, where the last equality follows as the normalizing constants in numerator and denominator are identical. Hence, at the suprema, the LRT statistics are equal. ■

Union and Intersection Tests

• Suppose first that we require a test T for the null hypothesis expressed as

$$H_0 : \theta \in \Theta_0 \equiv \bigcap_{\gamma \in \mathcal{G}} \Theta_{\gamma}$$

where $\Theta_{\gamma}, \gamma \in \mathcal{G}$ are a collection of subsets of Θ . Suppose that \mathcal{T}_{γ} is a test for the hypotheses

$$\begin{array}{rcl} H_{0\gamma} & : & \theta \in \Theta_{\gamma} \\ H_{1\gamma} & : & \theta \in \Theta_{\gamma}' \end{array}$$

with test statistic $T_{\gamma}(X)$ and critical region \mathcal{R}_{γ} . Then the rejection region for \mathcal{T} is

$$\mathcal{R}_{\mathcal{G}} \equiv \bigcup_{\gamma \in \mathcal{G}} \mathcal{R}_{\gamma} \implies \mathcal{T} \text{ rejects } H_0 \text{ if } \underline{x} \in \bigcup_{\gamma \in \mathcal{G}} \{T_{\gamma}(\underline{x}) \in \mathcal{R}_{\gamma}\}$$

that is, if **any one** of the T_{γ} rejects $H_{0\gamma}$. This test is termed a **Union-Intersection Test (UIT)**.

• Suppose now that we require a test T for the null hypothesis expressed as

$$H_0 \,:\, heta \in \Theta_0 \equiv igcup_{\gamma \in \,\mathcal{G}} \Theta_\gamma$$

Then, by the same logic as above, the rejection region for T is

$$\mathcal{R}_{\mathcal{G}} \equiv \bigcap_{\gamma \in \mathcal{G}} \mathcal{R}_{\gamma} \qquad \Longrightarrow \qquad \mathcal{T} \text{ rejects } H_0 \text{ if } \underline{x} \in \bigcap_{\gamma \in \mathcal{G}} \{T_{\gamma}(\underline{x}) \in \mathcal{R}_{\gamma}\}$$

that is, if **all** of the \mathcal{T}_{γ} reject $H_{0\gamma}$. This test is termed an **Intersection-Union Test (IUT)**. Note that if α_{γ} is the size of the test of $H_{0\gamma}$, then the IUT is a level α test, where

$$\alpha = \sup_{\gamma \in \mathcal{G}} \alpha_{\gamma}$$

as, for each γ and for any $\theta \in \Theta_0$,

$$\alpha \ge \alpha_{\gamma} = \Pr[X \in \mathcal{R}_{\gamma}|\theta] \ge \Pr[X \in \mathcal{R}|\theta]$$

Theorem Consider testing

$$H_0 : \theta \in \Theta_0 \equiv \bigcap_{\gamma \in \mathcal{G}} \Theta_{\gamma}$$
$$H_1 : \theta \in \Theta'_0$$

using the global likelihood ratio statistic

$$\lambda(\underline{x}) = \frac{\sup_{\theta \in \Theta_0} f_{\underline{X}|\theta}(\underline{x}|\theta)}{\sup_{\theta \in \Theta_1} f_{\underline{X}|\theta}(\underline{x}|\theta)}$$

equipped with the usual critical region $\mathcal{R} \equiv \{\underline{x} : \lambda(\underline{x}) < c\}$, and the collection of likelihood ratio statistics $\lambda_{\gamma}(\underline{x})$

$$\lambda_{\gamma}(\underline{x}) = \frac{\sup_{\theta \in \Theta_{0\gamma}} f_{\underline{X}|\theta}(\underline{x}|\theta)}{\sup_{\theta \in \Theta_{1\gamma}} f_{\underline{X}|\theta}(\underline{x}|\theta)}$$

Define statistic $T(\underline{x}) = \inf_{\gamma \in \mathcal{G}} \lambda_{\gamma}(\underline{x})$, and consider the critical region

$$\mathcal{R}_{\mathcal{G}} \equiv \{ \underline{x} : \lambda_{\gamma}(\underline{x}) < c, \text{some } \gamma \in \mathcal{G} \} \equiv \{ \underline{x} : T(\underline{x}) < c \},\$$

Then

- (a) $T(\underline{x}) \ge \lambda(\underline{x})$ for all \underline{x} .
- (b) If β_T and β_λ are the power functions for the tests based on $T(\underline{X})$ and $\lambda(\underline{X})$ respectively, then

$$\beta_T(\theta) \le \beta_\lambda(\theta) \quad \text{for all } \theta \in \Theta$$

(c) If the test based on $\lambda(\underline{X})$ is an α level test, then the test based on $T(\underline{X})$ is also an α level test.

Proof For (a), as $\Theta_0 \subset \Theta_{\gamma}$, we have

$$\lambda_{\gamma}(\underline{x}) \ge \lambda(\underline{x}) \text{ for each } \gamma \qquad \therefore \qquad T(\underline{x}) = \inf_{\gamma \in \mathcal{G}} \lambda_{\gamma}(\underline{x}) \ge \lambda(\underline{x})$$

and thus for (b), for any θ ,

$$\beta_T(\theta) = \Pr[T(\underline{X}) < c | \theta] \le \Pr[\lambda(\underline{X}) < c | \theta] = \beta_\lambda(\theta).$$

Hence

$$\sup_{\theta \in \Theta_0} \beta_T(\theta) \le \sup_{\theta \in \Theta_0} \beta_\lambda(\theta) \le \alpha$$

which proves (c).

P-values

Consider a test of hypothesis H_0 defined by region Θ_0 of the parameter space. A **p-value**, $p(\underline{x})$, is a test statistic such that $0 \le p(\underline{x}) \le 1$ for each \underline{x} . A **p-value** is **valid** if, for every $\theta \in \Theta_0$ and $0 \le \alpha \le 1$

$$\Pr[p(\underline{X}) \le \alpha \mid \theta] \le \alpha.$$

That is, a valid p-value is a test statistic that produces a test at level α of the form

$$p(\underline{x}) \le \alpha \implies \underline{x} \in \mathcal{R}$$
$$p(\underline{x}) > \alpha \implies \underline{x} \in \mathcal{R}'$$

The most common construction of a valid p-value is given by the following theorem.

Theorem Suppose that $T(\underline{X})$ is a test statistic constructed so that a large value of $T(\underline{X})$ supports H_1 . Then the statistic $p(\underline{x})$ given for each $\underline{x} \in \mathcal{X}$ by

$$p(\underline{x}) = \sup_{\theta \in \Theta_0} \Pr[T(\underline{X}) \ge T(\underline{x}) \mid \theta] = \sup_{\theta \in \Theta_0} p_{\theta}(\underline{X})$$
(6)

say, is a valid p-value.

Proof For $\theta \in \Theta_0$, we have

$$p_{\theta}(\underline{x}) = \Pr[T(\underline{X}) \ge T(\underline{x}) \mid \theta] = \Pr[-T(\underline{X}) \le -T(\underline{x}) \mid \theta] = F_{\theta}(-T(\underline{x})) \equiv F_S(s)$$

say, defining $F_S \equiv F_{\theta}$ as the cdf of $S = -T(\underline{X})$; clearly $0 \le p(\underline{x}) \le 1$.

This recalls a result from distribution theory; if $X \sim F_X$, the $U = F_X(X) \sim Uniform(0, 1)$. Suppressing the dependence on θ for convenience, define random variable Y by

 $Y = F_{\theta}(-T(\underline{X})) \equiv F_S(S) \qquad (= p_{\theta}(\underline{X}))$

and let $A_y \equiv \{s : F_S(s) \le y\}$. If A_y is a half-closed interval $(-\infty, s_y]$, then

$$F_Y(y) = \Pr[Y \le y] = \Pr[F_S(S) \le y] = \Pr[S \in A_y] = F_S(s_y) \le y$$

by definition of A_y , as $s_y \in A_y$. If A_y is a half-open interval $(-\infty, s_y)$

$$F_Y(y) = \Pr[Y \le y] = \Pr[F_S(S) \le y] = \Pr[S \in A_y] = \lim_{s \longrightarrow s_y} F_S(s) \le y$$

by continuity of probability. Putting the components together, for $0 \le \alpha \le 1$,

$$\Pr[p_{\theta}(\tilde{X}) \le \alpha \mid \theta] \equiv \Pr[Y \le \alpha] \le \alpha$$

But by the definition in equation (6), $p(\underline{x}) \ge p_{\theta}(\underline{x})$, so

$$\Pr[p(\underline{X}) \le \alpha \mid \theta] \le \Pr[p_{\theta}(\underline{X}) \le \alpha \mid \theta] \le \alpha$$

and the result follows.