557: Mathematical Statistics II
 Methods of Evaluating Estimators

An estimator, $T(\underset{\sim}{X})$, of θ can be evaluated via its statistical properties. Typically, two aspects are considered:

- Expectation
- Variance
either in terms of finite n behaviour, or the hypothetical limiting case as $n \longrightarrow \infty$. In a frequentist setting, these assessments are made conditional on a given value of θ, by examining the distribution of T given $\theta, f_{T \mid \theta}$.

Bias, Variance And Mean Square Error

For estimator T (in general a function of sample $\underset{\sim}{X}$) of parameter $\tau(\theta)$, the following quantities will be used to evaluate T.

- Bias: The bias of T is denoted $b_{T}(\theta)$, and is defined by

$$
b_{T}(\theta)=\mathrm{E}_{f_{T \mid \theta}}[T]-\tau(\theta) .
$$

If $b_{T}(\theta)=0$ for all θ, then T is termed unbiased for $\tau(\theta)$.

- Variance: The variance of T is denoted in the usual way by $\operatorname{Var}_{f_{T \mid \theta}}[T]$, defined

$$
\operatorname{Var}_{f_{T \mid \theta}}[T]=\mathrm{E}_{f_{T \mid \theta}}\left[\left(T-\mathrm{E}_{f_{T \mid \theta}}[T]\right)^{2}\right]
$$

For an unbiased estimator,

$$
\operatorname{Var}_{f_{T \mid \theta}}[T]=\mathrm{E}_{f_{T \mid \theta}}\left[(T-\tau(\theta))^{2}\right] .
$$

- Mean Square Error: The Mean Square Error (MSE) of T is denoted $\operatorname{MSE}_{\theta}(T)$ and defined by

$$
\operatorname{MSE}_{\theta}(T)=\mathrm{E}_{f_{T \mid \theta}}\left[(T-\tau(\theta))^{2}\right]
$$

By elementary calculation, it follows that

$$
\operatorname{MSE}_{\theta}(T)=\operatorname{Var}_{f_{T \mid \theta}}[T]+\left(\mathrm{E}_{f_{T \mid \theta}}[T]-\tau(\theta)\right)^{2}
$$

so that

$$
\text { Mean Square Error }=\text { Variance }+(\text { Bias })^{2}
$$

The Best Unbiased Estimator, or Uniform Minimum Variance Unbiased Estimator (UMVUE), of $\tau(\theta)$, denoted T^{\star}, is the estimator with the smallest variance of all unbiased estimators of $\tau(\theta)$, that is, if T is any other unbiased estimator of $\tau(\theta)$,

$$
\operatorname{Var}_{f_{T \mid \theta}}[T] \geq \operatorname{Var}_{f_{T^{\star} \mid \theta}}\left[T^{\star}\right]
$$

It transpires that there is a lower bound, $B(\theta)$, on the variance of unbiased estimators of $\tau(\theta)$, given by the following result. The result does not in general guarantee that an estimator with variance $B(\theta)$ exists, and does not give a method of constructing such an estimator, but it does confirm that if T is such an unbiased estimator, and

$$
\operatorname{Var}_{f_{T \mid \theta}}[T]=B(\theta)
$$

then T is the Best Unbiased Estimator.

Theorem (The Cramér-Rao Inequality)

Suppose that X_{1}, \ldots, X_{n} is a sample of random variables from probability model described by pmf/pdf $f_{X \mid \theta}$, and let $T(\underset{\sim}{X})$ be an estimator of $\tau(\theta)$. Suppose that

$$
\frac{d}{d \theta}\left\{\mathrm{E}_{f_{T \mid \theta}}[T]\right\}=\int_{\mathcal{X}} \frac{\partial}{\partial \theta}\left\{T(\underset{\sim}{x}) f_{\underset{\sim}{X} \mid \theta}(\underset{\sim}{x} \mid \theta)\right\} d \underset{\sim}{x}
$$

that is, exchanging the order of integration and differentiation is legitimate, and that $\operatorname{Var}_{f_{T \mid \theta}}[T]<\infty$. Then

$$
\operatorname{Var}_{f_{T \mid \theta}}[T] \geq \frac{\left(\frac{d}{d \theta}\left\{\mathrm{E}_{f_{T \mid \theta}}[T]\right\}\right)^{2}}{\mathrm{E}_{f_{\sim}^{X \mid \theta}}\left[S(\underset{\sim}{X} ; \theta)^{2}\right]}
$$

where $S(x ; \theta)$ is the score function

$$
S(\underset{\sim}{x} ; \theta)=\frac{\partial}{\partial \theta}\left\{\log f_{\underset{X}{X} \mid \theta}(\underset{\sim}{x} \mid \theta)\right\}
$$

Proof For any two random variables U and V, by a previous result (the Cauchy-Schwarz inequality)

$$
\begin{equation*}
\left\{\operatorname{Cov}_{f_{U, V}}[U, V]\right\}^{2} \leq \operatorname{Var}_{f_{U}}[U] \operatorname{Var}_{f_{V}}[V] \quad \therefore \quad \operatorname{Var}_{f_{U}}[U] \geq \frac{\left\{\operatorname{Cov}_{f_{U, V}}[U, V]\right\}^{2}}{\operatorname{Var}_{f_{V}}[V]} \tag{1}
\end{equation*}
$$

with equality if and only if U and V are linearly related. Now, note that, under the assumptions of the theorem,

$$
\begin{aligned}
\frac{d}{d \theta}\left\{\mathrm{E}_{f_{T \mid \theta}}[T]\right\} & =\int_{\mathcal{X}} T(\underset{\sim}{x}) \frac{\partial}{\partial \theta}\left\{f_{\underset{\sim}{X} \mid \theta}(\underset{\sim}{x} \mid \theta)\right\} d \underset{\sim}{x} \\
& =\int_{\mathcal{X}} T(\underset{\sim}{x}) \frac{\frac{\partial}{\partial \theta}\left\{f_{\underset{X}{X} \mid \theta}(\underset{\sim}{x} \mid \theta)\right\}}{f_{\underset{\sim}{X} \mid \theta}(\underset{\sim}{|c|})} f_{\underset{\sim}{X} \mid \theta}(\underset{\sim}{x} \mid \theta) d \underset{\sim}{x} \\
& =\int_{\mathcal{X}} T(\underset{\sim}{x}) \frac{\partial}{\partial \theta}\left\{\log f_{\underset{\sim}{X} \mid \theta}(\underset{\sim}{x} \mid \theta)\right\} f_{\underset{\sim}{X} \mid \theta}(\underset{\sim}{x} \mid \theta) d \underset{\sim}{x} \\
& =\mathrm{E}_{f_{\underset{\sim}{x \mid \theta}}}[T(\underset{\sim}{X}) S(\underset{\sim}{X} ; \theta)] \\
& \equiv \operatorname{Cov}_{f_{T, S \mid \theta}}[T, S]
\end{aligned}
$$

as $\mathrm{E}_{f_{S} \mid \theta}[S] \equiv \mathrm{E}_{f_{\underset{X}{x} \mid \theta}}[S(\underset{\sim}{X} ; \theta)]=0$, by results from MATH 556. Similarly

$$
\operatorname{Var}_{f_{\underset{\sim}{X \mid \theta}}}[S(\underset{\sim}{X} ; \theta)]=\mathrm{E}_{f_{\underset{\sim}{X} \mid \theta}}\left[S(\underset{\sim}{X} ; \theta)^{2}\right] .
$$

Therefore, using the covariance inequality

$$
\operatorname{Var}_{f_{T \mid \theta}}[T] \geq \frac{\left\{\frac{d}{d \theta}\left\{\mathrm{E}_{f_{T \mid \theta}}[T]\right\}\right\}^{2}}{\mathrm{E}_{f_{\underset{X}{x} \mid \theta}}\left[S(\underset{\sim}{X} ; \theta)^{2}\right]}
$$

as required.

Corollary : If X_{1}, \ldots, X_{n} are a random sample, then

$$
\operatorname{Var}_{f_{T \mid \theta}}[T] \geq \frac{\left\{\frac{d}{d \theta}\left\{\mathrm{E}_{f_{T \mid \theta}}[T]\right\}\right\}^{2}}{n \mathcal{I}(\theta)}
$$

where $\mathcal{I}(\theta)$ is the Fisher Information as defined in MATH 556 as

$$
\mathcal{I}(\theta)=\mathrm{E}_{f_{X \mid \theta}}\left[S(X ; \theta)^{2}\right]
$$

Recall that, if second derivatives exist

$$
\mathcal{I}(\theta)=-\mathrm{E}_{f_{X \mid \theta}}[\Psi(X ; \theta)]
$$

where

$$
\Psi(X ; \theta)=\frac{\partial^{2}}{\partial \theta^{2}}\left\{\log f_{X \mid \theta}(x \mid \theta)\right\}
$$

is the second derivative function.
Corollary: By definition, $\mathrm{E}_{f_{T \mid \theta}}[T]=b_{\theta}(T)+\tau(\theta)$, so

$$
\operatorname{Var}_{f_{T \mid \theta}}[T] \geq \frac{\left\{\dot{b}_{T}(\theta)+\dot{\tau}(\theta)\right\}^{2}}{\mathrm{E}_{f_{\underline{X} \mid \theta}}\left[S(\underset{\sim}{X} ; \theta)^{2}\right]}
$$

Vector Parameter Case

A similar result can be derived in the vector parameter case. Suppose that $\underset{\sim}{\theta}=\left(\theta_{1}, \ldots, \theta_{k}\right)^{\top}$. If $\underset{\sim}{T}(\underset{\sim}{X})$ is a d-dimensional estimator of a vector function of θ, then we have a similar bound for the variancecovariance matrix of the estimator. Recall first that for two $(k \times k)$ matrices A and B, we write $A \geq B$ if $A-B$ is non-negative definite, that is

$$
{\underset{\sim}{x}}^{\top}(A-B) \underset{\sim}{x} \geq 0 \quad \underset{\sim}{x} \in \mathbb{R}^{k} .
$$

Under the same assumptions as in the single parameter case, that differentiation and integration orders may exchanged, and the required expectations and variances are finite, it follows that

$$
\begin{equation*}
\operatorname{Var}_{f_{T \mid \theta} \mid}[\underset{\sim}{T}] \geq \dot{\ell}(\underset{\sim}{\theta}) \mathcal{I}(\underset{\sim}{\theta})^{-1} \dot{\ell}(\underset{\sim}{\theta})^{\top} \tag{2}
\end{equation*}
$$

where

$$
\mathcal{I}(\theta)=\mathrm{E}_{f_{X \mid \theta}}\left[\underset{\sim}{S}(X ; \theta) \underset{\sim}{S}(X ; \theta)^{\mathrm{T}}\right]
$$

and $\underset{\sim}{S}(X ; \underset{\sim}{\theta})$ is the $k \times 1$ vector score function with j th component

$$
\frac{\partial}{\partial \theta_{j}} \log f_{X \mid \theta}(x \mid \underset{\sim}{\theta}) \quad j=1, \ldots, k .
$$

and $\dot{\ell}(\underset{\sim}{~})$ is the $d \times k$ matrix with (l, j) th element

$$
\frac{\partial}{\partial \theta_{j}}\left\{E_{f_{T_{l} \mid \theta}}\left[T_{l}\right]\right\} \quad l=1, \ldots, d, j=1 \ldots, k
$$

Note that in equation (2), the left-hand and right-hand side are $d \times d$ matrices. Note also that if the second-derivative matrix can be defined, then

$$
\mathcal{I}(\underset{\sim}{\theta})=-\mathrm{E}_{f_{X \mid \theta}}[\Psi(X ; \theta)]
$$

where the (l, j) th element of the $k \times k$ matrix Ψ is

$$
\frac{\partial^{2}}{\partial \theta_{j} \partial \theta_{l}}\left\{\log f_{X \mid \theta}(x \mid \theta)\right\}
$$

Attaining the Lower Bound.

Theorem

Suppose that X_{1}, \ldots, X_{n} is a sample of random variables from probability model described by pmf/pdf $f_{X \mid \theta}$, with likelihood $L(\theta \mid \underset{\sim}{x})$. Let $T(\underset{\sim}{X})$ be an unbiased estimator of $\tau(\theta)$. Then $T(\underset{\sim}{X})$ attains the Cramér-Rao lower bound, that is

$$
\operatorname{Var}_{f_{T \mid \theta}}[T]=B(\theta)=\frac{\left(\frac{d}{d \theta}\left\{\mathrm{E}_{f_{T \mid \theta}}[T]\right\}\right)^{2}}{\mathrm{E}_{f_{\mathcal{X} \mid \theta}}\left[S(\underset{\sim}{X} ; \theta)^{2}\right]}
$$

if and only if

$$
a(\theta)(T(\underset{\sim}{X})-\tau(\theta))=\frac{\partial}{\partial \theta} \log L(\theta \mid \underset{\sim}{X})
$$

for some function $a(\theta)$.
Proof In the variance inequality in equation (1), set

$$
U \equiv T(\underset{\sim}{X}) \quad V \equiv \frac{\partial}{\partial \theta} \log L(\theta \mid \underset{\sim}{X})
$$

so that

$$
\left\{\operatorname{Cov}_{f_{\underset{X}{ } \mid \theta}}\left[T(\underset{\sim}{X}), \frac{\partial}{\partial \theta} \log L(\theta \mid \underset{\sim}{X})\right]\right\}^{2} \leq \operatorname{Var}_{f_{T \mid \theta} \mid}[T] \operatorname{Var}_{f_{\sim} \mid \theta}\left[\frac{\partial}{\partial \theta} \log L(\theta \mid \underset{\sim}{X})\right]
$$

with equality if and only if T and $\frac{\partial}{\partial \theta} \log L(\theta \mid \underset{\sim}{X})$ are linearly related, that is

$$
\begin{equation*}
m(\theta) T+c(\theta)=\frac{\partial}{\partial \theta} \log L(\theta \mid \underset{\sim}{X})=\frac{\partial}{\partial \theta}\left\{\sum_{i=1}^{n} \log f_{X_{i} \mid \theta}\left(X_{i} \mid \theta\right)\right\} \tag{3}
\end{equation*}
$$

for some functions $m(\theta)$ and $c(\theta)$ that do not depend on X, but may in general depend on θ. Taking expectations with respect to $f_{X \mid \theta}$ on both sides of equation (3), and noting that the expectation on the right-hand side is zero, we must have

$$
c(\theta)=-\mathrm{E}_{f_{T \mid \theta}}[T]=\tau(\theta)
$$

and the result follows.
If an estimator can be found such that the bound is met, then that estimator is the best unbiased estimator. Note that, in the one-parameter Exponential Family, for a random sample $\underset{\sim}{X}$

$$
L(\theta \mid \underset{\sim}{x})=f_{\underset{X}{X} \mid \theta}(\underset{\sim}{x} \mid \theta)=h(\underset{\sim}{x})\{c(\theta)\}^{n} \exp \{w(\theta) T(\underset{\sim}{x})\}
$$

so that

$$
\frac{\partial}{\partial \theta} \log L(\theta \mid \underset{\sim}{X})=n \frac{\dot{c}(\theta)}{c(\theta)}+\dot{w}(\theta) T(\underset{\sim}{x})=\dot{w}(\theta)\left(T(\underset{\sim}{x})-\frac{n \dot{c}(\theta)}{c(\theta) \dot{w}(\theta)}\right)=a(\theta)(T(\underset{\sim}{x})-n \tau(\theta))
$$

say, where $\dot{c}(\theta)$ is the partial derivative of $c(\theta)$ with respect to θ. Hence, taking expectations on left and right hand sides, we note that

$$
E_{f_{T \mid \theta}}[T]=n \tau(\theta)
$$

so that

$$
\frac{T(\underset{\sim}{X})}{n}
$$

is an unbiased estimator of $\tau(\theta)$ that that has minimum variance.

Sufficiency and Unbiasedness.

Theorem The Rao-Blackwell Theorem

Let T be an unbiased estimator of $\tau(\theta)$, and S be a sufficient statistic for θ. Define statistic U by

$$
U \equiv g(S)=\mathrm{E}_{f_{T \mid S, \theta}}[T \mid S]
$$

Then U is an unbiased estimator of $\tau(\theta)$, and for all θ

$$
\operatorname{Var}_{f_{U \mid \theta}}[U] \leq \operatorname{Var}_{f_{T \mid \theta}}[T] .
$$

Proof Clearly $U=g(S)$ is a valid estimator, as it does not depend on the θ; the conditional distribution of T given S does not depend on θ by sufficiency. By iterated expectation,

$$
\mathrm{E}_{f_{U \mid \theta}}[U]=\mathrm{E}_{f_{S \mid \theta}}[g(S)]=\mathrm{E}_{f_{S \mid \theta}}\left[\mathrm{E}_{f_{T \mid S, \theta}}[T \mid S]\right]=\mathrm{E}_{f_{T \mid \theta}}[T]=\tau(\theta)
$$

so U is unbiased for $\tau(\theta)$, and similarly

$$
\begin{aligned}
\operatorname{Var}_{f_{T \mid \theta}}[T] & =\mathrm{E}_{f_{S \mid \theta}}\left[\operatorname{Var}_{f_{T \mid S, \theta}}[T \mid S]\right]+\operatorname{Var}_{f_{S \mid \theta}}\left[\mathrm{E}_{f_{T \mid S, \theta}}[T \mid S]\right] \\
& \geq \operatorname{Var}_{f_{S \mid \theta}}\left[\mathrm{E}_{f_{T \mid S, \theta}}[T \mid S]\right] \\
& =\operatorname{Var}_{f_{S \mid \theta}}[g(S)]=\operatorname{Var}_{f_{U \mid \theta}}[U]
\end{aligned}
$$

and thus U is a better estimator of $\tau(\theta)$ than T, as it has lower variance.

Uniqueness.

Theorem

If T is a best unbiased estimator of $\tau(\theta)$, that is, it achieves the lower bound on variance $B(\theta)$, then T is unique.

Proof Let T^{\prime} be another best unbiased estimator. Let

$$
T^{\star}=\frac{1}{2}\left(T+T^{\prime}\right) .
$$

Then T^{\star} is clearly unbiased, and by elementary results

$$
\begin{aligned}
\operatorname{Var}_{f_{T^{\star} \mid \theta}}\left[T^{\star}\right] & =\frac{1}{4} \operatorname{Var}_{f_{T \mid \theta}}[T]+\frac{1}{4} \operatorname{Var}_{f_{T^{\prime} \mid \theta}}\left[T^{\prime}\right]+\frac{1}{2} \operatorname{Cov}_{f_{T, T^{\prime} \mid \theta}}\left[T, T^{\prime}\right] \\
& \leq \frac{1}{4} \operatorname{Var}_{f_{T \mid \theta}}[T]+\frac{1}{4} \operatorname{Var}_{f_{T^{\prime} \mid \theta}}\left[T^{\prime}\right]+\frac{1}{2}\left(\operatorname{Var}_{f_{T \mid \theta}}[T] \operatorname{Var}_{f_{T^{\prime} \mid \theta}}\left[T^{\prime}\right]\right)^{1 / 2} \\
& =\operatorname{Var}_{f_{T \mid \theta}}[T]
\end{aligned}
$$

with equality if and only if T and T^{\prime} are linearly related, as the variances of T and T^{\prime} are equal. Thus, to avoid contradiction, we must have a linear relationship, that is

$$
T^{\prime}=m(\theta) T+c(\theta)
$$

say. But, in this case

$$
\operatorname{Cov}_{f_{T, T^{\prime} \mid \theta}}\left[T, T^{\prime}\right]=\operatorname{Cov}_{f_{T \mid \theta}}[T, m(\theta) T+c(\theta)]=\operatorname{Cov}_{f_{T \mid \theta}}[T, m(\theta) T]=m(\theta) \operatorname{Var}_{f_{T \mid \theta}}[T]
$$

But, by the covariance equality above,

$$
\operatorname{Cov}_{f_{T, T^{\prime} \mid \theta}}\left[T, T^{\prime}\right]=\operatorname{Var}_{f_{T \mid \theta}}[T]
$$

implying that $m(\theta) \equiv 1$. Hence, as T and T^{\prime} both have expectation $\tau(\theta)$, we must also have $c(\theta)=0$, so that T and T^{\prime} are identical.

Characterizing Best Unbiased Estimators.

Theorem

An estimator T of $\tau(\theta)$ is the best unbiased estimator of $\tau(\theta)$ if and only if $\mathrm{E}_{f_{T \mid \theta}}[T]=\tau(\theta)$ and T is uncorrelated with all estimators U such that

$$
\mathrm{E}_{f_{U \mid \theta}}[U]=0 .
$$

U is termed an unbiased estimator of zero.
Proof Suppose first that T is the best unbiased estimator of $\tau(\theta)$, and U is an unbiased estimator of zero. Then estimator

$$
S=T+a U
$$

for constant a is also unbiased for $\tau(\theta)$, and

$$
\operatorname{Var}_{f_{S \mid \theta}}[S]=\operatorname{Var}_{f_{T \mid \theta}}[T]+a^{2} \operatorname{Var}_{f_{U \mid \theta}}[U]+2 a \operatorname{Cov}_{f_{T, U \mid \theta}}[T, U] .
$$

Thus choosing a so that

$$
a^{2}<-\frac{2 a \operatorname{Cov}_{f_{T, U \mid \theta}}[T, U]}{\operatorname{Var}_{f_{U \mid \theta}}[U]}
$$

renders $\operatorname{Var}_{f_{S \mid \theta}}[S]<\operatorname{Var}_{f_{T \mid \theta}}[T]$ and a contradiction. Such a choice can always be made if $\operatorname{Cov}_{f_{T, U \mid \theta}}[T, U]$ is non-zero. Hence we must have

$$
\operatorname{Cov}_{f_{T, U \mid \theta}}[T, U]=0,
$$

that is, that T and U are uncorrelated.
Now suppose that $\mathrm{E}_{f_{T \mid \theta}}[T]=\tau(\theta)$, and that T is uncorrelated with all unbiased estimators of zero. Let T^{\prime} be any other unbiased estimator of $\tau(\theta)$. Now, writing

$$
T^{\prime}=T+\left(T^{\prime}-T\right)=T+Z
$$

say, yields

$$
\begin{aligned}
\operatorname{Var}_{f_{T^{\prime} \mid \theta}}\left[T^{\prime}\right] & =\operatorname{Var}_{f_{T \mid \theta}}[T]+\operatorname{Var}_{f_{Z \mid \theta}}[Z]+2 \operatorname{Cov}_{f_{T, Z \mid \theta}}[T, Z] \\
& \geq \operatorname{Var}_{f_{T \mid \theta}}[T]
\end{aligned}
$$

as Z is an unbiased estimator of zero, and is thus uncorrelated with T by assumption, and also $\operatorname{Var}_{f_{Z \mid \theta}}[Z] \geq 0$.

Corollary : If T is a complete sufficient statistic for parameter θ, and $h(T)$ is an estimator which is a function of T only, then $h(T)$ is the unique best unbiased estimator of $\tau(\theta)=\mathrm{E}_{f_{T \mid \theta}}[h(T)]$.

Proof If T is complete, then the only function g with

$$
\mathrm{E}_{f_{T \mid \theta}}[g(T)]=0 .
$$

is $g(t)=0$ for all t, that is, the only unbiased estimator of zero is zero itself. But the previous result states that an estimator is a best unbiased estimator if it is uncorrelated with all unbiased estimators of zero. As

$$
\operatorname{Cov}_{f_{T \mid \theta}}[h(T), 0]=0
$$

for any $h(T)$, it follows that $h(T)$ is the unique best unbiased estimator of its expectation.

