557: Mathematical Statistics II The EM Algorithm

The EM Algorithm is a method for producing the maximum likelihood estimates in incomplete data problems, that is, models formulated for data that are only partially observed.
Suppose that random variables to be modelled can be partitioned $(\underset{\sim}{X}, \underset{\sim}{Y})$ where

- $\underset{\sim}{X}=\left(X_{1}, \ldots, X_{m}\right)^{\top}$ are unobserved, termed the augmented data
- $\underset{\sim}{X}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$ are observed, termed the incomplete data
- $(\underset{\sim}{X}, \underset{\sim}{Y})$ are termed the complete data
where

$$
f_{\underline{Y} \mid \theta}(\underset{\sim}{y} \mid \theta)=\int f_{\sim}^{X}, \underset{\sim}{Y} \mid \theta(\underset{\sim}{x}, \underset{\sim}{y} \mid \theta) d \underset{\sim}{x}
$$

In this formulation,

$$
L(\underset{\sim}{\theta} \mid \underset{\sim}{y})=f_{\underline{Y} \mid \underline{\theta}}(\underline{\sim} \mid \underline{\theta}) .
$$

is the incomplete data likelihood, and

$$
L(\underset{\sim}{\theta} \mid x, \underset{\sim}{x})=f_{\underset{\sim}{X}, Y \mid \theta}(\underset{\sim}{x}, \underset{\sim}{x} \mid \underset{\theta}{\theta})
$$

is the complete data likelihood.

Algorithm

The EM Algorithm facilitates maximization of the incomplete data likelihood $L \underset{\sim}{\theta} \mid \underset{\sim}{\mid})$ by working with the complete data likelihood $L(\underset{\sim}{\theta} \mid \underset{\sim}{x}, \underset{\sim}{y})$ and the conditional distribution

$$
\begin{equation*}
f_{\underset{\sim}{X} \mid \underset{Y}{\mid}, \underset{\sim}{\theta}}(\underset{\sim}{x} \mid \underset{\sim}{\mid}, \underset{\sim}{\theta})=\frac{f_{\underset{\sim}{X}, Y \mid \underset{\sim}{\theta}}(\underset{\sim}{x}, \underset{\sim}{y} \mid \underline{\sim})}{f_{\underline{Y} \mid \theta}(\underset{\sim}{y} \mid \underset{\sim}{\theta})}=\frac{L(\underset{\sim}{\theta} \mid x, \underset{\sim}{y})}{L(\underset{\sim}{\theta} \mid \underset{\sim}{x})}=K(\underset{\sim}{x} \mid \underset{\sim}{y}, \underset{\sim}{\theta}) \tag{1}
\end{equation*}
$$

say. It follows from equation (1) that

$$
\begin{equation*}
\log L(\underset{\sim}{\theta} \mid \underset{\sim}{y})=\log L(\underset{\sim}{\theta} \mid \underset{\sim}{x}, \underset{\sim}{y})-\log K(\underset{\sim}{x} \mid \underset{\sim}{x}, \underset{\sim}{\theta}) \tag{2}
\end{equation*}
$$

However, the data $\underset{\sim}{x}$ are not observed, so consider replacing the right-hand side of equation (2) by the expectations with respect to the conditional density $f_{\underset{\sim}{X} \mid \underset{\sim}{\mid}, \theta}\left(\underset{\sim}{x} \mid \underset{\sim}{x},{\underset{\sim}{\theta}}^{\prime}\right)$, for some $\underset{\sim}{\theta^{\prime}} \in \Theta$. This yields

$$
\begin{equation*}
\log L(\underset{\sim}{\theta} \mid \underset{\sim}{y})=\mathrm{E}_{f_{\underset{\sim}{X} \mid \underline{Y}, \theta}}\left[\log L(\underset{\sim}{\theta} \mid \underset{\sim}{X}, \underset{\sim}{Y}) \mid \underset{\sim}{y}, \theta^{\prime}\right]-\mathrm{E}_{f_{\underset{\sim}{X} \mid \underline{Y}, \theta}}\left[\log K(\underset{\sim}{X} \mid \underset{\sim}{Y}, \underset{\sim}{\theta}) \mid \underset{\sim}{\mid}, \theta^{\prime}\right] . \tag{3}
\end{equation*}
$$

Note that the notation indicates that we condition on a specific (but as yet unspecified) value of ${\underset{\sim}{~}}^{\prime}$ when computing the expectations of $\log L(\underset{\sim}{\theta} \mid \underset{\sim}{X}, \underset{\sim}{y})$ and $\log K(\underset{\sim}{X} \mid \underset{\sim}{x}, \underset{\sim}{\theta})$ at the $\underset{\sim}{\theta}$ at which the likelihood on the left-hand side of equation (3) is being computed.
The EM algorithm is an iterative algorithm that produces a sequence of estimates that converges to the (incomplete data) maximum likelihood estimate. Generically, starting from an initial value $\underset{\sim}{\theta}=\underset{\sim}{\theta^{(0)}}$, the $(r+1)$ st value in the sequence, ${\underset{\sim}{\theta}}^{(r+1)}$, is constructed given the r th value , ${\underset{\sim}{\theta}}^{(r)}$,

$$
{\underset{\sim}{\theta}}^{(r+1)}=\underset{\sim}{\theta \in \Theta} \underset{\sim}{\operatorname{argmax}} \mathrm{E}_{f_{\underset{X}{X \mid \underline{Y}, \theta}}}\left[\log L(\underset{\sim}{\theta} \mid \underset{\sim}{X}, \underset{\sim}{Y}) \mid \underset{\sim}{y},{\underset{\sim}{\theta}}^{(r)}\right]
$$

Two components of this calculation are

- E-step : compute the expected conditional log-likelihood
- M-step : carry out the maximization of the expectation.

In the traditional notation, we write

$$
Q\left(\theta \mid{\underset{\sim}{\theta}}^{\prime}\right)=\mathrm{E}_{{\underset{\sim}{X \mid Y}}_{X \mid Y}}\left[\log L(\underset{\sim}{\theta} \mid \underset{\sim}{X}, \underset{\sim}{Y}) \mid \underset{\sim}{\mid},{\underset{\sim}{\theta}}^{\theta^{\prime}}\right]
$$

We wish to show that the sequence of estimates produced by

$$
{\underset{\sim}{\theta}}^{(r+1)}=\underset{\sim}{\operatorname{argmax}} \underset{\Theta}{\operatorname{argmax}} Q\left(\theta \mid{\underset{\sim}{\theta}}^{(r)}\right) \quad r=1,2, \ldots
$$

converges to the maximum likelihood estimate. First, note that for two pdfs f_{1} and f_{2} for random variable Z, we have by the usual argument that

$$
\begin{aligned}
\mathrm{E}_{f_{1}}\left[\log f_{1}(Z)\right]-\mathrm{E}_{f_{1}}\left[\log f_{2}(Z)\right]=-\mathrm{E}_{f_{1}}\left[\log \left\{f_{2}(Z) / f_{1}(Z)\right\}\right] & \geq-\log \mathrm{E}_{f_{1}}\left[\left\{f_{2}(Z) / f_{1}(Z)\right\}\right] \\
& =-\log \int_{\mathcal{Z}}\left\{f_{2}(z) / f_{1}(z)\right\} f_{1}(z) d z \\
& =-\log \int_{\mathcal{Z}} f_{2}(z) d z=0
\end{aligned}
$$

$$
\therefore \quad \mathrm{E}_{f_{1}}\left[\log f_{1}(Z)\right] \geq \mathrm{E}_{f_{1}}\left[\log f_{2}(Z)\right] .
$$

with equality if and only if $f_{1} \equiv f_{2}$. Hence, for $\underset{\sim}{\theta} \in \Theta$, recalling that

$$
K(\underset{\sim}{\theta} \mid \underset{\sim}{X}, \underset{\sim}{Y})=\frac{L(\underset{\sim}{\theta} \mid \underset{\sim}{X}, \underset{\sim}{Y})}{L(\underset{\sim}{\mid} \mid \underset{\sim}{Y})}=f_{\underset{\sim}{X} \mid \underset{\sim}{Y}, \underset{\sim}{x}}(\underset{\sim}{x} \mid \underset{\sim}{y}, \underset{\sim}{\theta})
$$

is itself a (conditional) pdf for all $\underset{\sim}{\theta} \in \Theta$, we have

$$
\begin{aligned}
& =\mathrm{E}_{{\underset{\sim}{X} \underset{\sim}{X} \mid \underline{\sim}, ~}}\left[\log K(\underset{\sim}{\theta} \mid \underset{\sim}{X}, \underset{\sim}{Y}) \mid \underset{\sim}{y},{\underset{\sim}{\theta}}^{(r)}\right] \\
& \leq \mathrm{E}_{f_{\underset{X}{X \mid Y}, \boldsymbol{Q}}}\left[\log K\left({\underset{\sim}{\theta}}^{(r)} \mid \underset{\sim}{X}, \underset{\sim}{Y}\right) \mid \underset{\sim}{y},{\underset{\sim}{\theta}}^{(r)}\right] \\
& =Q\left({\underset{\sim}{\theta}}^{(r)} \mid{\underset{\sim}{x}}^{(r)}\right)-\log L\left({\underset{\sim}{\theta}}^{(r)} \mid y\right) \text {. }
\end{aligned}
$$

Thus $\log L(\underset{\sim}{\theta} \mid \underset{\sim}{\mid y})-Q\left(\underset{\sim}{\theta} \mid{\underset{\sim}{~}}^{(r)}\right)$ achieves its minimum value when $\underset{\sim}{\theta}={\underset{\sim}{\theta}}^{(r)}$. Now suppose that ${\underset{\sim}{~}}^{(r+1)}$ is the value that maximizes $Q\left(\theta \mid \theta^{(r)}\right)$ over Θ; we have that

$$
\begin{aligned}
\log L\left({\underset{\sim}{\theta}}^{(r+1)} \mid \underset{\sim}{y}\right) & \equiv Q\left({\underset{\sim}{\theta}}^{(r+1)} \mid{\underset{\sim}{\theta}}^{(r)}\right)+\left(\log L\left({\underset{\sim}{\theta}}^{(r+1)} \mid \underset{\sim}{y}\right)-Q\left({\underset{\sim}{\theta}}^{(r+1)} \mid{\underset{\sim}{\theta}}^{(r)}\right)\right) \\
& \geq Q\left({\underset{\sim}{\theta}}^{(r)} \mid{\underset{\sim}{\theta}}^{(r)}\right)+\left(\log L\left({\underset{\sim}{\theta}}^{(r)} \mid \underset{\sim}{y}\right)-Q\left({\underset{\sim}{\theta}}^{(r)} \mid{\underset{\sim}{\theta}}^{(r)}\right)\right) \\
& =\log L\left({\underset{\sim}{\theta}}^{(r)} \mid \underset{\sim}{y}\right)
\end{aligned}
$$

and the likelihood attained is increasing with the sequence ${\underset{\sim}{~}}^{(0)},{\underset{\sim}{\theta}}^{(1)},{\underset{\sim}{~}}^{(2)}, \ldots$.

EXAMPLE: Finite Mixture Model

Suppose that $Y_{1} \ldots, Y_{n}$ are a random sample from the K component finite mixture model

$$
f_{Y \mid Q}(y \mid \theta)=\sum_{k=1}^{K} \omega_{k} f_{k}\left(y \mid \theta_{k}\right) \quad y \in \mathbb{R}
$$

where f_{1}, \ldots, f_{K} are component densities, and

$$
0<\omega_{k}<1 \quad \sum_{k=1}^{K} \omega_{k}=1
$$

Estimation of $\underset{\sim}{\theta}=\left(\theta_{1}, \ldots, \theta_{K}\right)^{\top}$ from the likelihood $L(\underset{\sim}{\theta} \mid \underset{\sim}{y})$ is in general difficult. However, consider the augmented data X_{1}, \ldots, X_{n}, where

$$
\operatorname{Pr}\left[X_{i}=k\right]=\omega_{k} \quad i=1, \ldots, K
$$

are independent random variables so that

$$
L(\underset{\sim}{\theta} \mid \underset{\sim}{X}, \underset{\sim}{Y})=\prod_{i=1}^{n} \prod_{k=1}^{K}\left\{\omega_{k} f_{k}\left(y_{i} \mid \theta_{k}\right)\right\}^{I_{\{k\}}\left(X_{i}\right)}
$$

and

$$
\log L(\underset{\sim}{\theta} \mid \underset{\sim}{X}, \underset{\sim}{Y})=\sum_{i=1}^{n} \sum_{k=1}^{K} I_{\{k\}}\left(X_{i}\right)\left(\log \omega_{k}+\log f_{k}\left(y_{i} \mid \theta_{k}\right)\right) .
$$

The conditional distribution $f_{X \mid Y, \theta}(x \mid y, \underset{\sim}{\theta})$ is a discrete distribution on the set $\{1,2, \ldots, K\}$ where for each $i=1, \ldots, n$

$$
\operatorname{Pr}\left[X_{i}=k \mid \underset{\sim}{Y}, \underset{\sim}{\omega}, \underset{\sim}{\theta}\right]=\frac{\omega_{k} f_{k}\left(y_{i} \mid \theta_{k}\right)}{\sum_{j=1}^{K} \omega_{j} f_{j}\left(y \mid \theta_{j}\right)}=\varpi_{k}\left(y_{i}, \underset{\sim}{\theta}\right) \quad k=1, \ldots, K
$$

where X_{1}, \ldots, X_{n} are conditionally independent. Thus

$$
E_{f_{X_{i} \mid Y_{i}, \theta, \omega}^{\omega}}\left[I_{\{k\}}\left(X_{i}\right) \mid y_{i}, \underset{\sim}{\theta}, \underset{\sim}{\omega}\right]=\varpi_{k}\left(y_{i}, \underset{\sim}{\theta}\right)
$$

and hence

$$
\begin{align*}
Q\left(\underset{\sim}{\theta}, \underset{\sim}{\omega} \mid{\underset{\sim}{\mid l}}^{(r)},{\underset{\sim}{\omega}}^{(r)}\right) & \left.=E_{{\underset{\sim}{X} \mid \underline{Y}, \theta, \underset{\sim}{w}}}[\log L \underset{\sim}{\theta} \mid \underset{\sim}{X}, \underset{\sim}{Y}) \mid \underset{\sim}{y},{\underset{\sim}{\theta}}^{(r)},{\underset{\sim}{\omega}}^{(r)}\right] \\
& =\sum_{i=1}^{n} \sum_{k=1}^{K} \varpi_{k}^{(r)}\left(y_{i},{\underset{\sim}{\theta}}^{(r)}\right)\left(\log \omega_{k}+\log f_{k}\left(y_{i} \mid \theta_{k}\right)\right) \\
& =\sum_{k=1}^{K}\left\{\sum_{i=1}^{n} \varpi_{k}^{(r)}\left(y_{i},{\underset{\sim}{\theta}}^{(r)}\right)\right\} \log \omega_{k}+\sum_{k=1}^{K} \sum_{i=1}^{n} \varpi_{k}^{(r)}\left(y_{i},{\underset{\sim}{\theta}}^{(r)}\right) \log f_{k}\left(y_{i} \mid \theta_{k}\right) \tag{4}
\end{align*}
$$

We seek to maximize over $(\underset{\sim}{\theta}, \underset{\sim}{\omega})$ to obtain $\left({\underset{\theta}{\theta}}^{(r+1)},{\underset{\sim}{\omega}}^{(r+1)}\right)$ presuming that the values $\varpi_{k}^{(r)}(y_{i}, \underbrace{(r)})$ are fixed. From the form of equation (4) it is evident that the function is sum of two parts, the first only depending on $\underset{\sim}{\omega}$, the second only dependent on $\underset{\sim}{\theta}$. We can therefore maximize the two parts separately to obtain $\left({\underset{\sim}{(r+1)}}^{\left({\underset{\sim}{w}}^{(r+1)}\right)}\right.$.

The first part of equation (4) is of the form of a multinomial likelihood in $\underset{\sim}{\omega}$, therefore, by previous results, it follows that

$$
\omega_{k}^{(r+1)}=\frac{\sum_{i=1}^{n} \varpi_{k}^{(r)}\left(y_{i}, \hat{\theta}^{(r)}\right)}{\sum_{j=1}^{K} \sum_{i=1}^{n} \varpi_{j}^{(r)}\left(y_{i}, \theta^{(r)}\right)} \quad k=1, \ldots, K
$$

The second part of equation (4) is the sum of $K \log$-likelihoods for the K mixture components which can be maximized separately

$$
\begin{equation*}
\theta_{k}^{(r+1)}=\underset{\theta_{k}}{\operatorname{argmax}} \sum_{i=1}^{n} \varpi_{k}^{(r)}\left(y_{i}, \theta^{(r)}\right) \log f_{k}\left(y_{i} \mid \theta_{k}\right) \tag{5}
\end{equation*}
$$

For certain choices of the component densities, this maximization can be carried out analytically. For example, if $f_{k}\left(y \mid \theta_{k}\right)$ is the normal density with expectation μ_{k} and variance σ_{k}^{2}, it follows that the new maximizing value equals $\theta_{k}^{(r+1)}=\left(\mu_{k}^{(r+1)}, \sigma_{k}^{(r+1)}\right)$ where

$$
\mu_{k}^{(r+1)}=\frac{\sum_{i=1}^{n} \varpi_{k}^{(r)}\left(y_{i},{\underset{\sim}{\theta}}^{(r)}\right) y_{i}}{\sum_{i=1}^{n} \varpi_{k}^{(r)}\left(y_{i},{\underset{\sim}{\theta}}^{(r)}\right)}
$$

and

$$
\sigma_{k}^{(r+1)}=\sqrt{\frac{\sum_{i=1}^{n} \varpi_{k}^{(r)}\left(y_{i}, \theta^{(r)}\right)\left(y_{i}-\mu_{k}^{(r+1)}\right)^{2}}{\sum_{i=1}^{n} \varpi_{k}^{(r)}\left(y_{i}, \theta^{(r)}\right)}}
$$

Note that in the normal model the terms in (5) correspond to likelihood components of the form

$$
\left\{f_{k}\left(y_{i} \mid \theta_{k}\right)\right\}^{\varpi_{k}^{(r)}}=\left(\frac{1}{2 \pi \sigma_{k}^{2}}\right)^{\varpi_{k}^{(r)} / 2} \exp \left\{-\frac{\varpi_{k}^{(r)}}{2 \sigma_{k}^{2}}\left(y_{i}-\mu_{k}^{(r)}\right)^{2}\right\}
$$

so the terms $\varpi_{k}^{(r)} \equiv \varpi_{k}^{(r)}\left(y_{i}, \theta^{(r)}\right)$ are acting as weighting factors.

