
557: MATHEMATICAL STATISTICS II
THE EM ALGORITHM

The EM Algorithm is a method for producing the maximum likelihood estimates in incomplete data
problems, that is, models formulated for data that are only partially observed.

Suppose that random variables to be modelled can be partitioned (X˜ , Y
˜
) where

• X˜ = (X1, . . . , Xm)T are unobserved, termed the augmented data
• X˜ = (Y1, . . . , Yn)T are observed, termed the incomplete data
• (X˜ , Y

˜
) are termed the complete data

where
fY

˜
|θ˜
(y
˜
|θ˜) =

∫
fX˜ ,Y

˜
|θ˜
(x˜, y

˜
|θ˜) dx˜

In this formulation,
L(θ˜|y˜

) = fY
˜
|θ˜
(y
˜
|θ˜).

is the incomplete data likelihood, and

L(θ˜|x˜, y
˜
) = fX˜ ,Y

˜
|θ˜
(x˜, y

˜
|θ˜)

is the complete data likelihood.

Algorithm
The EM Algorithm facilitates maximization of the incomplete data likelihood L(θ˜|y˜

) by working with
the complete data likelihood L(θ˜|x˜, y

˜
) and the conditional distribution

fX˜ |Y˜ ,θ˜
(x˜|y˜

, θ˜) =
fX˜ ,Y

˜
|θ˜
(x˜, y

˜
|θ˜)

fY
˜
|θ˜
(y
˜
|θ˜)

=
L(θ˜|x˜, y

˜
)

L(θ˜|x˜)
= K(x˜|y˜

, θ˜) (1)

say. It follows from equation (1) that

log L(θ˜|y˜
) = log L(θ˜|x˜, y

˜
)− log K(x˜|y˜

, θ˜) (2)

However, the data x˜ are not observed, so consider replacing the right-hand side of equation (2) by the
expectations with respect to the conditional density fX˜ |Y˜ ,θ˜

(x˜|y˜
, θ˜
′), for some θ˜

′ ∈ Θ. This yields

log L(θ˜|y˜
) = EfX˜|Y˜ ,θ˜

[log L(θ˜|X˜ , Y
˜
)|y
˜
, θ˜
′]− EfX˜|Y˜ ,θ˜

[log K(X˜ |Y˜ , θ˜)|y
˜
, θ˜
′]. (3)

Note that the notation indicates that we condition on a specific (but as yet unspecified) value of θ˜
′

when computing the expectations of log L(θ˜|X˜ , y
˜
) and log K(X˜ |y˜

, θ˜) at the θ˜ at which the likelihood on
the left-hand side of equation (3) is being computed.

The EM algorithm is an iterative algorithm that produces a sequence of estimates that converges to the
(incomplete data) maximum likelihood estimate. Generically, starting from an initial value θ˜ = θ˜

(0),
the (r + 1)st value in the sequence, θ˜

(r+1), is constructed given the rth value , θ˜
(r),

θ˜
(r+1) = argmax

θ˜∈Θ

EfX˜|Y˜ ,θ˜
[log L(θ˜|X˜ , Y

˜
)|y
˜
, θ˜

(r)]

1



Two components of this calculation are

• E-step : compute the expected conditional log-likelihood
• M-step : carry out the maximization of the expectation.

In the traditional notation, we write

Q(θ˜|θ˜
′) = EfX˜|Y˜ ,θ˜

[log L(θ˜|X˜ , Y
˜
)|y
˜
, θ˜
′]

We wish to show that the sequence of estimates produced by

θ˜
(r+1) = argmax

θ˜∈Θ

Q(θ˜|θ˜
(r)) r = 1, 2, . . .

converges to the maximum likelihood estimate. First, note that for two pdfs f1 and f2 for random
variable Z, we have by the usual argument that

Ef1 [log f1(Z)]− Ef1 [log f2(Z)] = −Ef1 [log{f2(Z)/f1(Z)}] ≥ − log Ef1 [{f2(Z)/f1(Z)}]

= − log
∫

Z
{f2(z)/f1(z)}f1(z) dz

= − log
∫

Z
f2(z) dz = 0

∴ Ef1 [log f1(Z)] ≥ Ef1 [log f2(Z)].

with equality if and only if f1 ≡ f2. Hence, for θ˜ ∈ Θ, recalling that

K(θ˜|X˜ , Y
˜
) =

L(θ˜|X˜ , Y
˜
)

L(θ˜|Y˜ )
= fX˜ |Y˜ ,θ˜

(x˜|y˜
, θ˜)

is itself a (conditional) pdf for all θ˜ ∈ Θ, we have

Q(θ˜|θ˜
(r))− log L(θ˜|y˜

) = EfX˜|Y˜ ,θ˜
[log L(θ˜|X˜ , Y

˜
)|y
˜
, θ˜

(r)]− log L(θ˜|y˜
)

= EfX˜|Y˜ ,θ˜

[
log K(θ˜|X˜ , Y

˜
)|y
˜
, θ˜

(r)

]

≤ EfX˜|Y˜ ,θ˜

[
log K(θ˜

(r)|X˜ , Y
˜
)|y
˜
, θ˜

(r)

]

= Q(θ˜
(r)|θ˜

(r))− log L(θ˜
(r)|y

˜
).

Thus log L(θ˜|y˜
)−Q(θ˜|θ˜

(r)) achieves its minimum value when θ˜ = θ˜
(r). Now suppose that θ˜

(r+1) is the

value that maximizes Q(θ˜|θ˜
(r)) over Θ; we have that

log L(θ˜
(r+1)|y

˜
) ≡ Q(θ˜

(r+1)|θ˜
(r)) +

(
log L(θ˜

(r+1)|y
˜
)−Q(θ˜

(r+1)|θ˜
(r))

)

≥ Q(θ˜
(r)|θ˜

(r)) +
(
log L(θ˜

(r)|y
˜
)−Q(θ˜

(r)|θ˜
(r))

)

= log L(θ˜
(r)|y

˜
)

and the likelihood attained is increasing with the sequence θ˜
(0), θ˜

(1), θ˜
(2), . . ..
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EXAMPLE: Finite Mixture Model
Suppose that Y1 . . . , Yn are a random sample from the K component finite mixture model

fY |θ˜
(y|θ˜) =

K∑

k=1

ωkfk(y|θk) y ∈ R

where f1, . . . , fK are component densities, and

0 < ωk < 1
K∑

k=1

ωk = 1

Estimation of θ˜ = (θ1, . . . , θK)T from the likelihood L(θ˜|y˜
) is in general difficult. However, consider

the augmented data X1, . . . , Xn, where

Pr[Xi = k] = ωk i = 1, . . . , K

are independent random variables so that

L(θ˜|X˜ , Y
˜
) =

n∏

i=1

K∏

k=1

{ωkfk(yi|θk)}I{k}(Xi)

and

log L(θ˜|X˜ , Y
˜
) =

n∑

i=1

K∑

k=1

I{k}(Xi) (log ωk + log fk(yi|θk)) .

The conditional distribution fX|Y,θ˜
(x|y, θ˜) is a discrete distribution on the set {1, 2, . . . , K} where for

each i = 1, . . . , n

Pr[Xi = k|Y
˜
, ω˜, θ˜] =

ωkfk(yi|θk)
K∑

j=1
ωjfj(y|θj)

= $k(yi, θ˜) k = 1, . . . , K

where X1, . . . , Xn are conditionally independent. Thus

EfXi|Yi,θ˜,ω˜
[I{k}(Xi)|yi, θ˜, ω˜] = $k(yi, θ˜)

and hence

Q(θ˜, ω˜|θ˜
(r), ω˜

(r)) = EfX˜|Y˜ ,θ˜,ω˜
[log L(θ˜|X˜ , Y

˜
)|y
˜
, θ˜

(r), ω˜
(r)]

=
n∑

i=1

K∑

k=1

$
(r)
k (yi, θ˜

(r)) (log ωk + log fk(yi|θk))

=
K∑

k=1

{
n∑

i=1

$
(r)
k (yi, θ˜

(r))

}
log ωk +

K∑

k=1

n∑

i=1

$
(r)
k (yi, θ˜

(r)) log fk(yi|θk) (4)

We seek to maximize over (θ˜, ω˜) to obtain (θ˜
(r+1), ω˜

(r+1)) presuming that the values $
(r)
k (yi, θ˜

(r)) are
fixed. From the form of equation (4) it is evident that the function is sum of two parts, the first only
depending on ω˜, the second only dependent on θ˜. We can therefore maximize the two parts separately
to obtain (θ˜

(r+1), ω˜
(r+1)).
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The first part of equation (4) is of the form of a multinomial likelihood in ω˜, therefore, by previous
results, it follows that

ω
(r+1)
k =

n∑
i=1

$
(r)
k (yi, θ˜

(r))

K∑
j=1

n∑
i=1

$
(r)
j (yi, θ˜

(r))
k = 1, . . . , K

The second part of equation (4) is the sum of K log-likelihoods for the K mixture components which
can be maximized separately

θ
(r+1)
k = argmax

θk

n∑

i=1

$
(r)
k (yi, θ˜

(r)) log fk(yi|θk) (5)

For certain choices of the component densities, this maximization can be carried out analytically. For
example, if fk(y|θk) is the normal density with expectation µk and variance σ2

k, it follows that the new
maximizing value equals θ

(r+1)
k = (µ(r+1)

k , σ
(r+1)
k ) where

µ
(r+1)
k =

n∑
i=1

$
(r)
k (yi, θ˜

(r))yi

n∑
i=1

$
(r)
k (yi, θ˜

(r))

and

σ
(r+1)
k =

√√√√√√√

n∑
i=1

$
(r)
k (yi, θ˜

(r))(yi − µ
(r+1)
k )2

n∑
i=1

$
(r)
k (yi, θ˜

(r))

Note that in the normal model the terms in (5) correspond to likelihood components of the form

{fk(yi|θk)}$
(r)
k =

(
1

2πσ2
k

)$
(r)
k /2

exp

{
−$

(r)
k

2σ2
k

(yi − µ
(r)
k )2

}

so the terms $
(r)
k ≡ $

(r)
k (yi, θ˜

(r)) are acting as weighting factors.
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