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BAYESIAN INFERENCE AND DECISION MAKING

1 Bayesian Inference

1.1 Introduction and Terminology

In Bayesian analysis, θ˜ is treated as a random variable with a prior density encapsulating the beliefs
about θ˜ before the data are collected. Denoting by πθ˜

(θ˜) the prior density, by Bayes Theorem,

πθ˜|X˜
(θ˜|x˜) =

fX˜ |θ˜
(x˜|θ˜)πθ˜

(θ˜)

fX˜
(x˜)

=
fX˜ |θ˜

(x˜|θ˜)πθ˜
(θ˜)∫

fX˜ |θ˜
(x˜|θ˜)πθ˜

(θ˜)dθ˜
(1)

The denominator in (1), fX˜
(x˜) is sometimes termed the marginal likelihood of the data x˜, and does not

depend on θ˜. The term πθ˜|X˜
(θ˜|x˜) in (1) is the posterior distribution of θ˜ given x˜, which encapsulates

the beliefs about θ˜ in light of the data. Note that for the posterior calculation in (1)

πθ˜|X˜
(θ˜|x˜) ∝ fX˜ |θ˜

(x˜|θ˜)πθ˜
(θ˜)

ignoring terms that do not involve θ˜; fX˜
(x˜) for fixed x˜ acts as a normalizing constant.

1.2 A Variance Lemma

The following inequality proves that the posterior variance is larger than the prior variance, and gives
a general version of the result for vector parameters. For two k × k matrices A and B, write A ≥ B if
A−B is non-negative definite, that is, if

x˜
T(A−B)x˜ ≥ 0 for all x˜ ∈ R

k

Lemma 1.1 For any two vector random variables X˜ (k1 × 1) and Y
˜

(k2 × 1) having some joint probability
structure,

VarfX˜
[X˜ ] ≥ EfY

˜
[VarfX˜|Y˜

[X˜ |Y˜ = y
˜
]]

where both sides are k1 × k1 matrices.

Proof. Denote the marginal and conditional expectations of X˜ by

µ
˜

X = EfX˜
[X˜ ] µ

˜
X|y = EfX˜|Y˜

[X˜ |Y˜ = y
˜
]

and then define
µ
˜

X|Y = EfX˜|Y˜
[X˜ |Y˜ ]

as the random variable formed by conditioning on Y
˜

= y
˜

as y
˜

varies according to fY
˜

. We have that

VarfX˜
[X˜ ] = EfX˜

[(X˜ − µ
˜

X)(X˜ − µ
˜

X)T] = EfY
˜
[EfX˜|Y˜

[(X˜ − µ
˜

X)(X˜ − µ
˜

X)T]|Y
˜

= y
˜
]

= EfY
˜
[EfX˜|Y˜

[(X˜ − µ
˜

X|y + µ
˜

X|y − µ
˜

X)(X˜ − µ
˜

X|y + µ
˜

X|y − µ
˜

X)T]|Y
˜

= y
˜
]

= EfY
˜
[EfX˜|Y˜

[(X˜ − µ
˜

X|y)(X˜ − µ
˜

X|y)T]|Y
˜

= y
˜
] +

2EfY
˜
[EfX˜|Y˜

[(X˜ − µ
˜

X|y)(µ
˜

X|y − µ
˜

X)T]|Y
˜

= y
˜
]

+ EfY
˜
[EfX˜|Y˜

[(µ
˜

X|y − µ
˜

X)(µ
˜

X|y − µ
˜

X)T]|Y
˜

= y
˜
]
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The second expectation is zero, as in the interior expectation

EfX˜|Y˜
[(X˜ − µ

˜
X|y)(µ

˜
X|y − µ

˜
X)T|Y

˜
= y

˜
] = EfX˜|Y˜

[(X˜ − µ
˜

X|y)|Y
˜

= y
˜
](µ

˜
X|y − µ

˜
X)T = 0.

Therefore

VarfX˜
[X˜ ] = EfY

˜
[VarfX˜|Y˜

[X˜ |Y˜ = y
˜
]] + EfY

˜
[EfX˜|Y˜

[(µ
˜

X|y − µ
˜

X)(µ
˜

X|y − µ
˜

X)T]|Y
˜

= y
˜
]

= EfY
˜
[VarfX˜|Y˜

[X˜ |Y˜ = y
˜
]] + VarfY

˜
[EfX˜|Y˜

[µ
˜

X|y|Y
˜

= y
˜
]]

= EfY
˜
[VarfX˜|Y˜

[X˜ |Y˜ = y
˜
] + VarfY

˜
[µ
˜

X|Y ]

Thus, using this iterated expectation argument, and denoting by

VarfX˜|Y˜
[X˜ |Y˜ ]

the random variable formed by constructing VarfX˜|Y˜
[X˜ |Y˜ = y

˜
] as y

˜
varies according to fY

˜
, we have

VarfX˜
[X˜ ] = EfY

˜
[VarfX˜|Y˜

[X˜ |Y˜ ]] + VarfY
˜
[EX˜ |Y˜

[X˜ |Y˜ ]]

≥ EfY
˜
[VarX˜ |Y˜

[X˜ |Y˜ ]]

as the second term is non-negative definite.

Corollary : The variance of the posterior distribution, Varπθ˜|X˜
[
θ˜|X˜ = x˜

]
satisfies

Varπθ˜
[
θ˜
] ≥ EfX˜

[
Varπθ˜|X˜

[
θ˜|X˜

]]

that is, the prior variance is at least as big as expected posterior variance.

1.3 Bayesian Updating

The Bayesian calculation in (1) acts sequentially, that is, for data x˜1

πθ˜|X˜
(θ˜|x˜1

) =
fX˜ |θ˜

(x˜1
|θ˜)πθ˜

(θ˜)

fX˜
(x˜1

)
=

fX˜ |θ˜
(x˜1
|θ˜)πθ˜

(θ˜)∫
fX˜ |θ˜

(x˜1
|θ˜)πθ˜

(θ˜) dθ˜
(2)

contains the information about θ˜ in light of the data x˜1
and prior assumptions. If new (independent

and identically distributed to x˜1
) data x˜2

becomes available, then the posterior for θ˜ in light of the
combined data

(
x˜1

, x˜2

)
is

πθ˜|X˜
(θ˜|x˜1

, x˜2
) =

fX˜ |θ˜
(x˜1,

, x˜2
|θ˜)πθ˜

(θ˜)

fX˜
(x˜1

, x˜2
)

=
fX˜ |θ˜

(x˜1
, x˜2

|θ˜)πθ˜
(θ˜)∫

fX˜ |θ˜
(x˜1

, x˜2
|θ˜)πθ˜

(θ˜) dθ˜
.

But note also that

πθ˜|X˜
(θ˜|x˜1

, x˜2
) =

fX˜ |θ˜
(x˜2
|θ˜)πθ˜|X˜

(θ˜|x˜1
)

fX˜
(x˜2
|x˜1

)

where πθ˜|X˜
(θ˜|x˜1

) is the posterior for θ˜ from (2), and

fX˜
(x˜2
|x˜1

) =
fX˜

(x˜1
, x˜2

)

fX˜
(x˜1

)
=

∫
fX˜ |θ˜

(x˜1
|θ˜)πθ˜

(θ˜) dθ˜∫
fX˜ |θ˜

(x˜1
, x˜2

|θ˜)πθ˜
(θ˜) dθ˜

(3)
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1.4 Sufficiency

Direct from (1), if T˜(X˜ ) is a sufficient statistic for θ˜, it follows that

πθ˜|X˜
(θ˜|x˜) =

fX˜ |θ˜
(x˜|θ˜)πθ˜

(θ˜)

fX˜
(x˜)

=
g(T˜(x˜), θ˜)h(x˜)πθ˜

(θ˜)

fX˜
(x˜)

=

[
h(x˜)
fX˜

(x˜)

]
g(T˜(x˜), θ˜)πθ˜

(θ˜)

where fX˜ |θ˜
(x˜|θ˜) = g(T˜(x˜), θ˜)h(x˜) by the Neyman factorization result. Thus the posterior distribution

of θ˜ only depends on the data through T˜(x˜).

Lemma 1.2 If T˜(X˜ ) is a sufficient statistic for θ˜ (in the classical sense) then

πθ˜|X˜
(θ˜|x˜) = πθ˜|X˜

(θ˜|T˜(x˜))

for all prior specifications πθ˜
(θ˜).

Proof. By definition
fX˜ |θ˜

(x˜|θ˜) = fX˜ ,T˜(X˜)|θ˜
(x˜, t|̃θ˜)

if t˜ = T˜(x˜), and zero otherwise. Thus, by sufficiency,

fX˜ |θ˜
(x˜|θ˜) = fX˜ |T˜(X˜)(x˜|t˜)fT˜|θ˜

(t|̃θ˜)

and hence

πθ˜|X˜
(θ˜|x˜) ∝ fX˜ |θ˜

(x˜|θ˜)π(θ˜) = fX˜ |T˜(X˜)(x˜|t˜)fT˜(X˜)|θ˜
(t|θ˜)πθ˜

(θ˜)

∝ fT˜(X˜)|θ˜
(t|̃θ˜)πθ˜

(θ˜)

∝ πθ˜|T˜(X˜)(θ˜|t˜)

with the constant of proportionality equal to one, as both sides must integrate to one.
Statistic T˜(X˜ ) is sufficient for θ˜ in the Bayesian sense if

πθ˜|X˜
(θ˜|x˜) ∝ fT˜(X˜)|θ˜

(t|̃θ˜)πθ˜
(θ˜)

Lemma 1.3 Statistic T˜(X˜ ) is sufficient in the Bayesian sense if and only if it is sufficient in the
Classical sense.

Proof. For the if, see the previous Lemma. For the only if, suppose

πθ˜|X˜
(θ˜|x˜) = fT˜(X˜)|θ˜

(t|̃θ˜)πθ˜
(θ˜)h(x˜).

By (1),

πθ˜|X˜
(θ˜|x˜) =

fX˜ |θ˜
(x˜|θ˜)πθ˜

(θ˜)

fX˜
(x˜)

=⇒
fX˜ |θ˜

(x˜|θ˜)

fX˜
(x˜)

=
πθ˜|X˜

(θ˜|x˜)

π(θ˜)
= fT˜(X˜)|θ˜

(t|̃θ˜)h(x˜).

Hence
fX˜ |θ˜

(x˜|θ˜) = fT˜(X˜)|θ˜
(t|̃θ˜)h(x˜)fX˜

(x˜) = g(t˜, θ˜)h∗(x˜)

where g(t˜, θ˜) = fT˜(X˜)|θ˜
(t|̃θ˜) and h∗(x˜) = h(x˜)fX˜

(x˜) . Thus T˜(X˜ ) is sufficient in the classical sense.
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2 Construction of Prior Distributions

In the Bayesian formulation, the prior density πθ˜
(θ˜) plays an important role. There are several meth-

ods via which the prior can be specified quantitatively; from historical or training data; by subjective
assessment, similar to the subjective assessment of probabilities in elementary probability theory; by
matching to a desired functional form; or in a non-informative or vague specification, where the prior
probability is spread evenly across the parameter space.

2.1 Conjugate Priors

For some models, a conjugate prior can be chosen; this prior combines with the likelihood in such a
way to give an analytically tractable posterior calculation. Consider a class of distributions F indexed
by parameter θ˜ F =

{
fX|θ˜

(x|θ˜) : θ˜ ∈ Θ
}

A class P of prior distributions for θ˜ is a conjugate family for F if the posterior distribution for θ˜resulting from data x˜ is an element of P for all fX|θ˜
∈ F , πθ˜

∈ P and x˜ ∈ X .

Example 2.1 Suppose that fX|θ˜
(x|θ˜) is an Exponential Family distribution

fX|θ˜
(x|θ˜) = h(x)c(θ˜) exp





k∑

j=1

tj(x)wj(θ˜)





so that for a random sample of size n

L(θ˜|x˜) = h(x˜){c(θ˜)}n exp





k∑

j=1

Tj(x˜)wj(θ˜)



 (4)

where T˜(x˜) =
(
T1(x˜), . . . , Tk(x˜)

)T and

Tj(x˜) =
n∑

i=1

tj(xi).

Suppose that

πθ˜
(θ˜) = d(α, β

˜
){c(θ˜)}α exp





k∑

j=1

βjwj(θ˜)



 (5)

where α and β
˜

= (β1, . . . , βk)T are hyperparameters. Combining equations (4) and (5) yields the posterior
distribution up to proportionality as

πθ˜|X˜
(θ˜|x˜) ∝ {c(θ˜)}α+n exp





k∑

j=1

[βj + Tj(x˜)]wj(θ˜)





= {c(θ˜)}α?
exp





k∑

j=1

β?
j wj(θ˜)





The normalizing constant can be deduced to be d(α + n, β
˜

+ T˜(x˜), and hence the posterior distribution has the
same functional form as the prior, but with parameters updated to

α? = α + n β
˜

? = (β?
1 , . . . , β?

k)T = (β1 + T1(x˜), . . . , β1 + T1(x˜))T.
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2.2 Ignorance Priors

A non-informative prior expresses prior ignorance about the parameter of interest.

• If Θ =
{
θ˜1

, . . . , θ˜k

}
(that is, θ˜ is known to take one of a finite number of possible values). Then a

non-informative prior places equal probability on each value, that is,

πθ˜
(θ˜) =

1
k

θ˜ ∈ Θ.

• If Θ is a bounded region, then a natural non-informative prior is constant on Θ.
• If the parameter space Θ is uncountable and unbounded, however, a non-informative prior spec-

ification is more difficult to construct. A naive prior specification would be to set πθ˜
(θ˜) to be a

constant, although this prior does not give a valid probability measure as it does not integrate to
1 over Θ.

A prior distribution πθ˜
(θ˜) for parameter θ˜ is termed improper if it does not integrate to 1.

Even for improper priors, (1) can be used to compute the posterior density, which itself will often not
be improper (that is, the posterior is proper) However, if φ

˜
= g

˜
(θ˜) is a transformation of θ˜ that may of

inferential interest, then by elementary transformation results, including the Jacobian of the transform
J(θ˜→ φ

˜
), it follows that

πθ˜
(θ˜) = c =⇒ πφ

˜
(φ
˜
) = c× J(θ˜→ φ

˜
)

which may not be constant, and hence a non-uniform prior on φ
˜

results. This is perhaps unsatisfactory,
and so the following procedure may be preferable.

2.3 Jeffreys’ Prior

Consider the prior πθ˜
(θ˜) for parameter θ˜ in probability model fX|θ˜

(x|θ˜) determined by

πθ˜
(θ˜) ∝ |I (

θ˜
) |1/2

where I
(
θ˜
)

is Fisher’s Information, and |I (
θ˜
) | indicates the absolute value of the determinant of I

(
θ˜
)
.

Recall that

I(θ˜) = EfX|θ˜

[
S
˜
(X; θ˜)S

˜
(X; θ˜)T

]
= −EfX|θ˜

[
Ψ(X; θ˜)

]

and also that S
˜
(X; θ˜) is the k × 1 vector score function with jth element

Sj(X; θ˜) =
∂

∂θj
log fX|θ˜

(x|θ˜) j = 1, . . . , k

and Ψ(X; θ˜) is the k × k matrix of second partial derivatives with (j, l)th element

∂2

∂θj∂θl
log fX|θ˜

(x|θ˜)
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Example 2.2 Binomial(m, θ). We have

log fX|θ(x|θ) = log
(

m

x

)
+ x log θ + (m− x) log(1− θ)

S(x; θ) =
x

θ
− (m− x)

(1− θ)

Ψ(x; θ) = − x

θ2
− (m− x)

(1− θ)2

so therefore

I(θ) = −EfX|θ

[
−X

θ2
− (m−X)

(1− θ)2

]
=

mθ

θ2
+

m(1− θ)
(1− θ)2

=
m

θ(1− θ)

and hence
πθ˜

(θ) ∝ |I (θ) |1/2 = {θ(1− θ)}−1/2

Lemma 2.1 Jeffreys’ prior is invariant under 1-1 transformations, that is, if φ
˜

= φ
˜
(θ˜), then the prior for

φ
˜

obtained by reparameterization from θ˜ to φ
˜

in the prior for θ˜, is precisely Jeffreys’ prior for φ
˜

.

Proof. Let φ
˜

= φ
˜
(θ˜) be a 1-1 transformation. Denote by `θ(x|θ˜) and `φ(x|φ

˜
) the log pdfs in the two

parameterizations. Then by the rules of partial differentiation

∂`φ

∂φj
=

k∑

l=1

∂`θ

∂θl

∂θl

∂φj
j = 1, . . . , k

so that
S
˜
(X;φ

˜
) = Λ(θ˜, φ

˜
)S

˜
(X; θ˜)

where Λ(θ˜, φ
˜
) is the k × k matrix with (j, l)th element

∂θl

∂φj

In fact, Λ(θ˜, φ
˜
) is just the Jacobian of the transformation from θ˜ to φ

˜
, J(θ˜→ φ

˜
). Hence

Iφ(φ
˜
) = Λ(θ˜, φ

˜
)Iθ(θ˜)Λ(θ˜, φ

˜
)T

and so
|Iφ(φ

˜
)| = |Λ(θ˜, φ

˜
)Iθ(θ˜)Λ(θ˜, φ

˜
)T| = |Λ(θ˜, φ

˜
)|2|Iθ(θ˜)|

and
|Iφ(φ

˜
)|1/2 = |Λ(θ˜, φ

˜
)||Iθ(θ˜)|1/2.

Thus
πφ

˜
(φ
˜
) ∝ |Iφ(φ

˜
)|1/2 = |Λ(θ˜, φ

˜
)||Iθ(θ˜)|1/2 = |Λ(θ˜, φ

˜
)|πθ˜

(θ˜)

and Jeffreys’ prior for φ
˜

is identical to the one that would be obtained by constructing Jeffreys’ prior
for θ˜ and reparameterizing to φ

˜
.
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Example 2.3 Binomial(m, θ). Suppose that φ = θ/(1− θ) (so that θ = φ/(1 + φ)). Then

log fX|θ(x|φ) = log
(

m

x

)
+ x log φ + m log(1 + φ)

S(x;φ) =
x

φ
− m

(1 + φ)

Ψ(x;φ) = − x

φ2
+

m

(1 + φ)2

so therefore

I(φ) = −EfX|φ

[
−X

φ2
+

m

(1 + φ)2

]
=

mφ

(1 + φ)φ2
− m

(1 + φ)2
=

m

φ(1 + φ)2

and hence
πφ(φ) ∝ |I (φ) |1/2 = {φ(1 + φ)2}−1/2.

Now, recall that Jeffreys’ prior for θ takes the form

πθ˜
(θ) ∝ {θ(1− θ)}−1/2

The Jacobian of the transformation from θ to φ is (1 + φ)2, and thus using the univariate
transformation theorem

πφ(φ) ∝ {φ/(1 + φ)2}−1/2(1 + φ)2 = {φ(1 + φ)2}−1/2

matching the result found above.

2.4 Location and Scale Parameters

Consider the one-dimensional case: θ is a location parameter if

fX|θ(x|θ) = fX(x− θ).

θ is a scale parameter if

fX|θ(x|θ) =
1
θ
fX

(x

θ

)

For a location parameter, for a non-informative prior, it is required to have, for set A ⊂ Θ
∫

A
πθ(θ) dθ =

∫

Ac

πθ(θ) dθ

where Ac = {θ : θ − c ∈ A} for scalar c. Therefore, for all c,
∫

Ac

πθ(θ) dθ =
∫

A
πθ(θ − c) dθ =⇒ πθ(θ) = πθ(θ − c) =⇒ πθ(θ) = constant

For a scale parameter, it is required to have, for set A ⊂ Θ
∫

A
πθ(θ) dθ =

∫

Ac

πθ(θ) dθ

where now Ac = {θ : cθ ∈ A} for scalar c. But, therefore, for all c,
∫

Ac

πθ(θ) dθ =
∫

A
π(cθ) dθ =⇒ πθ(θ) = cπθ(cθ) =⇒ πθ(θ) ∝ 1

θ
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3 Bayesian Inference and Decision Making

The key components of a decision problem are as follows;

• a decision δ is to be made, and the decision is selected from some set D of alternatives.
• a true state of nature, υ, lying in set Υ
• a loss function, L(δ, υ), for decision δ and state υ, which records the loss (or penalty) incurred

when the true state of nature is υ and the decision made is δ.

Broadly, we aim to select the decision to minimize the loss. In the presence of uncertainty, we minimize
the expected loss.

In an estimation context, the decision is the estimate of the parameter, and the true state of nature is the
true value of the parameter. The minimization of expected loss proceeds in slightly different fashion
dependent on whether data are observed;

(a) With prior πθ˜
(θ˜) and no data, the expected loss (or Bayes loss) is defined as

Eπθ˜
[L(δ, θ˜)

]
=

∫
L(δ, θ˜)πθ˜

(θ˜) dθ˜
The optimal Bayesian decision is

δ̂B = argmin
δ∈D

Eθ˜
[L(δ, θ˜)

]

that is, the decision that minimizes the Bayes loss.

(b) If data are available, the optimal decision will intuitively become a function of the data. Sup-
pose now that the decision in light of the data is denoted δ(x˜) (a function from X to D, and the
associated loss is L(δ(x˜), θ˜)
The risk associated with decision δ(X˜ ) is the expected loss associated with δ(X˜ ), with the expec-
tation taken over the distribution of X˜ given θ˜

Rδ(θ˜) = EfX˜|θ˜
[L(δ(X˜ ), θ˜)

]
=

∫

Θ
L(δ(x˜), θ˜)fX˜ |θ˜

(x˜|θ˜) dx˜
The Bayes risk is the expected risk Rδ(θ˜) associated with δ(X˜ ), with the expectation taken over
the prior distribution of θ˜

R(δ) = Eπθ˜
[Rδ(θ˜)] = Eπθ˜

[
EfX˜|θ˜

[L(δ(X˜ ), θ˜)
]]

=
∫

Θ

{∫

X
L(δ(x˜), θ˜)fX˜ |θ˜

(x˜|θ˜) dx˜

}
πθ˜

(θ˜) dθ˜

=
∫

Θ

∫

X
L(δ(x˜), θ˜)fX˜

(x˜)πθ˜|X˜
(θ˜|x˜) dx˜ dθ˜

=
∫

X

{∫

Θ
L(δ(x˜), θ˜)πθ˜|X˜

(θ˜|x˜) dθ˜

}
fX˜

(x˜) dx˜
where, by equation (1), fX˜ |θ˜

(x˜|θ˜)πθ˜
(θ˜) = fX˜

(x˜)πθ˜|X˜
(θ˜|x˜). With prior πθ˜

(θ˜) and fixed data x˜ the

optimal Bayesian decision, termed the Bayes rule is δ̂B = argmin
δ∈D

R(δ) so that

δ̂B = argmin
δ∈D

∫

X

{∫

Θ
L(δ(x˜), θ˜)πθ˜|X˜

(θ˜|x˜) dθ˜

}
fX˜

(x˜) dx˜ = argmin
δ∈D

∫

Θ
L(δ(x˜), θ˜)πθ˜|X˜

(θ˜|x˜) dθ˜
as only the inner integral depends on δ. That is, the decision that minimizes the Bayes risk
minimizes posterior expected loss in making decision δ, with expectation taken with respect to
the posterior distribution πθ˜|X˜

(θ˜|x˜).
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Results for Different Loss Functions in the One Parameter case

(I) Under squared-error loss
L(δ(x˜), θ) =

(
δ(x˜)− θ

)2

the Bayes rule for estimating θ is

δ̂B(x˜) = θ̂B(x˜) = Eπθ|X˜
[
θ|X˜ = x˜

]
=

∫
θπθ|X˜

(θ|x˜) dθ

that is, the posterior expectation. The expected posterior loss is
∫
L(δ(x˜), θ)πθ|X˜

(θ|x˜) dθ =
∫ (

δ(x˜)− θ
)2

πθ|X˜
(θ|x˜) dθ

which needs to be minimized with respect to δ(x˜). Write δ = δ(x˜). Then

d

dδ

{∫
(δ − θ)2 πθ|X˜

(θ|x˜) dθ

}
=

∫
d

dδ

{
(δ − θ)2

}
πθ|X˜

(θ|x˜) dθ =
∫

2 (δ − θ) πθ|X˜
(θ|x˜) dθ

and equating this to zero gives
∫

(δ − θ) πθ|X˜
(θ|x˜) dθ = 0 =⇒ δ =

∫
θπθ|X˜

(θ|x˜) dθ = Eπθ|X˜
[
θ|X˜ = x˜

]

and hence the optimal δ is the posterior expectation as stated.

(II) Under absolute error loss
L(δ(x˜), θ) =

∣∣δ(x˜)− θ
∣∣

the Bayes rule for estimating θ is the solution of

∫ δ(x˜)

−∞
πθ|X˜

(θ|x˜) dθ =
1
2

that is, the posterior median. The expected posterior loss is
∫
L(δ(x˜), θ)πθ|X˜

(θ|x˜) dθ =
∫ ∣∣δ(x˜)− θ

∣∣ πθ|X˜
(θ|x˜) dθ

which needs to be minimized with respect to δ(x˜). Set δ = δ(x˜). Then

∫
|δ − θ|πθ|X˜

(θ|x˜) dθ =
∫ δ

−∞
(δ − θ) πθ|X˜

(θ|x˜) dθ +
∫ ∞

δ
(θ − δ) πθ|X˜

(θ|x˜) dθ (6)

Differentiating with respect to δ the first term using the product rule yields

d

dδ

{∫ δ

−∞
(δ − θ) πθ|X˜

(θ|x˜) dθ

}
=

d

dδ

{
δ

∫ δ

−∞
πθ|X˜

(θ|x˜) dθ −
∫ δ

−∞
θπθ|X˜

(θ|x˜) dθ

}

= δπθ|X˜
(δ|x˜) +

∫ δ

−∞
πθ|X˜

(θ|x˜) dθ − δπθ|X˜
(δ|x˜).

Similarly

d

dδ

{∫ ∞

δ
(θ − δ) πθ|X˜

(θ|x˜) dθ

}
= −δπθ|X˜

(δ|x˜)−
∫ ∞

δ
πθ|X˜

(θ|x˜) dθ + δπθ|X˜
(δ|x˜)
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Thus, equating the derivative of equation (6) to zero yields

∫ δ

−∞
πθ|X˜

(θ|x˜) dθ −
∫ ∞

δ
πθ|X˜

(θ|x˜) dθ = 0

so that ∫ δ

−∞
πθ|X˜

(θ|x˜) dθ =
∫ ∞

δ
πθ|X˜

(θ|x˜) dθ =
1
2

and hence the optimal δ is the posterior median.

(III) Under zero-one loss

L(δ(x˜), θ) =

{
0 δ(x˜) = θ

1 δ(x˜) 6= θ

the Bayes rule for estimating θ is

δ̂B(x˜) = θ̂B(x˜) = argmax
θ∈Θ

πθ|X˜
(θ|x˜)

that is, the posterior mode. The expected posterior loss is
∫
L(δ(x˜), θ)πθ|X˜

(θ|x˜) dθ =
∫

Θ\δ(x˜)
πθ|X˜

(θ|x˜) dθ

which needs to be minimized with respect to δ(x˜). The optimal δ(x˜) is thus the posterior mode
as stated
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