557: MATHEMATICAL STATISTICS II
NON-PARAMETRIC MAXIMUM LIKELIHOOD

Suppose that X7, ..., X,, are a random sample from a distribution with cdf Fx that is not specified
using a parametric model, that is, the whole function

Fx(z) =Pr[X < z] —00<x <00

is the (infinite dimensional) parameter of the data-generating model. Denote by F the parameter space,
that is, the set of distribution functions (non-decreasing right-continuous functions mapping R¢0]0, 1]).
Finally, denote the probability measure associated with Fy by P, , so that

Fx(z) = Ppy((—00, 7))
Given observed data X = z = (z1,...,2,)' we wish to estimate Fx. The likelihood function for such
data in this non-parametric setting takes the form

L(Fx|z) = HPFX({JJz‘}) Fx eF
=1

matching precisely the definition in the parametric setting. It is evident from this definition that
L(Fx|z) > 0,and
L(Fx|lz) =0 if  Pp,({z;}) =0, for some i.

so to find the maximum likelihood estimate, we attempt to maximize over functions Fx for which
L(Fx|z) > 0. Let 0 < ¢ < 1, and denote by F. the subset of 7 whose elements satisfy

pi:PFX({$i})>O 1=1,2,....n

such that
n
i=1

Note that 0 < ¢ < 1, as Pr, assigns probabilities to sets in (the o-algebra defined on) R. To maximize
L(Fx|z) for F'x € F. subject to the constraint, consider the function

G(p1,-- oo N) = [ i+ A (Zpi - C>
i=1 i=1

where ) is a Lagrange multiplier. We have to solve the n + 1 equations
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simultaneously for p1, ..., pn, A. From the first equation
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so that from the second equation
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At this solution,

Lirvln =15 - (£)'

: n
=1

and it is easy to see (by the concavity of the log function) that for any probabilities py, . ..

toc, as
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it follows that
n cA\n
H i < <*) :
- n
=1
Thus we have a global maximum of L(Fx|z) at the computed solution, that is,

max L(Fxl|z) = (%)n
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which is maximized when ¢ = 1. Hence the maximum likelihood estimate of F'x, denoted ﬁX, in this

non-parametric setting, is defined by the discrete probability measure
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0 otherwise 0 otherwise

which may be equivalently written

1 n
Pr[X =z] = - Zl{mi}(x)
i=1

Thus, the non-parametric maximum likelihood estimate of Fx is the empirical cdf
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ALTERNATIVE DERIVATION

An alternative derivation used in failure time data allows for a similar derivation to be constructed for
potentially censored data, that is, data for which for some 7, only the event X; > x is observed. Suppose
that data including values with censoring are collected; let ¢; < ... < ¢, denote the n independent
failure/censoring times sorted into non-descending order, and let (21, ..., 2,) denote the corresponding
censoring variables, where z; = 1 if failure is observed, and is zero otherwise. For completeness, define
to = —00, tpy1 = 0

Failure modelling for such data is achieved via functions such as the failure pmf f, survivor function
S, hazard function h and cumulative hazard H, where, in discrete time,

SO =a=PX=j]  SG=S=PX>j hi=pria=gt H=)h

Non-parametric Likelihood: Define a partition of the observed data range into the disjoint, half-open
intervals
(—OO, tl] , (tl, tQ] y eeey (tn_l, tn] y (tn, OO)

with corresponding interval probabilities g1, 2, ..., gn—1, @n, Gn+1,
q; = Fx(tj) — Fx(tj_l) = SX(tj—l) - S(tj)

and discrete hazards

qj
e Tl qa @ g
so that ¢1 = hq,
j—1 J J
qj:th(l—hi) SjZP[X>tj]:1—Zqi=H(1—
i=1 =1 =1

Suppose now that, for time point ¢;, there are N; observed failures/censorings, defined by binary
indicators (zjl, e 2§ Nj) (this generalizes the IV; = 1 case described in the first section, and allows for
the possibility of ties). The likelihood for such observed data is

t2)=]] H e g(17k) (1)
j=1

that will form the basis for inference.

For the data (¢, z), the log likelihood from (1) is

n [N N;
log L(qlt, z) = Z Z zji log q; + Z(l — zj) log S}
j=1 | k=1 k=1

which, in terms of the hazard parameterization yields

n N; N; J
log L(hlt,z) = Z Zz]k log h;j +Zlog (1-nh +Z 1—zjk) [Zlog (1—h ]
=1 | k=1 =1 k=1 i=1
n Nj j—1 n Nj
= ZZz]klogh +ZZZz]klog +Z Z 1 — zji)log (1 — hy)
7j=1k=1 j=1k=11=1 j=1k=11i=1



n Nj n—1 n Nj n n N
= Z ZZ’jk 10gh]+z Zij log (1 —hz)—l-z Z(l —ij) log (1 — h;)
=1 | k=1 i=1 | j=it1 k=1 i=1 | j=i k=1

{mlj log h; + majlog (1— hj)}
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where
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In terms of the hazard parameters, the likelihood is the of the form of a product binomial expression.

The expression for my; simplifies to be
N.
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The maximum likelihood estimates of the hazard probabilities are thus
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and thus
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and if all z; = 1 we obtain
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and so on, so that ¢; = 1/n for all .




