
557: MATHEMATICAL STATISTICS II
NON-PARAMETRIC MAXIMUM LIKELIHOOD

Suppose that X1, . . . , Xn are a random sample from a distribution with cdf FX that is not specified
using a parametric model, that is, the whole function

FX(x) = Pr[X ≤ x] −∞ < x < ∞
is the (infinite dimensional) parameter of the data-generating model. Denote byF the parameter space,
that is, the set of distribution functions (non-decreasing right-continuous functions mappingRto[0, 1]).
Finally, denote the probability measure associated with FX by PFX

, so that

FX(x) = PFX
((−∞, x])

Given observed data X˜ = x˜ = (x1, . . . , xn)T we wish to estimate FX . The likelihood function for such
data in this non-parametric setting takes the form

L(FX |x˜) =
n∏

i=1

PFX
({xi}) FX ∈ F

matching precisely the definition in the parametric setting. It is evident from this definition that
L(FX |x˜) ≥ 0, and

L(FX |x˜) = 0 if PFX
({xi}) = 0, for some i.

so to find the maximum likelihood estimate, we attempt to maximize over functions FX for which
L(FX |x˜) > 0. Let 0 < c ≤ 1, and denote by Fc the subset of F whose elements satisfy

pi = PFX
({xi}) > 0 i = 1, 2, . . . , n

such that
n∑

i=1

pi = c.

Note that 0 < c ≤ 1, as PFX
assigns probabilities to sets in (the σ-algebra defined on) R. To maximize

L(FX |x˜) for FX ∈ Fc subject to the constraint, consider the function

G(p1, . . . , pn, λ) =
n∏

i=1

pi + λ

(
n∑

i=1

pi − c

)

where λ is a Lagrange multiplier. We have to solve the n + 1 equations

∂G

∂pj
=

n∏

i=1

pi

pj
+ λ = 0 j = 1, . . . , n

∂G

∂λ
=

n∑

i=1

pi − c = 0

simultaneously for p1, . . . , pn, λ. From the first equation

1
λ

= − pj
n∏

i=1

pi

∴ n

λ
= −

n∑
i=1

pi

n∏

i=1

pi

1



so that from the second equation

n

λ
= − c

n∏

i=1

pi

∴ λ = −
n

n∏

i=1

pi

c

and hence

p̂j = −

n∏

i=1

p̂i

λ̂
=

c

n
j = 1, . . . , n

yielding

λ̂ = −
( c

n

)n−1
.

At this solution,

L(FX |x˜) =
n∏

i=1

p̂i =
( c

n

)n

and it is easy to see (by the concavity of the log function) that for any probabilities p1, . . . , pn summing
to c, as

1
n

n∑

i=1

log pi ≤ log

(
1
n

n∑

i=1

pi

)
= log

( c

n

)

it follows that
n∏

i=1

pi ≤
( c

n

)n
.

Thus we have a global maximum of L(FX |x˜) at the computed solution, that is,

max
FX∈Fc

L(FX |x˜) =
( c

n

)n

which is maximized when c = 1. Hence the maximum likelihood estimate of FX , denoted F̂X , in this
non-parametric setting, is defined by the discrete probability measure

P
F̂X

({x}) =





p̂i x = xi, i = 1, . . . , n

0 otherwise
=





1
n

x = xi, i = 1, . . . , n

0 otherwise

which may be equivalently written

Pr[X = x] =
1
n

n∑

i=1

I{xi}(x)

Thus, the non-parametric maximum likelihood estimate of FX is the empirical cdf

F̂X(x) =
1
n

n∑

i=1

I(−∞,xi](x).
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ALTERNATIVE DERIVATION

An alternative derivation used in failure time data allows for a similar derivation to be constructed for
potentially censored data, that is, data for which for some i, only the event Xi > x is observed. Suppose
that data including values with censoring are collected; let t1 ≤ ... ≤ tn denote the n independent
failure/censoring times sorted into non-descending order, and let (z1, ..., zn) denote the corresponding
censoring variables, where zj = 1 if failure is observed, and is zero otherwise. For completeness, define
t0 = −∞, tn+1 = ∞.

Failure modelling for such data is achieved via functions such as the failure pmf f , survivor function
S, hazard function h and cumulative hazard H , where, in discrete time,

f(j) = qj = P [X = j] S(j) = Sj = P [X > j] hj =
qj

P [X ≥ j]
=

qj

Sj−1
Hj =

j∑

i=1

hi

Non-parametric Likelihood: Define a partition of the observed data range into the disjoint, half-open
intervals

(−∞, t1] , (t1, t2] , ..., (tn−1, tn] , (tn,∞)

with corresponding interval probabilities q1, q2, ..., qn−1, qn, qn+1,

qj = FX(tj)− FX(tj−1) = SX(tj−1)− S(tj)

and discrete hazards
h1 = q1 hj =

qj

1− q1 − q2 − ...− qj−1

so that q1 = h1,

qj = hj

j−1∏

i=1

(1− hi) Sj = P [X > tj ] = 1−
j∑

i=1

qi =
j∏

i=1

(1− hi)

Suppose now that, for time point tj , there are Nj observed failures/censorings, defined by binary
indicators

(
zj1, ..., zjNj

)
(this generalizes the Nj = 1 case described in the first section, and allows for

the possibility of ties). The likelihood for such observed data is

L(q
˜
|t˜, z˜) =

n∏

j=1





Nj∏

k=1

q
zjk

j S
(1−zjk)
j



 (1)

that will form the basis for inference.

For the data (t, z), the log likelihood from (1) is

log L(q
˜
|t˜, z˜) =

n∑

j=1





Nj∑

k=1

zjk log qj +
Nj∑

k=1

(1− zjk) log Sj





which, in terms of the hazard parameterization yields

log L(h˜|t˜, z˜) =
n∑

j=1





Nj∑

k=1

zjk

[
log hj +

j−1∑

i=1

log (1− hi)

]
+

Nj∑

k=1

(1− zjk)

[
j∑

i=1

log (1− hi)

]



=
n∑

j=1

Nj∑

k=1

zjk log hj +
n∑

j=1

Nj∑

k=1

j−1∑

i=1

zjk log (1− hi) +
n∑

j=1

Nj∑

k=1

j∑

i=1

(1− zjk) log (1− hi)
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=
n∑

j=1





Nj∑

k=1

zjk



 log hj +

n−1∑

i=1





n∑

j=i+1

Nj∑

k=1

zjk



 log (1− hi) +

n∑

i=1





n∑

j=i

Nj∑

k=1

(1− zjk)



 log (1− hi)

=
n∑

j=1

{m1j log hj + m2j log (1− hj)}

where

m1j =
Nj∑

k=1

zjk m2j =









n∑

i=j+1

Nj∑

k=1

zik



 +





n∑

i=j

Nj∑

k=1

(1− zik)



 1 ≤ j ≤ n− 1

Nn∑

k=1

(1− znk) j = n

In terms of the hazard parameters, the likelihood is the of the form of a product binomial expression.
The expression for m2j simplifies to be

m2j =
n∑

i=j+1

Nj∑

k=1

{zik + (1− zik)}+
Ni∑

k=1

(1− zjk) =
n∑

i=j+1

Ni + Nj −
Nj∑

k=1

zjk =
n∑

i=j

Ni −
Nj∑

k=1

zjk

The maximum likelihood estimates of the hazard probabilities are thus

ĥj =
m1j

m1j + m2j
=

Nj∑
k=1

zjk

n∑
i=j

Ni

and thus

q̂1 = ĥ1 q̂j = ĥj

j−1∏

i=1

(
1− ĥi

)
Ŝj =

j∏

i=1

(
1− ĥi

)
=

j∏

i=1


1−

Nj∑
k=1

zik

n∑
i=j

Ni




If all Nj = 1

q̂j =
zj

n− j + 1

j−1∏

i=1

(
1− zi

n− i + 1

)
Ŝj =

j∏

i=1

(
1− zi

n− i + 1

)

and if all zi = 1 we obtain

q1 =
1
n

q2 =
1

n− 1

(
1− 1

n− 1 + 1

)
=

1
n

q3 =
1

n− 2

(
1− 1

n− 1 + 1

)(
1− 1

n− 2 + 1

)
=

1
n

and so on, so that qi = 1/n for all i.
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