MATH 557 - MID-TERM EXAMINATION 2008

Marks can be obtained by answering all questions.

1. Consider the probability model

$$f_{X|\theta,\sigma}(x|\theta,\sigma) = \exp\left\{-\left(\frac{x-\theta}{\sigma}\right)^4 - \kappa(\theta,\sigma)\right\} \qquad -\infty < x < \infty$$

for $\theta \in \mathbb{R}$ and $\sigma > 0$, for some function $\kappa(.,.)$.

(a) Is this probability model an Exponential Family distribution ? Justify your answer.

6 Marks

(b) Find a (possibly multivariate) sufficient statistic for $(\theta, \sigma)^{\mathsf{T}}$ based on a random sample of size n, X_1, \ldots, X_n .

6 Marks

- 2. Let X_1, \ldots, X_n be a random sample of size *n* from a $Normal(\theta, \theta^2)$ distribution, for parameter $\theta > 0$.
 - (a) Find a minimal sufficient statistic for θ (and demonstrate minimal sufficiency for the statistic you find).

6 Marks

(b) Is the statistic from part (a) complete ? Justify your answer.

6 Marks

- 3. This question concerns estimation of parameter λ , the expected value of a $Poisson(\lambda)$ distribution, from a random sample X_1, \ldots, X_n from that distribution.
 - (a) Derive the Bayes estimator, $\hat{\lambda}_B(\underline{X})$, of λ under a proper conjugate prior specification and squared-error loss

$$\mathcal{L}(\lambda(\underline{x}), \lambda) = (\lambda(\underline{x}) - \lambda)^2$$

and show that $\widehat{\lambda}_B(\underline{X})$ can be written

$$\widehat{\lambda}_B(\underline{X}) = w_n \overline{X}_n + (1 - w_n)m$$

where \overline{X}_n is the mean of X_1, \ldots, X_n , *m* is the mean of the prior distribution, and $0 \le w_n \le 1$ is a constant function of *n*.

10 Marks

(b) In a decision problem concerned with estimating parameter θ , the risk, $R_{\delta}(\theta)$, associated with decision $\delta(\underline{X})$ for loss function \mathcal{L} is the expected loss associated with $\delta(\underline{X})$,

$$R_{\delta}(\theta) = \mathbb{E}_{f_{\widetilde{X}}|\theta} \left[\mathcal{L}(\delta(\widetilde{X}), \theta) \right] = \int_{\mathcal{X}} \mathcal{L}(\delta(\widetilde{x}), \theta) f_{\widetilde{X}|\theta}(\widetilde{x}|\theta) \, d\widetilde{x}.$$

Consider a decision problem relating to the estimation of θ . An estimator of θ , denoted $T(\underline{X})$ say, is termed **inadmissible** if

$$R_T(\theta) \ge R_{T_0}(\theta)$$
 for all $\theta \in \Theta$

and $R_T(\theta) > R_{T_0}(\theta)$ for at least one $\theta \in \Theta$, where $T_0(\underline{X})$ is some other estimator of θ .

In the $Poisson(\lambda)$ model from part (a), show that estimators of the form

$$T(\underline{X}) = a\overline{X}_n + b$$

for a > 1 are inadmissible if \mathcal{L} is squared-error loss.

6 Marks