MATH 557 - MID-TERM 2008 - SOLUTIONS

1. (a) Note first that by standard expansion into a quartic polynomial

$$
\left(\frac{x-\theta}{\sigma}\right)^{4}=w_{0}(\theta, \sigma)+\sum_{j=1}^{k} w_{j}(\theta, \sigma) x^{j}=w_{0}(\theta, \sigma)+\sum_{j=1}^{k} w_{j}(\theta, \sigma) t_{j}(x)
$$

say, where $w_{j}(\theta, \sigma)$ are constant functions of θ and σ. Thus

$$
f_{X \mid \theta, \sigma}(x \mid \theta, \sigma)=h(x) c(\theta, \sigma) \exp \left\{\sum_{j=1}^{k} w_{j}(\theta, \sigma) t_{j}(x)\right\}
$$

where

$$
h(x)=1 \quad c(\theta, \sigma)=\exp \left\{w_{0}(\theta, \sigma)-\kappa(\theta, \sigma)\right\} \quad t_{j}(x)=x^{j}, j=1, \ldots, 4 .
$$

and hence the distribution is an Exponential Family distribution.
6 Marks
(b) By inspection, and using the Neyman factorization theorem in this Exponential family setting, we have
$\underset{\sim}{T}(\underset{\sim}{X})=\left(T_{1}(\underset{\sim}{X}), T_{2}(\underset{\sim}{X}), T_{3}(\underset{\sim}{X}), T_{4}(\underset{\sim}{X})\right)^{\top} \quad T_{j}(\underset{\sim}{X})=\sum_{i=1}^{n} t_{j}\left(X_{i}\right)=\sum_{i=1}^{n} X_{i}^{j} \quad j=1, \ldots, 4$
is a sufficient statistic.
6 Marks
2. (a) We have

$$
\begin{aligned}
f_{\underset{X}{X} \mid \theta}(\underset{\sim}{x} \mid \theta) & =\left(\frac{1}{2 \pi \theta^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \theta^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}\right\} \\
& =\left(\frac{1}{2 \pi \theta^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \theta^{2}} \sum_{i=1}^{n} x_{i}^{2}+\frac{1}{\theta} \sum_{i=1}^{n} x_{i}-\frac{n}{2}\right\} \\
& =\left(\frac{1}{2 \pi \theta^{2}}\right)^{n / 2} e^{-n / 2} \exp \left\{-\frac{1}{2 \theta^{2}} T_{2}(x)+\frac{1}{\theta} T_{1}(x)\right\}
\end{aligned}
$$

so that $\underset{\sim}{T}(\underset{\sim}{X})=\left(T_{1}(\underset{\sim}{X}), T_{2}(\underset{\sim}{X})\right)^{\top}$ where

$$
T_{1}(\underset{\sim}{X})=\sum_{i=1}^{n} X_{i} \quad T_{2}(\underset{\sim}{X})=\sum_{i=1}^{n} X_{i}^{2}
$$

is a sufficient statistic. Note that $T_{1}(\underset{\sim}{X})$ and $T_{2}(\underset{\sim}{X})$ are linearly independent, and that for two vectors $\underset{\sim}{x}, \underset{\sim}{y}$

$$
\frac{f_{\underset{X}{X} \mid \theta}(\underset{\sim}{x} \mid \theta)}{f_{\underset{X}{X} \mid \theta}(\underset{\sim}{\mid} \mid \theta)}=\exp \left\{-\frac{1}{2 \theta^{2}}\left(T_{2}(\underset{\sim}{x})-T_{2}(\underset{\sim}{y})+\frac{1}{\theta}\left(T_{1}(\underset{\sim}{x})-T_{1}(\underset{\sim}{y})\right)\right\}\right.
$$

does not depend on θ iff $T_{1}(\underset{\sim}{x})=T_{1}(\underset{\sim}{y})$ and $T_{2}(\underset{\sim}{x})=T_{2}(\underset{\sim}{y})$. Thus $\underset{\sim}{T}$ is minimal sufficient.
(b) For each i, we have from the formula sheet properties of Normal distributions that

$$
E_{f_{X_{i} \mid \theta}}\left[X_{i}^{2}\right]=2 \theta^{2}
$$

so that

$$
E_{f_{T_{2} \mid \theta}}\left[T_{2}\right]=2 n \theta^{2}
$$

Also from mgf results.

$$
T_{1}(\underset{\sim}{X})=\sum_{i=1}^{n} X_{i} \sim \operatorname{Normal}\left(n \theta, n \theta^{2}\right)
$$

Thus if $S(\underset{\sim}{X})=\left\{T_{1}(\underset{\sim}{X})\right\}^{2}$.

$$
E_{f_{S \mid \theta}}[S]=n \theta^{2}+(n \theta)^{2}=n(n+1) \theta^{2} .
$$

Therefore the function

$$
g\left(t_{1}, t_{2}\right)=\frac{t_{1}^{2}}{n(n+1)}-\frac{t_{2}}{2 n}
$$

is such that $E_{f_{T_{1}, T_{2} \mid \theta}}\left[g\left(T_{1}, T_{2}\right)\right]=0$, and hence $\underset{\sim}{T}(\underset{\sim}{X})$ is not complete.
3. (a) In the Poisson model, the likelihood is

$$
L(\lambda \mid \underset{\sim}{x}) \propto \lambda_{i=1}^{\sum_{i=1}^{n} x_{i}} e^{-n \lambda}
$$

so therefore the conjugate prior is $\operatorname{Gamma}(\alpha, \beta)$

$$
\pi_{\lambda}(\lambda) \propto \lambda^{\alpha-1} e^{-\beta \lambda}
$$

yielding posterior

$$
\pi_{\lambda \mid x}(\lambda \mid x) \propto \lambda^{\alpha+\sum_{i=1}^{n} x_{i}-1} e^{-(\beta+n) \lambda} \equiv \operatorname{Gamma}\left(\alpha+\sum_{i=1}^{n} x_{i}, \beta+n\right) .
$$

From lectures, the estimate under squared-error loss is the posterior mean, that is, from the formula sheet

$$
\widehat{\lambda}_{B}(\underline{x})=\frac{\alpha+\sum_{i=1}^{n} x_{i}}{\beta+n}=\frac{n}{\beta+n} \bar{x}_{n}+\frac{\beta}{\beta+n}\left(\frac{\alpha}{\beta}\right)=w_{n} \bar{x}_{n}+\left(1-w_{n}\right) m
$$

10 Marks
(b) If $T(\underset{\sim}{X})=a \bar{X}_{n}+b$, then

$$
\begin{aligned}
R_{T}(\lambda) & =\int_{\mathcal{X}}\left(a \bar{X}_{n}+b-\lambda\right)^{2} f_{\underset{\sim}{X} \mid \lambda}(\underset{\sim}{x} \mid \lambda) d \underset{\sim}{x}=\int_{\mathcal{X}}\left(\left(a \bar{X}_{n}-a \lambda\right)+(b+(a-1) \lambda)\right)^{2} f_{\underset{\sim}{X} \mid \lambda}(\underset{\sim}{\mid} \mid \lambda) d \underset{\sim}{x} \\
& \geq \int_{\mathcal{X}}\left(a \bar{X}_{n}-a \lambda\right)^{2} f_{\underset{\sim}{X} \mid \lambda}(\underset{\sim}{x} \mid \lambda) d \underset{\sim}{x} \\
& >\int_{\mathcal{X}}\left(\bar{X}_{n}-\lambda\right)^{2} f_{\underset{\sim}{X} \mid \lambda}(\underset{\sim}{x} \mid \lambda) d \underset{\sim}{x}=R_{T_{0}}(\lambda)
\end{aligned}
$$

as $a>1$, where

$$
T_{0}(\underset{\sim}{X})=\bar{X}_{n} .
$$

This follows by expanding the integrand in the second integral of line 1 , noting that the integral of the cross term is zero, and that the integral of the $(b+(a-1) \lambda))^{2}$ term is nonnegative. Hence T is inadmissible.

