MATH 557 - EXERCISES 2

These exercises are not for assessment

- 1 Suppose that $X \sim Binomial(n, \theta)$ for $0 < \theta < 1$.
 - (a) Verify that the estimator T(X) = X/n is unbiased for θ .
 - (b) Consider $\tau(\theta) = 1/\theta$. Find an unbiased estimator of $\tau(\theta)$.

2 Suppose that $X_1, \ldots, X_n \sim Uniform(0, \theta)$ for $\theta > 0$ is a random sample.

- (a) Find an unbiased estimator, $T(\underline{X})$, of θ .
- (b) Compute the variance/mean square error of $T(\underline{X})$.
- (c) Compute the amount by which the variance of $T(\underline{X})$ exceeds the Cramér-Rao lower bound for this non-regular model.
- 3 Suppose that $X_1, \ldots, X_n \sim Beta(\theta, 1)$ for $\theta > 0$ is a random sample, so that

$$f_{X|\theta}(x|\theta) = \theta x^{\theta - 1} \qquad 0 < x < 1$$

and zero otherwise.

- (a) Find the maximum likelihood estimator of θ , to be denoted $\widehat{\theta}_n(\underline{X})$.
- (b) Is $\widehat{\theta}_n(\underline{X})$ unbiased for θ ? Justify your answer.
- (c) Does $\widehat{\theta}_n(\underline{X})$ attain the Cramér-Rao lower bound ? Justify your answer.
- 4 Suppose that $X_1, \ldots, X_n \sim Normal(0, \theta)$. Find the best unbiased estimator of θ .
- 5 Suppose that $f_{X|\theta}(x) = f(x \theta)$ is a location family distribution.
 - (a) Show that for this class of models, the Fisher information for θ , $\mathcal{I}(\theta)$, does not depend on θ .
 - (b) Compute $\mathcal{I}(\theta)$ if

$$f(x) = \frac{1}{2}e^{-|x|} \qquad -\infty < x < \infty$$

(c) Compute $\mathcal{I}(\theta)$ if

$$f(x) = \frac{e^{-x}}{(1+e^{-x})^2} \qquad -\infty < x < \infty$$

6 Suppose that X_1, \ldots, X_n is a random sample from the distribution with pdf

$$f_{X|\theta}(x|\theta) = \frac{3\theta^3}{(x+\theta)^4} \qquad 0 < x < \infty$$

and zero otherwise, for parameter $\theta > 0$.

Find an unbiased estimator for θ , and the variance of this estimator.