MATH 557 - EXERCISES 1

These exercises are not for assessment

- 1 Let $X = (X_1, \ldots, X_n)^T$ be a random vector with joint density in $\mathcal{F}_k = \{f_i(\underline{x}) : i = 0, \ldots, k\}$, so that \mathcal{F}_k is parameterized by index $i \in \{0, \ldots, k\}$. Assume that the densities in \mathcal{F}_k have common support.
 - (a) Show that the statistic

$$T(\underline{X}) = \left(\frac{f_1(\underline{X})}{f_0(\underline{X})}, \dots, \frac{f_k(\underline{X})}{f_0(\underline{X})}\right)^{\mathsf{T}}$$

is minimal sufficient for *i*.

- (b) Let $\mathcal{F} = \{f_{\theta} : \theta \in \Theta\}$ be a family of densities with common support, and suppose that
 - *f_i* ≡ *f_{θi}* ∈ *F*, *θ_i* distinct, for *i* = 0,...,*k* and *T*(X) as defined in part (a) is sufficient for *θ*.

Show that $T(\underline{X})$ is minimal sufficient for θ .

- (c) Show that 1-1 functions of minimal sufficient statistics are minimal sufficient statistics.
- (d) Use the results from parts (b) and (c) to show that the sample mean \overline{X} is minimal sufficient for β if \underline{X} is a random sample from an Exponential distribution with expectation $\beta > 0$.
- 2 Suppose that X_1, \ldots, X_n are a random sample from a $Multinomial(3, \theta)$ distribution defined by the probabilities

$$\Pr[X_i = j] = \theta_j \qquad j = 1, 2, 3$$

and zero otherwise, where $0 < \theta_1, \theta_2, \theta_3 < 1$, and $\theta_1 + \theta_2 + \theta_3 = 1$.

- (a) Find a (possibly vector-valued) sufficient statistic for $\underline{\theta}$.
- (b) Find the (joint) pmf of the sufficient statistic.
- (c) FInd the form of the maximum likelihood estimator for θ .
- 3 Consider the location family pdf with standard member the Cauchy distribution

$$f_{X|\theta}(x|\theta) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)^2} \qquad -\infty < x < \infty$$

for location parameter $\theta \in \Theta \equiv \mathbb{R}$.

(a) Derive the *score equation* for θ defined for a random sample X_1, \ldots, X_n from this pdf by

$$\frac{\partial l(\theta|\underline{x})}{\partial \theta} = 0$$

where $l(\theta|\underline{x}) = \log L(\theta|\underline{x}) = \log f_{\underline{X}|\theta}(\underline{x}|\theta)$

(b) Using a computer package, plot the log-likelihood function *l*(*θ*|*x*) for a suitable range of *θ* for the following observed *x* values:

 $7.36\ 5.14\ 3.71\ 3.15\ 6.00\ 6.38\ 1.34\ 6.73$

and hence find the maximum likelihood (ML) estimate.

MATH 557 EXERCISES 1

4 Carry out a simulation study to examine the sampling distribution of the maximum likelihood estimator $\hat{\theta}(\underline{X})$ in the Cauchy location family example in the previous problem.

For example, in R:

- Produce N = 5000 simulated data sets of size n = 8, using a specific value of θ , and using the random number generation function reauchy.
- For each simulated data set, use pointwise evaluation of the likelihood (or the function optimize) to evaluate the ML estimate in each case.
- Display using a histogram the distribution of the *N* stored ML estimates.

The sample median is an alternative estimator of θ . Repeat the computations above using this alternative estimator.

5 Suppose that $X_1 \sim Binomial(n_1, \theta_1)$ and $X_2 \sim Binomial(n_2, \theta_2)$ be independent random variables. Derive the maximum likelihood estimator of the odds ratio ψ defined by

$$\psi = \frac{\theta_1/(1-\theta_1)}{\theta_2/(1-\theta_2)}$$

Hint : write down the likelihood in terms of the 1-1 reparameterization

$$(\theta_1, \theta_2) \longrightarrow (\phi, \psi)$$

for some appropriately chosen parameter ϕ .