MATH 557 - ASSIGNMENT 3
 Solutions

1 (a) To find the UMP test, consider

$$
\begin{array}{l:l}
H_{0} & : \\
H_{1} & : \\
& \theta=1 \\
\theta_{1}
\end{array}
$$

for $\theta_{1}>1$. By Neyman-Pearson, the rejection region is constructed by looking at

$$
\frac{f_{X \mid \theta}\left(x \mid \theta_{1}\right)}{f_{\underset{\sim}{x} \mid \theta}(\underset{\sim}{x} \mid 1)}=\frac{\prod_{i=1}^{n} \theta_{1}\left(1-x_{i}\right)^{\theta_{1}-1}}{1}=\theta_{1}^{n}\{T(\underset{\sim}{x})\}^{\theta_{1}-1}
$$

where $T(\underset{\sim}{x})=\prod_{i=1}^{n}\left(1-x_{i}\right)$. Hence the rejection region is defined by

$$
\theta_{1}^{n}\{T(\underset{\sim}{x})\}^{\theta_{1}-1}>k \quad \text { or equivalently } \quad T(x)>k_{1}
$$

where the requirement

$$
\operatorname{Pr}\left[T(\underset{\sim}{X}) \in \mathcal{R}_{T} \mid \theta=1\right]=\operatorname{Pr}\left[T(\underset{\sim}{X})>k_{1} \mid \theta=1\right]=\alpha
$$

determines k_{1} for any α. To simplify further

$$
\prod_{i=1}^{n}\left(1-X_{i}\right)>k_{1} \quad \Longleftrightarrow \quad-\sum_{i=1}^{n} \log \left(1-X_{i}\right)<-\log k_{1}=c
$$

say. Now, if $\theta=1$, the data are uniformly distributed on $(0,1)$. Also, if $X \sim \operatorname{Uniform}(0,1)$, then $1-X \sim \operatorname{Uniform}(0,1)$, and

$$
-\log (1-X) \sim \text { Exponential(1) }
$$

Therefore the critical region is defined by

$$
\operatorname{Pr}\left[T(\underset{\sim}{X})>k_{1} \mid \theta=1\right]=\operatorname{Pr}[V<c \mid \theta=1]=\alpha
$$

where

$$
V=-\log T(\underset{\sim}{X})=-\sum_{i=1}^{n} \log \left(1-X_{i}\right) \sim \operatorname{Gamma}(n, 1) .
$$

Thus c is the α quantile of the $\operatorname{Gamma}(n, 1)$ distribution. This is the UMP test for any $\theta_{1}>1$, so it is the UMP test for the required hypotheses.

4 Marks
(b) Under H_{1}, the ML estimate of θ is

$$
\widehat{\theta}=\underset{\theta \in \mathbb{R}^{+}}{\operatorname{argmax}} \theta^{n}\{T(\underset{\sim}{x})\}^{\theta-1}=-\frac{n}{\log T(x)}=-\frac{n}{\sum_{i=1}^{n} \log \left(1-X_{i}\right)}=-\frac{n}{\log T(x)}
$$

Thus the LRT is based on the rejection region $\mathcal{R}_{\underset{\sim}{X}}$ defined by

$$
\lambda_{\underset{\sim}{X}}(\underset{\sim}{x})=\frac{L(1 \mid x)}{L(\widehat{\theta} \mid x)}=\frac{1}{\widehat{\theta}^{n}\{T(x)\}^{\hat{\theta}-1}} \leq k
$$

which is equivalent to

$$
n \log \widehat{\theta}+(\widehat{\theta}-1) \log T(x) \geq-\log k
$$

or

$$
-n \log (-\log T(\underset{\sim}{x}))-\log T(\underset{\sim}{x}) \geq-\log k-n \log n+n
$$

which may be written

$$
-n \log V+V \geq c
$$

where $V \sim \operatorname{Gamma}(n, 1)$ as above. To solve this for c requires numerical steps.
4 Marks

2 Can use the Karlin-Rubin theorem in both cases.
(a) The likelihood ratio for $\theta_{1}<\theta_{2}$ for this model is

$$
\lambda(\underset{\sim}{x})=\frac{f_{\underset{X}{X} \mid \theta}\left(\underset{\sim}{x} \mid \theta_{2}\right)}{f_{\underset{X}{X} \mid \theta}\left(\underset{\sim}{x} \mid \theta_{1}\right)}=\frac{\theta_{1}^{n}}{\theta_{2}^{n}} \exp \left\{T(\underset{\sim}{x})\left(\frac{1}{\theta_{1}}-\frac{1}{\theta_{2}}\right)\right\}
$$

which is an increasing function of $T(x)=\sum_{i=1}^{n} x_{i}$. Thus the rejection region takes the form

$$
\mathcal{R} \equiv\left\{\underset{\sim}{x}: T(\underset{\sim}{x})=\sum_{i=1}^{n} x_{i}>t_{0}\right\}
$$

To find t_{0}, we need to solve

$$
\operatorname{Pr}\left[T(\underset{\sim}{X})>t_{0} \mid \theta_{0}\right]=\alpha .
$$

Here $T(\underset{\sim}{X}) \sim \operatorname{Gamma}(n, 1 / \theta)$, so t_{0} is the $1-\alpha$ quantile of this distribution.
4 Marks
(b) The likelihood ratio for $\theta_{1}<\theta_{2}$ for this model is

$$
\lambda(\underset{\sim}{x})=\frac{f_{\underset{\sim}{X} \mid \theta}\left(\underset{x}{x} \mid \theta_{2}\right)}{f_{\underset{X}{X} \mid \theta}\left(\underset{\sim}{x} \mid \theta_{1}\right)}=\frac{\theta_{1}^{n / 2}}{\theta_{2}^{n / 2}} \exp \left\{\frac{T(x)}{2}\left(\frac{1}{\theta_{1}}-\frac{1}{\theta_{2}}\right)\right\}
$$

which is an increasing function of $T(\underset{\sim}{x})=\sum_{i=1}^{n}\left(x_{i}-1\right)^{2}$. Thus the rejection region takes the form

$$
\mathcal{R} \equiv\left\{\underset{x}{x}: T(\underset{\sim}{x})=\sum_{i=1}^{n} x_{i}>t_{0}\right\}
$$

To find t_{0}, we need to solve

$$
\operatorname{Pr}\left[T(\underset{\sim}{X})>t_{0} \mid \theta_{0}\right]=\alpha .
$$

Here under the assumption $\theta=\theta_{0}$,

$$
\frac{T(\underset{\sim}{X})}{\theta_{0}} \sim \chi_{n}^{2} \equiv \operatorname{Gamma}(n / 2,1 / 2)
$$

so

$$
\operatorname{Pr}\left[T(\underset{\sim}{X})>t_{0} \mid \theta_{0}\right]=\operatorname{Pr}\left[T(\underset{\sim}{X}) / \theta_{0}>t_{0} / \theta_{0} \mid \theta_{0}\right]=\alpha .
$$

implies that $t_{0}=\theta_{0} q_{n, 1-\alpha}$, where $q_{n, 1-\alpha}$ is the $1-\alpha$ quantile of the Chisquared distribution with n degrees of freedom.

3 Again using the Karlin-Rubin Theorem: The likelihood ratio for $\theta_{1}<\theta_{2}$ for this model is

$$
\lambda(x)=\frac{f_{X \mid \theta}\left(\underset{\sim}{x} \mid \theta_{2}\right)}{f_{\underset{X}{X} \mid \theta}\left(\underset{\sim}{x} \mid \theta_{1}\right)}=\left(\frac{\theta_{2}}{\theta_{1}}\right)^{T(x)} \exp \left\{-n\left(\theta_{2}-\theta_{1}\right)\right\}
$$

where $T(\underset{\sim}{x})=\sum_{i=1}^{n} x_{i}$. In this case, under $\theta=2$,

$$
T(\underset{\sim}{X})=\sum_{i=1}^{n} X_{i} \sim \operatorname{Poisson}(2 n)
$$

Thus the distribution of $T(\underset{\sim}{X})$ is discrete. A randomized test takes the form

$$
\phi_{\mathcal{R}}^{\star}(\underset{\sim}{x})= \begin{cases}1 & T(x)>c \\ \gamma & T(x)=c \\ 0 & T(x) \leq c\end{cases}
$$

where c is the largest integer such that

$$
\operatorname{Pr}[T(\underset{\sim}{X})>c] \leq 0.05
$$

and γ is selected so that

$$
\operatorname{Pr}[T(\underset{\sim}{X})>c]+\gamma \operatorname{Pr}[T(\underset{\sim}{X})=c]=0.05
$$

In the example, $n=6$, and $T(\underset{\sim}{x})=18$, and by calculation $c=18$

$$
\operatorname{Pr}[T(\underset{\sim}{X})>18]=0.0374 \quad \operatorname{Pr}[T(\underset{\sim}{X})=18]=0.0255
$$

so that

$$
\gamma=\frac{0.05-\operatorname{Pr}[T(\underset{\sim}{X})>18]}{\operatorname{Pr}[T(\underset{\sim}{X})=18]}=\frac{0.05-0.0374}{0.0255}=0.494
$$

In this case, the hypothesis is rejected with probability $\gamma=0.494$ as $T(x)=18$.

