MATH 557 - Assignment 1 Solutions

1 We construct the joint pmf/pdf in each case, and inspect the required conditional pdf. Note that 1-1 transformations of the statistics are also sufficient.
(a) For the

$$
f_{\underset{\sim}{X} \mid \alpha, \beta}(\underset{\sim}{x} \mid \alpha, \beta)=\left\{\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}\right\}^{n}\left\{\prod_{i=1}^{n} x_{i}\right\}^{\alpha-1}\left\{\prod_{i=1}^{n}\left(1-x_{i}\right)\right\}^{\beta-1}
$$

suggesting the sufficient statistic

$$
\underset{\sim}{T}(\underset{\sim}{X})=\left(\prod_{i=1}^{n} x_{i}, \prod_{i=1}^{n}\left(1-x_{i}\right)\right)^{\top}
$$

and the result follows using the Neyman Factorization Theorem.
2 Marks
(b) Writing $\lambda=\log \theta$, we realize that this is the $\operatorname{Poisson}(\log \theta)$ model. Hence by properties of the Exponential Family

$$
T(\underset{\sim}{X})=\sum_{i=1}^{n} X_{i}
$$

is a sufficient statistic for $\log \theta$.
2 Marks
(c) We have

$$
\begin{aligned}
f_{\underset{\sim}{X} \mid \theta}(x \mid \theta) & =\frac{1}{\theta}^{n} & \theta<x_{1}, \ldots, x_{n}<2 \theta \\
& =\frac{1}{\theta}^{n} I_{\left(x_{(n)} / 2, x_{(1)}\right)}(\theta) &
\end{aligned}
$$

suggesting the sufficient statistic

$$
\underset{\sim}{T}(\underset{\sim}{X})=\left(X_{(1)}, X_{(n)}\right)^{\top}
$$

and the result follows using the Neyman Factorization Theorem.
2 Marks

2 (a) We have

$$
f_{\underset{\sim}{X} \mid \lambda}(\underset{\sim}{x} \mid \lambda)=\lambda^{n} \exp \left\{-\lambda \sum_{i=1}^{n} x_{i}\right\}=\lambda^{n} \exp \{-\lambda T(\underset{\sim}{x})\}
$$

say, so that for two points $\underset{\sim}{x}$ and $\underset{\sim}{y}$ the ratio

$$
\frac{f_{\underset{X}{X} \mid \lambda}(\underset{x}{x} \mid \lambda)}{f_{\underset{\sim}{X} \mid \lambda}(\underset{\sim}{y} \mid \lambda)}=\exp \{-\lambda(T(\underset{\sim}{x})-T(\underset{\sim}{y}))\}
$$

which is a constant if and only if $T(\underset{\sim}{x})=T(\underset{\sim}{y})$. Therefore $T(\underset{\sim}{x})$ is minimal sufficient.
(b) Given $x_{(1)}, \ldots, x_{(m)}$, we can construct the joint pdf for the order statistic data by noting that if $X_{(m)}=x_{(m)}$, then we have $X_{(r)}>x_{(m)}$ for the $n-m$ order statistics $X_{(r)}, r=m+1, \ldots, n$. Thus, as the "survivor" function takes the form $1-F_{X \mid \lambda}(x \mid \lambda)=e^{-\lambda x}$, we have

$$
f_{\underset{X}{X} \mid \lambda}(\underset{\sim}{x} \mid \lambda)=m!\binom{n}{m} \times \lambda^{m} \exp \left\{-\lambda \sum_{i=1}^{m} x_{(i)}\right\} \times \exp \left\{-(n-m) \lambda x_{(m)}\right\}
$$

where the combinatorial term counts the number of possible arrangements of the random sample points. Thus a sufficient statistic is

$$
T(\underset{\sim}{X})=\sum_{i=1}^{m} X_{(i)}+(n-m) X_{(m)}
$$

by the Neyman Factorization Theorem.
6 Marks

3 We have for $t=0,1, \ldots$,

$$
f_{\underset{X}{x} \mid \theta}(x \mid \theta)=\frac{\theta_{\theta_{i=1}^{\sum_{i}} x_{i}} e^{-n \theta}}{\prod_{i=1}^{n} x_{i}!}
$$

and $T(\underset{\sim}{X}) \sim \operatorname{Poisson}(n \theta)$ from distributional results, so that

$$
f_{\underset{X}{X} \mid T(\underset{\sim}{X})}(\underset{\sim}{x} \mid t)=\frac{\theta_{i=1}^{n} x_{i} e^{-n \theta} / \prod_{i=1}^{n} x_{i}!}{(n \theta)^{t} e^{-n \theta} / t!}=\frac{t!}{x_{1}!\ldots, x_{n}!}\left(\frac{1}{n}\right)^{t} \quad \underset{\sim}{x} \in A_{t}
$$

and zero otherwise, where

$$
A_{t} \equiv\left\{\underset{\sim}{x}: x_{1}+\cdots+x_{n}=t\right\} .
$$

