MATH 557 - ASSIGNMENT 4

To be handed in not later than 5pm, 8th April 2008. Please hand in during lectures, to Burnside 1235, or to the Mathematics Office Burnside 1005

- 1 Suppose that $X_1, \ldots, X_n \sim \text{Bernoulli}(\theta)$ are a random sample, where $0 < \theta < 1$, and suppose that $\tau(\theta) = \theta(1 - \theta)$.
 - (a) Find the maximum likelihood estimator of $\tau(\theta)$, $\hat{\tau}_n(X)$.
 - (b) Find large sample approximation to the distribution of $\hat{\tau}_n(X)$ for each $\theta \in (0, 1)$.

4 MARKS

2 MARKS

2 Suppose that X_1, \ldots, X_n is a random sample from a distribution with pdf f_X , with

$$\mathbf{E}_{f_X}[X_i] = \mu \qquad \qquad \mathbf{Var}_{f_X}[X_i] = 1 \qquad \qquad \mathbf{Var}_{f_X}[X_i^2] = \gamma \qquad \qquad \mathbf{E}_{f_X}[X_i^4] < \infty$$

for $i = 1, \ldots, n$. Denote by

$$T_{1n}(\underline{X}) = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - 1$$
 $T_{2n}(\underline{X}) = \overline{X}^2 - \frac{1}{n}$

two estimators of $\tau(\mu) = \mu^2$. The Asymptotic Relative Efficiency (ARE) of T_{1n} with respect to T_{2n} is defined as the ratio of their asymptotic mean-square errors (AMSE)

$$ARE_{\mu}(T_{1n}, T_{2n}) = \frac{AMSE_{\mu}(T_{2n})}{AMSE_{\mu}(T_{1n})}$$

where

$$AMSE_{\mu}(T_{jn}) = \lim_{n \to \infty} E_{f_{T_{jn}|\mu}}[(T_{jn} - \tau(\mu))^2] \qquad j = 1, 2$$

Find $ARE_{\mu}(T_{1n}, T_{2n})$.

8 MARKS

3 Suppose that $(X_i, Y_i), i = 1, \ldots, n$ are independent pairs of random variables with joint pdf

.

$$f_{X,Y|\theta,\phi}\left(x,y|\theta,\phi\right) = \phi^{2}\theta \exp\left\{-\left[\phi x + \theta\phi y\right]\right\} \qquad x,y > 0$$

for parameters $\theta, \eta > 0$. Find the maximum likelihood estimator, $\hat{\theta}$, of $\theta = (\theta, \phi)^{\mathsf{T}}$, and a large sample approximation its distribution, given in this regular case by

$$\sqrt{n}(\widehat{\underline{\theta}} - \underline{\theta}) \stackrel{d}{\longrightarrow} Z \sim \operatorname{Normal}(\underline{0}, \mathcal{I}(\underline{\theta})^{-1})$$

where $\mathcal{I}(\theta)$ is the Fisher Information.

6 MARKS