556: MATHEMATICAL STATISTICS I The Joint Distribution Of The Sample Quantiles

RESULT 1: If $Y_{1}, Y_{2}, \ldots, Y_{n+1} \sim$ Exponential (1) are independent random variables, and $S_{1}, S_{2}, \ldots, S_{n+1}$ are defined by

$$
S_{k}=\sum_{j=1}^{k} Y_{j} \quad k=1,2, \ldots, n+1
$$

then the random variables

$$
\left[\frac{S_{1}}{S_{n+1}}, \frac{S_{2}}{S_{n+1}}, \ldots, \frac{S_{n}}{S_{n+1}}\right]
$$

given that $S_{n+1}=s$, say, have the same distribution as the order statistics from a random sample of size n from the Uniform distribution on $(0,1)$.

Proof: Let the Y_{j} s be defined as above. Then the joint density for the Y_{j} s is given by

$$
\exp \left\{-\sum_{j=1}^{n+1} y_{j}\right\} \quad y_{1}, y_{2}, \ldots, y_{n+1}>0
$$

Now

$$
\left.\begin{array}{cl}
S_{1} & =Y_{1} \\
S_{2} & =Y_{1}+Y_{2} \\
S_{3} & = \\
Y_{1}+Y_{2}+Y_{3} \\
\vdots & \\
\vdots \\
S_{n} & =\sum_{j=1}^{n} Y_{j} \\
S_{n+1} & =\sum_{j=1}^{n+1} Y_{j}
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{ccc}
Y_{1} & = & S_{1} \\
Y_{2} & = & S_{2}-S_{1} \\
Y_{3} & = & S_{3}-S_{2} \\
\vdots & & \vdots \\
Y_{n} & = & S_{n}-S_{n-1} \\
Y_{n+1} & = & S_{n+1}-S_{n}
\end{array}\right.
$$

and so the Jacobian of the transformation from $\left(Y_{1}, \ldots, Y_{n+1}\right) \longrightarrow\left(S_{1}, \ldots, S_{n+1}\right)$ is 1 , and hence the joint density for $\left(S_{1}, \ldots, S_{n+1}\right)$ is given by

$$
\exp \left\{-s_{n+1}\right\} \quad 0<s_{1}<s_{2}<\ldots<s_{n+1}<\infty .
$$

The marginal distribution for S_{n+1} is $\operatorname{Gamma}(n+1,1)$ and thus the conditional distribution of $\left(S_{1}, \ldots, S_{n}\right)$ given $S_{n+1}=s$ is

$$
\frac{\exp \{-s\}}{\frac{1}{\Gamma(n+1)} s^{n} \exp \{-s\}}=\frac{n!}{s^{n}} \quad 0<s_{1}<s_{2}<\ldots<s<\infty .
$$

Finally, conditional on $S_{n+1}=s$, define the joint transformation

$$
V_{j}=\frac{S_{j}}{s} \Longleftrightarrow S_{j}=s V_{j} \quad j=1,2, \ldots, n
$$

which has Jacobian s^{n}. Then, conditional on $S_{n+1}=s,\left(V_{1}, \ldots, V_{n}\right)$ have joint pdf equal to n ! for $0<v_{1}<v_{2}<\ldots<v_{n}<1$. Finally, if U_{1}, \ldots, U_{n} are independent random variables each having a Uniform distribution on $(0,1)$, then $\left(U_{1}, \ldots, U_{n}\right)$ have joint pdf equal to 1 on the unit hypercube in n dimensions, and thus the corresponding order statistics $U_{(1)}, \ldots, U_{(n)}$ also have joint pdf equal to

$$
n!\quad 0<u_{1}<u_{2}<\ldots<u_{n}<1 .
$$

RESULT 2: Let the S_{k} be defined as in Result 1. Then

$$
\sqrt{k}\left(\frac{S_{k}}{k}-1\right) \xrightarrow{d} N(0,1) \text { as } k \longrightarrow \infty
$$

Proof: We have that S_{k} is the sum of k independent and identically distributed Exponential (1) random variables, Y_{1}, \ldots, Y_{k}, so that $E\left[Y_{j}\right]=\operatorname{Var}\left[Y_{j}\right]=1$. Thus result follows via the Central Limit Theorem.

RESULT 3: Let the S_{k} be defined as in Result 1. Then, if $k_{1}(n)$ is a sequence of integers such that

$$
k_{1 n} \longrightarrow \infty \quad \text { while } \quad \frac{k_{1 n}}{n} \longrightarrow p_{1}
$$

for some p_{1} with $0<p_{1}<1$, it follows that

$$
\sqrt{n+1}\left(\frac{S_{k_{1 n}}}{n+1}-\frac{k_{1 n}}{n+1}\right) \xrightarrow{d} N\left(0, p_{1}\right) \text { as } n \longrightarrow \infty
$$

Proof: We have

$$
\sqrt{n+1}\left(\frac{S_{k_{1 n}}}{n+1}-\frac{k_{1 n}}{n+1}\right)=\sqrt{\frac{k_{1 n}}{n+1}} \times \sqrt{k_{1 n}}\left(\frac{S_{k_{1 n}}}{k_{1 n}}-1\right) \xrightarrow{d} \sqrt{p_{1}} \times N(0,1) \equiv N\left(0, p_{1}\right)
$$

as $n \longrightarrow \infty$ and $k_{1 n} \longrightarrow \infty$.
Corollary: Using the same approach, if

$$
\frac{k_{1 n}}{n} \longrightarrow p_{1} \quad \text { and } \quad \frac{k_{2 n}}{n} \longrightarrow p_{2}
$$

for $0<p_{1}<p_{2}<1$, then if $D_{n}=\sum_{j=k_{1 n}+1}^{k_{2 n}} Y_{j}$,

$$
\begin{aligned}
\sqrt{n+1}\left(\frac{\left(S_{k_{2 n}}-S_{k_{1 n}}\right)}{n+1}-\frac{k_{2 n}-k_{1 n}}{n+1}\right) & =\sqrt{\frac{k_{2 n}-k_{1 n}}{n+1}} \sqrt{k_{2 n}-k_{1 n}}\left(\frac{D_{n}}{k_{2 n}-k_{1 n}}-1\right) \\
& \xrightarrow{d} \sqrt{p_{2}-p_{1}} \times N(0,1) \equiv N\left(0, p_{2}-p_{1}\right) .
\end{aligned}
$$

Similarly

$$
\sqrt{n+1}\left(\frac{1}{n+1}\left(S_{n+1}-S_{k_{2 n}}\right)-\frac{n+1-k_{2 n}}{n+1}\right) \xrightarrow{d} N\left(0,1-p_{2}\right)
$$

where the limiting variables in the three cases are independent, as

$$
\begin{aligned}
S_{k_{1 n}} & =\sum_{j=1}^{k_{1 n}} Y_{j} \\
\left(S_{k_{2 n}}-S_{k_{1 n}}\right) & =\sum_{j=k_{1 n}+1}^{k_{2 n}} Y_{j} \\
\left(S_{n+1}-S_{k_{2 n}}\right) & =\sum_{j=k_{2 n}+1}^{n+1} Y_{j}
\end{aligned}
$$

are independent.

RESULT 4: Let

$$
Z_{1}=\frac{S_{k_{1 n}}}{n+1} \quad Z_{2}=\frac{\left(S_{k_{2 n}}-S_{k_{1 n}}\right)}{n+1} \quad Z_{3}=\frac{\left(S_{n+1}-S_{k_{2 n}}\right)}{n+1}
$$

and suppose that

$$
\sqrt{n}\left(\frac{k_{1 n}}{n}-p_{1}\right) \longrightarrow 0 \quad \text { and } \quad \sqrt{n}\left(\frac{k_{2 n}}{n}-p_{2}\right) \longrightarrow 0
$$

as $n \longrightarrow \infty$. Then

$$
\sqrt{n+1}\left(\left(\begin{array}{c}
Z_{1} \\
Z_{2} \\
Z_{3}
\end{array}\right)-\left(\begin{array}{c}
p_{1} \\
p_{2}-p_{1} \\
1-p_{2}
\end{array}\right)\right) \xrightarrow{d} N(0, \Sigma)
$$

as $n \longrightarrow \infty$, where $\Sigma=\operatorname{diag}\left(p_{1}, p_{2}-p_{1}, 1-p_{2}\right)$.
Proof: We have, as $n \longrightarrow \infty$,

$$
\begin{gathered}
\sqrt{n+1}\left(\frac{S_{k_{1 n}}}{n+1}-p_{1}\right)-\sqrt{n+1}\left(\frac{S_{k_{1 n}}}{n+1}-\frac{k_{1 n}}{n+1}\right)=\sqrt{n+1}\left(\frac{k_{1 n}}{n+1}-p_{1}\right) \longrightarrow 0 \\
\therefore \sqrt{n+1}\left(\frac{S_{k_{1 n}}}{n+1}-p_{1}\right) \quad \text { and } \quad \sqrt{n+1}\left(\frac{S_{k_{1 n}}}{n+1}-\frac{k_{1 n}}{n+1}\right)
\end{gathered}
$$

have the same asymptotic distribution, and thus the result follows from Result 3. The proof is similar for the other two terms. Independence (that is, the diagonal nature of Σ) follows from the independence of $S_{k_{1 n}},\left(S_{k_{2 n}}-S_{k_{1 n}}\right)$, and $\left(S_{n+1}-S_{k_{2 n}}\right)$.

RESULT 5: If $U_{(1)}, \ldots, U_{(n)}$ are the order statistics from a random sample of size n from a $\operatorname{Uniform}(0,1)$ distribution, and if $n \longrightarrow \infty, k_{1 n} \longrightarrow \infty$ and $k_{2 n} \longrightarrow \infty$ in such a way that

$$
\sqrt{n}\left(\frac{k_{1 n}}{n}-p_{1}\right) \longrightarrow 0 \quad \text { and } \quad \sqrt{n}\left(\frac{k_{2 n}}{n}-p_{2}\right) \longrightarrow 0
$$

for $0<p_{1}<p_{2}<1$, then

$$
\sqrt{n}\left(\binom{U_{\left(k_{1 n}\right)}}{U_{\left(k_{2 n}\right)}}-\binom{p_{1}}{p_{2}}\right) \xrightarrow{d} N\left(0,\left[\begin{array}{cc}
p_{1}\left(1-p_{1}\right) & p_{1}\left(1-p_{2}\right) \\
p_{1}\left(1-p_{2}\right) & p_{2}\left(1-p_{2}\right)
\end{array}\right]\right) .
$$

Proof: Define

$$
\begin{gathered}
g\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{x_{1}+x_{2}+x_{3}}\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2}
\end{array}\right] \quad \dot{g}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{\left(x_{1}+x_{2}+x_{3}\right)^{2}}\left[\begin{array}{ccc}
x_{2}+x_{3} & -x_{1} & -x_{1} \\
x_{3} & x_{3} & -\left(x_{1}+x_{2}\right)
\end{array}\right] . \\
\therefore g\left(\frac{S_{k_{1 n}}}{n+1}, \frac{S_{k_{2 n}}-S_{k_{1 n}}}{n+1}, \frac{S_{n+1}-S_{k_{2 n}}}{n+1}\right)=\frac{1}{S_{n+1}}\left[\begin{array}{c}
S_{k_{1 n}} \\
S_{k_{2 n}}
\end{array}\right]
\end{gathered}
$$

which has the same distribution as $\left(U_{\left(k_{1 n}\right)}, U_{\left(k_{2 n}\right)}\right)^{\top}$, by Result 1. By the Delta Method

$$
\sqrt{n}\left(\binom{U_{\left(k_{1 n}\right)}}{U_{\left(k_{2 n}\right)}}-\binom{p_{1}}{p_{2}}\right) \xrightarrow{d} N\left(0, \dot{g}(\mu) \Sigma \dot{g}(\mu)^{\top}\right)
$$

where Σ is as defined in the Result 4, where here $\mu=\left(p_{1}, p_{2}-p_{1}, 1-p_{2}\right)^{T}$. It can be easily verified that

$$
\dot{g}(\mu) \Sigma \dot{g}(\mu)^{T}=\left[\begin{array}{ll}
p_{1}\left(1-p_{1}\right) & p_{1}\left(1-p_{2}\right) \\
p_{1}\left(1-p_{2}\right) & p_{2}\left(1-p_{2}\right)
\end{array}\right] .
$$

RESULT 6: If $X_{(1)}, \ldots, X_{(n)}$ are the order statistics from a random sample of size n from a distribution with continuous distribution function F_{X} and density f_{X} which is continuous and non-zero in a neighbourhood of quantiles $x_{p_{1}}$ and $x_{p_{2}}$ corresponding to probabilities $p_{1}<p_{2}$, then if $k_{1 n}=\left\lceil n p_{1}\right\rceil$ and $k_{2 n}=\left\lceil n p_{2}\right\rceil$

$$
\sqrt{n}\left(\binom{X_{\left(k_{1 n}\right)}}{X_{\left(k_{2 n}\right)}}-\binom{x_{p_{1}}}{x_{p_{2}}}\right) \stackrel{d}{\longrightarrow} N\left(0,\left[\begin{array}{cc}
\frac{p_{1}\left(1-p_{1}\right)}{\left\{f_{X}\left(x_{p_{1}}\right)\right\}^{2}} & \frac{p_{1}\left(1-p_{2}\right)}{f_{X}\left(x_{p_{1}}\right) f_{X}\left(x_{p_{2}}\right)} \\
\frac{p_{1}\left(1-p_{2}\right)}{f_{X}\left(x_{p_{1}}\right) f_{X}\left(x_{p_{2}}\right)} & \frac{p_{2}\left(1-p_{2}\right)}{\left\{f_{X}\left(x_{p_{2}}\right)\right\}^{2}}
\end{array}\right]\right)
$$

Proof: We use the Delta Method on the result from Result 5, with the transformation

$$
g\left(y_{1}, y_{2}\right)=\left[\begin{array}{l}
F_{X}^{-1}\left(y_{1}\right) \\
F_{X}^{-1}\left(y_{2}\right)
\end{array}\right]
$$

so that

$$
\dot{g}\left(y_{1}, y_{2}\right)=\left[\begin{array}{cc}
\frac{1}{f_{X}\left(F_{X}^{-1}\left(y_{1}\right)\right)} & 0 \\
0 & \frac{1}{f_{X}\left(F_{X}^{-1}\left(y_{2}\right)\right)}
\end{array}\right]
$$

with $y_{1}=p_{1}$ and $y_{2}=p_{2}$.
By properties of the multivariate normal distribution, we have that the marginal distribution of $X_{\left(k_{1 n}\right)}$ can be approximated for large n by using the relationship

$$
\sqrt{n}\left(X_{\left(k_{1 n}\right)}-x_{p_{1}}\right) \xrightarrow{d} N\left(0, \frac{p_{1}\left(1-p_{1}\right)}{\left\{f_{X}\left(x_{p_{1}}\right)\right\}^{2}}\right)
$$

For example, if $p_{1}=1 / 2, x_{p_{1}}$ is the median $x_{F_{X}}(0.5)$ of the distribution, and $X_{\left(k_{1 n}\right)}$ is the sample median $\widetilde{X}_{n}(0.5)$, and we have that

$$
\sqrt{n}\left(\widetilde{X}_{n}(0.5)-x_{F_{X}}(0.5)\right) \xrightarrow{d} N\left(0, \frac{1}{4\left\{f_{X}(x(0.5))\right\}^{2}}\right)
$$

If F_{X} is the $N\left(\mu, \sigma^{2}\right)$ distribution, then $x_{F_{X}}(0.5)=\mu$ and

$$
f_{X}(x(0.5))=f_{X}(\mu)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 2}
$$

so this result says that

$$
\sqrt{n}\left(\widetilde{X}_{n}(0.5)-\mu\right) \xrightarrow{d} N\left(0, \frac{\pi \sigma^{2}}{2}\right) \dot{\sim} N\left(0,1.57 \sigma^{2}\right)
$$

which contrasts with the exact result for the sample mean

$$
\sqrt{n}\left(\bar{X}_{n}-\mu\right) \sim N\left(0, \sigma^{2}\right) .
$$

