556: MATHEMATICAL STATISTICS I INTRODUCTION TO MEASURE AND INTEGRATION

1. PROBABILITY AND MEASURE

In formal probability theory, a probability specification has three components:

- The Sample Space : a set Ω with elements ω
- A Sigma-Algebra : a collection of subsets of Ω , denoted \mathcal{E} , say, that obeys the following properties
 - I $\Omega \in \mathcal{E}$

II Closure under countable union:

$$E_1, E_2, \ldots \in \mathcal{E} \Longrightarrow \bigcup_{k=1}^{\infty} E_k \in \mathcal{E}$$

III Closure under complementation: $E \in \mathcal{E} \Longrightarrow E' \in \mathcal{E}$

- A Probability Measure : a real-valued set function \mathbb{P} that obeys the general properties of a measure with one additional requirement. A measure, denoted μ , is a real-valued set function such that for arbitrary sets *E* and E_1, E_2, \ldots
 - I Non-negativity: $\mu(E) \ge 0$.
 - II Sub-additivity:

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) \le \sum_{k=1}^{\infty} \mu(E_k)$$

III *Preservation under Limits:* If $E_1 \subset E_2 \subset ...$ is an increasing sequence of sets, we use the notation

$$\lim_{n \to \infty} E_n \equiv \bigcup_{i=1}^{\infty} E_i$$

Then

$$\mu\left(\lim_{n \to \infty} E_n\right) = \lim_{n \to \infty} \mu(E_n).$$

Similarly, if $E_1 \supset E_2 \supset \ldots$ is a decreasing sequence of sets, we use the notation

$$\lim_{n \to \infty} E_n \equiv \bigcap_{i=1}^{\infty} E_i.$$

and again

$$\mu\left(\lim_{n \to \infty} E_n\right) = \lim_{n \to \infty} \mu(E_n).$$

Examples of Measures: For sample space Ω , and $A \subseteq \Omega$,

- *Counting Measure* : $\mu(A) = |A|$ if A is a finite subset, $\mu(A) = \infty$ if A is an infinite subset.
- *Lebesgue Measure* : If $\Omega \equiv \mathbb{R}$, then, for a < b,

$$\mu((a,b)) = \mu((a,b]) = \mu([a,b]) = \mu([a,b]) = b - a.$$

Probability measures have the additional property that $\mathbb{P}(\Omega) = 1$.

We use the terminology

- Measurable space to describe the pair (Ω, \mathcal{E})
- Measure space to describe the triple $(\Omega, \mathcal{E}, \mu)$
- **Probability space** to describe the triple $(\Omega, \mathcal{E}, \mathbb{P})$

2. MEASURABLE FUNCTIONS

DEFINITION Borel σ **-algebra**

Let $\Omega \equiv \mathbb{R}$, and C be the collection of all finite open intervals of \mathbb{R} , that is $C \equiv \{(a, b) : a < b \in \mathbb{R}.\}$. Then $\mathcal{B} \equiv \sigma(\mathcal{C})$ is the **Borel** σ -algebra, and $B \in \mathcal{B}$ are the **Borel sets**, which are of the form

$$(a, b), (a, b], [a, b), [a, b] \qquad -\infty \le a \le b \le \infty$$

The **Borel** σ -algebra in \mathbb{R} , \mathcal{B} , is the smallest (or **minimal**) σ -algebra containing all **open sets**. **DEFINITION Measurability**

The real-valued function f defined with domain $E \subset \Omega$, for measurable space (Ω, \mathcal{E}) , is **Borel measurable** with respect to \mathcal{E} if the inverse image of set B, defined as

$$f^{-1}(B) \equiv \{\omega \in E : f(\omega) \in B\}$$

is an element of σ -algebra \mathcal{E} , for all Borel sets B of \mathbb{R} (strictly, of the *extended* real number system \mathbb{R}^* , including $\pm \infty$ as elements). Necessary and sufficient for f to be measurable are

- (a) $f^{-1}(A) \in \mathcal{E}$ for all open sets $A \subset \mathbb{R}^*$,
- (b) $f^{-1}([-\infty, x)) \in \mathcal{E}$ for all $x \in \mathbb{R}^*$,
- (c) $f^{-1}([-\infty, x]) \in \mathcal{E}$ for all $x \in \mathbb{R}^*$,
- (d) $f^{-1}([x,\infty]) \in \mathcal{E}$ for all $x \in \mathbb{R}^*$,
- (e) $f^{-1}((x,\infty]) \in \mathcal{E}$ for all $x \in \mathbb{R}^*$.
- **Note I** It is possible to extend this definition to a general **topological space** Ω equipped with a **topology**, that is, a collection, \mathcal{T} , of sets in Ω that (I) \mathcal{T} contains \emptyset and Ω , (II) \mathcal{T} is closed under finite intersection, and (III) if \mathcal{A} is a sub-collection of \mathcal{T} , $\mathcal{A} \subset \mathcal{T}$, and $A_1, A_2, A_3, ... \in \mathcal{A}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{T}$.

In this context, it is possible to define a general Borel σ -algebra on Ω ; the **open sets** are the elements $T_1, T_2, T_3, ...$ of the topology \mathcal{T} , and the Borel sets are the elements of the smallest σ -algebra generated by $\mathcal{T}, \sigma(\mathcal{T})$.

Note II Strictly, a function f is a **Borel function** if, for $B \in \mathcal{B}$, $f^{-1}(B) \in \sigma(\mathcal{T})$; however, we will generally consider measure spaces (Ω, \mathcal{E}) and say that f is a **Borel function** if it is Borel measurable, as defined in the first paragraph above.

The measurability of functions is preserved under the following operations: if g_1 and g_2 are measurable functions defined on $E \subset \Omega$ into \mathbb{R}^* , and c is any real number, then all of the following composite and other related functions are measurable

$$g_1 + g_2, g_1 + c, g_1 g_2, c g_1, g_1 / g_2, |g_1|^c, g_1 \vee g_2, g_1 \wedge g_2, g_1^+, g_1^-.$$

where

- $g_1 \vee g_2(x) = \max\{g_1(x), g_2(x)\}, g_1 \wedge g_2(x) = \min\{g_1(x), g_2(x)\}$
- $f^+(x) = f(x) \lor 0 = \max\{f(x), 0\}, f^-(x) = -f(x) \lor 0 = \max\{-f(x), 0\}$

so that

$$f(x) = f^{+}(x) - f^{-}(x) \qquad |f(x)| = f^{+}(x) + f^{-}(x).$$

Furthermore, if $\{g_n\}$ is a sequence of measurable functions, then the functions defined by

$$\overline{g}(x) = \sup_{n} g_n(x)$$
 $\underline{g}(x) = \inf_{n} g_n(x)$

are also measurable. Finally, the functions $\limsup g_n(x)$ and $\liminf g_n(x)$ are also measurable.

3. INTEGRATION

DEFINITION

Simple Functions Let $(\Omega, \mathcal{E}, \mu)$ be a measure space. A *simple function*, ψ , is a set function defined on elements ω of sample space Ω by

$$\psi\left(\omega\right) = \sum_{i=1}^{k} a_{i} I_{A_{i}}\left(\omega\right)$$

for real constants $a_1, ..., a_k$ and measurable sets $A_1, ..., A_k$, for some k = 1, 2, 3, ..., where $I_A(\omega)$ is the *indicator function*, where

$$I_A(\omega) = \left\{ \begin{array}{cc} 1 & \omega \in A \\ 0 & \omega \notin A \end{array} \right..$$

Note that any such simple function, can be re-expressed as a simple function defined for a **partition** of Ω , E_1 , ..., E_l ,

$$\psi\left(\omega\right) = \sum_{i=1}^{l} e_{i} I_{E_{i}}\left(\omega\right)$$

by suitable choice of the constants $e_1, ..., e_k$.

Let ψ be a **non-negative** simple function, $\psi : \Omega \longrightarrow \mathbb{R}^*$,

$$\psi\left(\omega\right) = \sum_{i=1}^{k} a_{i} I_{A_{i}}\left(\omega\right)$$

for real constants $a_1, ..., a_k \ge 0$ and measurable sets $A_1, ..., A_k \in \mathcal{E}$, for some k = 1, 2, 3, ...

(I) The **integral of** ψ **with respect to** μ is denoted and defined by

$$\int_{\Omega} \psi \ d\mu = \sum_{i=1}^{k} a_i \mu(A_i).$$

(II) Now suppose that f is a **non-negative** (Borel) measurable function, and let S_f be the set of all non-negative **simple** functions defined by

$$\mathcal{S}_f \equiv \{\psi : \psi(\omega) \le f(\omega), \forall \omega \in \Omega\}.$$

Then the integral of *f* with respect to μ is defined by

$$\int_{\Omega} f \ d\mu = \sup_{\psi \in \mathcal{S}_f} \int_{\Omega} \psi \ d\mu$$

that is, the **supremum** (least upper bound) over all possible choices of $k, a_1, ..., a_k \in \mathbb{R}^+$ and $A_1, ..., A_k \in \mathcal{E}$ such that, for all $\omega \in \Omega$,

$$\psi(\omega) = \sum_{i=1}^{k} a_i I_{A_i}(\omega) \le f(\omega)$$

We refer to this as the **Supremum Definition**.

(III) Finally, suppose that f is an **arbitrary** measurable function defined on Ω . Then

$$f^+(\omega) = \max\{f(\omega), 0\} \qquad f^-(\omega) = \max\{-f(\omega), 0\} \qquad \therefore \qquad f(\omega) = f^+(\omega) - f^-(\omega)$$

we define the integral of f with respect to μ by

$$\int_{\Omega} f \, d\mu = \int_{\Omega} f^+ \, d\mu - \int_{\Omega} f^- \, d\mu$$

where the two integrals on the right hand side are integrals of non-negative functions, and thus given by the supremum definition above.

NOTES

(i) In (III) above, it might be that at least one of the two integrals

$$\int_{\Omega} f^+ d\mu \qquad \int_{\Omega} f^- d\mu.$$

is not finite. If precisely one is finite, we say that

$$\int_{\Omega} f \ d\mu = \infty.$$

and that the integral of f exists. If both are finite, we say that the integral of f exists and is finite, and f is *integrable with respect to* μ . If neither is finite, then we say that the integral of f does not exist, and f is *not-integrable*.

(ii) For $E \subset \Omega$, if $I_E(\omega)$ is the indicator function for set *E*, then we can also define

$$\int_E f \, d\mu = \int I_E f \, d\mu$$

(iii) All of the following pieces of notation are equivalent and used in the literature:

$$\int f \, d\mu \qquad \int_{\Omega} f \, d\mu \qquad \int f(\omega) \, d\mu \qquad \int f(\omega) \, d\mu(\omega) \qquad \int f(\omega) \, \mu(d\omega)$$

(iv) Previous results show that measurable functions have representations as limits of sequences of simple functions. Other results show that measurability is preserved under composition, and also under limit behaviour. Consider a non-negative measurable function *f*. Then

$$f = \lim_{n \longrightarrow \infty} \psi_{\eta}$$

for a sequence of non-negative simple functions ψ_1, ψ_2, \ldots with $0 \le \psi_n(\omega) \le f(\omega)$, for all n and for all $\omega \in \Omega$. Then it can be shown

$$\lim_{n \to \infty} \int \psi_n \, d\mu = \lim_{n \to \infty} \sum_{i=1}^{k_n} a_{n,i} I_{A_{n,i}} = \sum_{i=1}^k a_i I_{A_i},$$

say, where

$$\lim_{n \to \infty} k_n = k \qquad \lim_{n \to \infty} a_{n,i} = a_i \qquad \lim_{n \to \infty} I_{A_{n,i}} = I_{A_i}.$$

Thus

$$\lim_{n \to \infty} \int \psi_n \ d\mu = \int \lim_{n \to \infty} \psi_n \ d\mu = \int f \ d\mu$$

and the integral is preserved under the limit operation.

$$\lim_{n \to \infty} \int \psi_n \ d\mu = \int \lim_{n \to \infty} \psi_n \ d\mu = \int f \ d\mu$$

4. **RESULTS FOR MEASURABLE FUNCTIONS**

Theorem 1. MEASURABILITY UNDER COMPOSITION

Let g_1 and g_2 be measurable functions on $E \subset \Omega$ with ranges in \mathbb{R}^* . Let f be a Borel function from $\mathbb{R}^* \times \mathbb{R}^*$ into \mathbb{R}^* . Then the composite function h, defined on E by

$$h(\omega) = f(g_1(\omega_1), g_2(\omega_2))$$

is measurable.

Proof. The function $g = (g_1, g_2)$ has domain E and range $\mathbb{R}^* \times \mathbb{R}^*$, and is measurable as g_1 and g_2 are measurable, and denote $h = f \circ g$ (the operator \circ indicates composition, i.e.

$$h(\omega_1, \omega_2) = (f \circ g)(\omega_1, \omega_2) \quad \text{if} \quad h(\omega_1, \omega_2) = f(g(\omega_1, \omega_2)) = f(g_1(\omega_1), g_2(\omega_2)).$$

If $B \in \mathcal{B}$, then $f^{-1}(B)$ is a Borel set as f is a Borel function. Thus the inverse image under h,

$$h^{-1}(B) = g^{-1}(f^{-1}(B))$$

is measurable as g_1 and g_2 , and hence g, are measurable.

Corollary 2. If g is a measurable function from E into \mathbb{R}^* , and f is a continuous function from \mathbb{R}^* into \mathbb{R}^* , then $h = f \circ g$ is measurable.

Theorem 3. MEASURABILITY UNDER ELEMENTARY OPERATIONS

Let g_1 and g_2 be measurable functions defined on $E \subset \Omega$ into \mathbb{R}^* , and let c be any real number. Then all of the following composite and other related functions are measurable

$$g_1 + g_2, g_1 + c, g_1g_2, cg_1, g_1/g_2, |g_1|^c, g_1 \lor g_2, g_1 \land g_2, g_1^+, g_1^-$$

Proof. In each case, we examine the domain of the composite function to ensure measurability in the Borel σ -algebra. Consider $g_1 + g_2$; this is not defined on the set { $\omega : g_1(\omega) = -g_2(\omega) = \pm \infty$ } (as $\infty \pm \infty$ is not defined), but this set is measurable, and so is the domain of $g_1 + g_2$. Let $f(x_1, x_2) = x_1 + x_2$ be a continuous function defined on $\mathbb{R}^* \times \mathbb{R}^*$. Then, by Theorem 1 and its corollary, $g_1 + g_2$ is measurable. Taking $g_2 = c$ proves that $g_1 + c$ is measurable.

The function g_1g_2 is defined everywhere on E; it's measurability follows from Theorem 1, setting $f(x_1, x_2) = x_1x_2$. Setting $g_2 = c$ proves that cg_1 is measurable.

The function g_1/g_2 is defined everywhere except on the union of sets

$$\{\omega: g_1(\omega) = g_2(\omega) = 0\} \cup \{\omega: \pm g_1(\omega) = \pm g_2(\omega) = \infty\}$$

Similarly, if c = 0, $|g_1|^c$ is defined except on $\{\omega : g_1(\omega) = \pm \infty\}$; if c < 0, it is defined except on $\{\omega : g_1(\omega) = 0\}$. If c > 0, it is defined everywhere. All of these sets are measurable Thus, we consider in turn functions

$$f(x_1, x_2) = x_1/x_2$$
 $f(x) = x^{\alpha}$

and use Theorem 1.

The functions $g_1 \lor g_2, g_1 \land g_2$ are defined everywhere; so we consider functions

$$f(x_1, x_2) = \max\{x_1, x_2\} \qquad f(x_1, x_2) = \min\{x_1, x_2\}$$

and again use Theorem 1. Finally, setting $g_2 = 0$ yields the measurability of g_1^+ and g_1^- .

Theorem 4. If g_1 and g_2 are measurable functions on a common domain, then each of the sets

$$\{\omega: g_1(\omega) < g_2(\omega)\} \qquad \{\omega: g_1(\omega) = g_2(\omega)\} \qquad \{\omega: g_1(\omega) > g_2(\omega)\}$$

is measurable.

Proof. Since g_1 and g_2 are measurable, then $f = g_1 - g_2$ is measurable, and thus the two sets

$$\left\{ \omega : f\left(\omega\right) > 0 \right\} \qquad \left\{ \omega : f\left(\omega\right) = 0 \right\}$$

are measurable. Since

$$\{\omega : g_1(\omega) < g_2(\omega)\} \equiv \{\omega : f(\omega) > 0\}$$

and

$$\{\omega: g_1(\omega) = g_2(\omega)\} \equiv \{\omega: f(\omega) = 0\} \cup \{\omega: g_1(\omega) = g_2(\omega) = \pm \infty\}$$

then $\{\omega : g_1(\omega) < g_2(\omega)\}$ and $\{\omega : g_1(\omega) = g_2(\omega)\}$ are measurable, and so is

$$\{\omega : g_1(\omega) \le g_2(\omega)\} \equiv \{\omega : g_1(\omega) < g_2(\omega)\} \cup \{\omega : g_1(\omega) = g_2(\omega)\}.$$

Theorem 5. MEASURABILITY UNDER LIMIT OPERATIONS

If $\{g_n\}$ *is a sequence of measurable functions, the functions* $\sup_n g_n$ *and* $\inf_n g_n$ *are measurable.*

Proof. Let $g = \sup_{n} g_n$. Then for real x, consider

$$g_n^{-1}\left(\left[-\infty,x\right]\right) \equiv \{\omega: g_n\left(\omega\right) \le x\}$$

and

$$g^{-1}([-\infty, x]) \equiv \{\omega : g(\omega) \le x\}.$$

If $g = \sup_{n} g_n$, then $g_n \leq g$ for all n, and

$$g(\omega) \le x \Longrightarrow g_n(\omega) \le x$$
 so that $\omega \in g^{-1}([-\infty, x]) \Longrightarrow \omega \in g_n^{-1}([-\infty, x])$

so that

$$g^{-1}\left(\left[-\infty,x\right]\right) \subseteq g_n^{-1}\left(\left[-\infty,x\right]\right)$$

for all n. Thus, in fact

$$g^{-1}([-\infty, x]) = \bigcap_{n} g_{n}^{-1}([-\infty, x])$$

and hence g is measurable, as the intersection of measurable sets is measurable. The result for \inf_{n}^{n} follows by noting that

$$\inf_{n} g_n = -\sup_{n} \left(-g_n \right).$$

Theorem 6. MEASURABILITY UNDER LIMINF/LIMSUP

If $\{g_n\}$ *is a sequence of measurable functions, the functions* $\limsup g_n$ *and* $\liminf g_n$ *are measurable.*

Proof. This follows from Theorem 5, as

$$\limsup_{n} g_n = \inf_k \left\{ \sup_{n \ge k} g_n \right\} \quad \text{and} \quad \liminf_n g_n = \sup_k \left\{ \inf_{n \ge k} g_n \right\}$$

5. SIMPLE FUNCTIONS AND THEIR CONVERGENCE PROPERTIES.

Theorem 7. A non-negative function on Ω is measurable if and only if it is the limit of an increasing sequence of non-negative simple functions.

Proof. Suppose that *g* is a nonnegative measurable function. For each positive integer *n*, define the simple function ψ_n on Ω by

$$\psi_n\left(\omega\right) = \frac{m}{2^n} \qquad \text{if} \ \frac{m}{2^n} \leq g\left(\omega\right) < \frac{m+1}{2^n}$$

for $m = 0, 1, 2, ..., 2^n - 1$, and

 $\psi_n(\omega) = n$ if $n \le g(\omega)$.

Then $\{\psi_n\}$ is an increasing sequence of non-negative simple functions. Since

$$\left|\psi_{n}\left(\omega\right)-g\left(\omega\right)\right|<\frac{1}{2^{n}}\qquad\text{if }n>g\left(\omega\right)$$

and $\psi_n(\omega) = n$ if $g(\omega) = \infty$, then, for all ω ,

$$\psi_n(\omega) \to g(\omega)$$

and we have found the sequence required for the result.

Now suppose that *g* is a limit of an increasing sequence of non-negative simple functions; it is measurable by Theorem 6. ■

Theorem 8. A function g defined on Ω is measurable if and only if it is the limit of a sequence of simple functions.

Proof. Suppose that g is measurable. Then g^+ and g^- are measurable and non-negative, and thus can be represented as limits of simple functions $\{\psi_n^+\}$ and $\{\psi_n^-\}$, by the Theorem 7. Consider the sequence of simple functions defined by $\{\psi_n^+ - \psi_n^-\}$; this sequence converges to $g^+ - g^- = g$, and we have the sequence of simple functions required for the result.

Now suppose that *g* is a limit of a sequence of simple functions; it is measurable by Theorem 6. ■

6. KEY THEOREMS

The following key theorems describe the behaviour of the Lebesgue-Stieltjes integral. In particular, the theorems specify when it is legitimate to exchange the order of limit and integral operators. In the theorems, we have a general measure space $(\Omega, \mathcal{F}, \nu)$, and measurable set $E \in \mathcal{F}$.

Theorem 9. Lebesgue Monotone Convergence Theorem If $\{f_n\}$ is an increasing sequence of nonnegative measurable functions, and if

$$\lim_{n \to \infty} f_n = f \qquad almost \ everywhere$$

then

$$\lim_{n \to \infty} \int_E f_n d\nu = \int_E f d\nu$$

Proof. Let the (real) sequence $\{i_n\}$ be defined by

$$i_n = \int_E f_n d\nu.$$

Then, by a previous result

$$i_n = \int_E f_n d\nu \le \int_E f_{n+1} d\nu = i_{n+1} \qquad \text{as } f_n \le f_{n+1}$$

so $\{i_n\}$ is increasing. Let *L* denote the (possibly infinite) limit of $\{i_n\}$. Now, since $f_n \leq f$ almost everywhere for all *n*, we have (by the same previous result) that

$$\int_{E} f_n d\nu \le \int_{E} f d\nu \Longrightarrow L \le \int_{E} f d\nu.$$
(1)

Now consider constant *c* with 0 < c < 1, and let ψ be any simple function satisfying $0 \le \psi \le f$. Let

$$E_{n} \equiv \{\omega : \omega \in E \text{ and } c\psi(\omega) \leq f_{n}(\omega)\}$$

and as $E_n \subseteq E$, E_n is measurable, and because $f_n \leq f_{n+1}$, $E_n \subseteq E_{n+1}$ for all n, so $\{E_n\}$ is increasing. Let the limit of the $\{E_n\}$ sequence be denoted

$$F = \bigcup_{i=1}^{\infty} E_n.$$

The set $E \cap F'$ has measure zero, because $\lim_{n \to \infty} f_n = f$ a.e. and $0 \le c\psi < \psi \le f$. Hence, as $E_n \subseteq E$

$$\int_{E} f_n d\nu \ge \int_{E_n} f_n d\nu \ge \int_{E_n} c\psi d\nu = c \int_{E_n} \psi d\nu$$

Taking the limit as $n \to \infty$,

$$L = \lim_{n \to \infty} \int_E f_n d\nu \ge c \lim_{n \to \infty} \int_{E_n} \psi d\nu = c \int_F \psi d\nu = c \int_E \psi d\nu$$

the final step following as $E \cap F'$ has measure zero. Thus, as this holds for all c such that 0 < c < 1, we must have that

$$L \geq \int_E \psi d\nu$$

whenever $0 \le \psi \le f$. Hence *L* is an upper bound the integral of such a simple function on *E*. But, by the supremum definition from lectures, the integral of *f* with respect to ν on *E* is the **least** upper bound on the integral of such simple functions on *E*. Hence

$$L \ge \int_E f d\nu.$$
⁽²⁾

Thus, combining (1) and (2), we have that

$$L = \lim_{n \to \infty} \int_E f_n d\nu = \int_E f d\nu.$$

Theorem 10. Fatou's Lemma (or Lebesgue-Fatou Theorem)

If $\{f_n\}$ *is a sequence of non-negative measurable functions, and if*

$$\liminf_{n \to \infty} f_n = f \qquad almost \ everywhere$$

then

$$\int_E f d\nu \le \liminf_{n \to \infty} \left\{ \int_E f_n d\nu \right\}$$

Proof. The function $\liminf_{n\to\infty} f_n$ is measurable. For k = 1, 2, 3, ... let

$$h_k = \inf \left\{ f_n : n \ge k \right\}.$$

Then, by definition of infimum, $h_k \leq f_k$ for all k, and thus

$$\int_{E} h_{k} d\nu \leq \int_{E} f_{k} d\nu \quad \text{for all } k \quad \Longrightarrow \quad \liminf_{k \to \infty} \left\{ \int_{E} h_{k} d\nu \right\} \leq \liminf_{k \to \infty} \left\{ \int_{E} f_{k} d\nu \right\}. \tag{3}$$

Now $\{h_k\}$ is an increasing sequence of non-negative functions, we have in the limit

$$\lim_{k \to \infty} h_k = \liminf_{n \to \infty} f_n = f$$

almost everywhere. Now, by the Monotone Convergence Theorem,

$$\lim_{k \to \infty} \left\{ \int_E h_k d\nu \right\} = \int_E \left\{ \lim_{k \to \infty} h_k \right\} d\nu = \int_E f d\nu$$

Hence, by (3),

$$\int_E f d\nu \le \liminf_{k \to \infty} \left\{ \int_E f_k d\nu \right\}.$$

Some corollaries follow immediately from this important theorem

1 If
$$E_1, E_2, ..., E_n$$
 are disjoint, with $\bigcup_{i=1}^n E_i \equiv E$, and f is non-negative, then
$$\int_E f d\nu = \sum_{i=1}^n \left\{ \int_{E_i} f d\nu \right\}$$

Proof: Let $\{\psi_k\}$ be an increasing sequence of simple functions that converge to f, where

$$\psi_k = \sum_{j=1}^{m_k} a_{kj} I_{A_{kj}}$$

say. Then,

$$\int_{E} \psi_{k} d\nu = \sum_{j=1}^{m_{k}} a_{kj} \nu \left(E \cap A_{kj}\right) = \sum_{j=1}^{m_{k}} \sum_{i=1}^{n} a_{kj} \nu \left(E_{i} \cap A_{kj}\right) \quad \text{as the } E_{i} \text{ are disjoint}$$
$$= \sum_{i=1}^{n} \left\{ \sum_{j=1}^{m_{k}} a_{kj} \nu \left(E_{i} \cap A_{kj}\right) \right\} = \sum_{i=1}^{n} \left\{ \int_{E_{i}} \psi_{k} d\nu \right\}$$

by hence the monotone convergence theorem,

$$\int_{E} f d\nu = \lim_{k \to \infty} \left\{ \int_{E} \psi_{k} d\nu \right\} = \lim_{k \to \infty} \left\{ \sum_{i=1}^{n} \left\{ \int_{E_{i}} \psi_{k} d\nu \right\} \right\} = \sum_{i=1}^{n} \left\{ \lim_{k \to \infty} \left\{ \int_{E_{i}} \psi_{k} d\nu \right\} \right\}$$
$$= \sum_{i=1}^{n} \left\{ \int_{E_{i}} \left\{ \lim_{k \to \infty} \psi_{k} \right\} d\nu \right\} = \sum_{i=1}^{n} \left\{ \int_{E_{i}} f d\nu \right\}.$$

2 Now consider a **countable** (rather than merely finite) collection $\{E_i\}$ with $\bigcup_{i=1}^{\infty} E_i \equiv E$. Then if *f* is non-negative

$$\int_{E} f d\nu = \sum_{i=1}^{\infty} \left\{ \int_{E_{i}} f d\nu \right\}$$

Proof: For each positive integer n, let $A_n \equiv \bigcup_{i=1}^n E_i$, and define $f_n = I_{A_n} f$. Then $\{f_n\}$ is an increasing sequence of non-negative functions, that converges to f (on E). Hence

$$\int_{E} f d\nu = \lim_{n \to \infty} \left\{ \int_{E} f_n d\nu \right\} = \lim_{n \to \infty} \left\{ \int_{A_n} f d\nu \right\} = \lim_{n \to \infty} \left\{ \sum_{i=1}^n \left\{ \int_{E_i} f d\nu \right\} \right\} = \sum_{i=1}^\infty \left\{ \int_{E_i} f d\nu \right\}$$

3 Let *f* be a non-negative function on Ω . Then the function defined on \mathcal{F} by

$$\varphi \left(E\right) =\int_{E}fd\nu$$

is a measure. The only part of the definition of a measure that needs verifying is the countable additivity, by the last result, we have directly that

$$\varphi\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \varphi\left(E_i\right)$$

when the $\{E_i\}$ are disjoint.

For the results above (and the results proved in lectures), we have considered only the integrals of non-negative measurable functions. We now extend them for general measurable functions, using the decomposition into positive and negative part functions $f = f^+ - f^-$ where both f^+ and f^- are measurable and non-negative, and we have

$$\int_E f d\nu = \int_E f^+ d\nu - \int_E f^- d\nu.$$

Recall that we say that f is integrable if both f^+ and f^- are integrable, and now denote the set of all functions integrable on E with respect to ν by $\mathcal{L}_E(\nu)$. From previous arguments we have that

$$f \in \mathcal{L}_{E}(\nu) \Leftrightarrow f^{+} \text{ and } f^{-} \in \mathcal{L}_{E}(\nu)$$

Some results can be proved for the functions in this class.

LEMMA

If $\nu(E) = 0$, then

$$f \in \mathcal{L}_E(\nu)$$
 and $\int_E f d\nu = 0$

Proof. We have by definition

$$\int_{E} f d\nu = \int_{E} f^{+} d\nu - \int_{E} f^{-} d\nu = 0 - 0 = 0$$

LEMMA

If $f \in \mathcal{L}_{E_2}(\nu)$ and $E_1 \subset E_2$, then $f \in \mathcal{L}_{E_1}(\nu)$.

Proof. By a result from lectures

$$\int_{E_1} f^+ d\nu \le \int_{E_2} f^+ d\nu \quad \text{and} \quad \int_{E_1} f^- d\nu \le \int_{E_2} f^- d\nu$$

LEMMA

If $\{E_n\}$ is a sequence of disjoint sets with $\bigcup_{n=1}^{\infty} E_n \equiv E$, and $f \in \mathcal{L}_E(\nu)$, then

$$\int_{E} f d\nu = \sum_{n=1}^{\infty} \left\{ \int_{E_n} f d\nu \right\}$$

Proof. The previous Lemma ensures that $f \in \mathcal{L}_{E_n}(\nu)$ as $E_n \subset E$ for all n. By using the result proved earlier, that if f is non-negative then

$$\int_{E} f d\nu = \sum_{n=1}^{\infty} \left\{ \int_{E_n} f d\nu \right\}$$

we use the positive and negative part decompositions

$$\int_{E} f d\nu = \int_{E} f^{+} d\nu - \int_{E} f^{-} d\nu = \sum_{n=1}^{\infty} \left\{ \int_{E_{n}} f^{+} d\nu \right\} - \sum_{n=1}^{\infty} \left\{ \int_{E_{n}} f^{+} d\nu \right\}$$
$$= \sum_{n=1}^{\infty} \left[\int_{E_{n}} f^{+} d\nu - \int_{E_{n}} f^{-} d\nu \right] = \sum_{n=1}^{\infty} \left\{ \int_{E_{n}} (f^{+} - f^{-}) d\nu \right\} = \sum_{n=1}^{\infty} \left\{ \int_{E_{n}} f d\nu \right\}$$

Corollary 11. If $f \in \mathcal{L}_{\Omega}(\nu)$, then the function φ defined on \mathcal{F} by

$$\varphi\left(E\right) = \int_{E} f d\nu$$

is additive.

Proof. As for previous result.

LEMMA

If f = g a.e. on E, and if $g \in \mathcal{L}_{E}(\nu)$, then $f \in \mathcal{L}_{E}(\nu)$ and

$$\int_E f d\nu = \int_E g d\nu$$

Proof. Define $A \equiv \{\omega : \omega \in E, f(\omega) = g(\omega)\}$. Then $E \cap A'$ has measure zero, and

$$\int_E f^+ d\nu = \int_A f^+ d\nu = \int_A g^+ d\nu = \int_E g^+ d\nu$$

and

$$\int_E f^- d\nu = \int_A f^- d\nu = \int_A g^- d\nu = \int_E g^- d\nu$$

Adding these equations, we have immediately that $f \in \mathcal{L}_{E}(\nu)$ and

$$\int_E f d\nu = \int_E g d\nu$$

LEMMA

If $f \in \mathcal{L}_{E}(\nu)$ and c is any real number, then $cf \in \mathcal{L}_{E}(\nu)$ and

$$\int_E (cf) \, d\nu = c \int_E f d\nu$$

Proof. Consider only the non-trivial case $c \neq 0$. Suppose first c > 0, and let g be a non-negative function. For any simple function ψ , say

$$\psi = \sum_{i=1}^{k} a_i I_{A_i}$$

we have

$$\psi \leq g \Leftrightarrow c\psi \leq cg.$$

and

$$\int_{E} (c\psi) d\nu = \sum_{i=1}^{k} (ca_i) \nu (E \cap A_i) = c \sum_{i=1}^{k} a_i \nu (E \cap A_i) = c \int_{E} \psi d\nu$$

Therefore

$$\int_E (cf) \, d\nu = c \int_E f d\nu$$

by the supremum definition, and the result follows for c > 0 using this result, and the decomposition $cf = cf^+ - cf^-$. For c < 0, write

$$cf = (-c) f^{-} - (-c) f^{+}$$

so that the result follows, as -c > 0.

LEMMA

If $f, g \in \mathcal{L}_{E}(\nu)$, then $f + g \in \mathcal{L}_{E}(\nu)$ and

$$\int_E (f+g) \, d\nu = \int_E f d\nu + \int_E g d\nu$$

Proof. We prove the result two several stages. First suppose that f and g are non-negative, and let $\left\{\psi_n^{(f)}\right\}$ and $\left\{\psi_n^{(g)}\right\}$ be increasing sequences of simple functions with limits f and g respectively. Then $\left\{\psi_n^{(f)} + \psi_n^{(g)}\right\}$ has limit f + g, and as

$$\int_E \left(\psi_n^{(f)} + \psi_n^{(g)}\right) d\nu = \int_E \psi_n^{(f)} d\nu + \int_E \psi_n^{(f)} d\nu$$

(see this result by using the measure definition of the integral of a simple function), we have, taking the limit as $n \to \infty$,

$$\int_{E} (f+g) \, d\nu = \int_{E} f d\nu + \int_{E} g d\nu.$$

Now consider the general case; define the following subsets of E

$$E_{1} \equiv \{\omega : f(\omega) \ge 0, g(\omega) \ge 0\}$$

$$E_{2} \equiv \{\omega : f(\omega) < 0, g(\omega) \ge 0\}$$

$$E_{3} \equiv \{\omega : f(\omega) \ge 0, g(\omega) < 0, (f+g)(\omega) \ge 0\}$$

$$E_{4} \equiv \{\omega : f(\omega) < 0, g(\omega) \ge 0, (f+g)(\omega) \ge 0\}$$

$$E_{5} \equiv \{\omega : f(\omega) \ge 0, g(\omega) < 0, (f+g)(\omega) < 0\}$$

$$E_{6} \equiv \{\omega : f(\omega) < 0, g(\omega) \ge 0, (f+g)(\omega) < 0\}$$

Then $E_n, n = 1, 2, ..., 6$ are disjoint, and $\bigcup_{n=1}^{6} E_n \equiv E$. By the Lemma **??**, proving that

$$\int_{E_n} (f+g) \, d\nu = \int_{E_n} f d\nu + \int_{E_n} g d\nu$$

for each *n* is sufficient to prove the result. The proofs for each separate case are very similar; so consider for example set E_3 . Then on *E*, the functions f, -g and f + g are non-negative, and threfore by part one of this proof,

$$\int_{E_3} f d\nu = \int_{E_3} (-g) \, d\nu + \int_{E_3} (f+g) \, d\nu = -\int_{E_3} g d\nu + \int_{E_3} (f+g) \, d\nu$$

and the result follows.

LEMMA

The function $f \in \mathcal{L}_{E}(\nu)$ if and only if $|f| \in \mathcal{L}_{E}(\nu)$. In this instance,

$$\left| \int_E f d\nu \right| \le \int_E |f| \, d\nu.$$

Proof. We have identified previously that f is integrable if the positive and negative part functions are integrable, and this is the case if and only if the function

$$|f| = f^+ + f^-$$

is integrable. If this is the case, then

$$\left|\int_{E} f d\nu\right| = \left|\int_{E} f^{+} - f^{-} d\nu\right| \le \left|\int_{E} f^{+} d\nu\right| + \left|\int_{E} f^{-} d\nu\right| = \int_{E} |f| d\nu$$

Corollary 12. *If* $g \in \mathcal{L}_{E}(\nu)$ *, and* $|f| \leq g$ *, then* $f \in \mathcal{L}_{E}(\nu)$

LEMMA

If $f, g \in \mathcal{L}_{E}(\nu)$, and $f \leq g$ a.e. on E, then

$$\int_E f d\nu \leq \int_E g d\nu$$

that is, the Lebesgue-Stieltjes Integral operator preserves ordering of functions.

Proof. We have $g - f \ge 0$, so the result follows from Integral Result (e) from lectures, and Lemma 6.

Corollary 13. If $v(E) < \infty$, and $m \le f \le M$ on E, for real values m and M, then by considering simple functions $\psi_m = mI_E$ and $\psi_M = MI_E$, for which $\psi_m \le f \le \psi_M$, we have

$$m\upsilon\left(E\right) \leq \int_{E} fd\nu \leq M\upsilon\left(E\right)$$

LEMMA

Suppose $f, g \in \mathcal{L}_{E}(\nu)$, and that for $A \subset E$,

$$\int_A f d\nu \le \int_A g d\nu.$$

Then $f \leq g$ a.e. on E.

Proof. Let $F_1 \equiv \{\omega : \omega \in E, f(\omega) \ge g(\omega)\}$, so that $f - g \ge 0$ on F_1 . Thus, by the assumption of the Lemma,

$$\int_{F} \left(f - g \right) d\nu = 0$$

and hence by f - g = 0 or f = g a.e. on F_1 , by Integral Result (f) from lectures.

Corollary 14. *If* $f, g \in \mathcal{L}_{E}(\nu)$ *and if*

$$\int_A f d\nu = \int_A g d\nu.$$

for $A \subset E$, then f = g a.e. on E.

Theorem 15. Lebesgue Dominated Convergence Theorem If $\{f_n\}$ is a sequence of measurable functions, and if

$$\lim_{n \to \infty} f_n = f \qquad almost \ everywhere$$

and $|f_n| \leq g$ for all n, for some $g \in \mathcal{L}_E(\nu)$, then

$$\lim_{n \to \infty} \int_E f_n d\nu = \int_E f d\nu$$

Proof. $\{f_n\}$ and f are measurable functions. By using Fatou's Lemma (Theorem 10) on non-negative sequence $\{g + f_n\}$

$$\int_{E} (g+f) \, d\nu \le \liminf_{n \to \infty} \left\{ \int_{E} (g+f_n) \, d\nu \right\}$$

so that

 $\int_{E} f d\nu \le \liminf_{n \to \infty} \left\{ \int_{E} f_n d\nu \right\}.$ (4)

Similarly, by applying the result to $\{g - f_n\}$, we have that

$$\int_{E} (g-f) \, d\nu \leq \liminf_{n \to \infty} \left\{ \int_{E} (g-f_n) \, d\nu \right\} \qquad \therefore \qquad -\int_{E} f \, d\nu \leq \liminf_{n \to \infty} \left\{ -\int_{E} f_n \, d\nu \right\}$$

Multiplying through by -1, we have by properties of \limsup and \liminf that

$$\int_{E} f d\nu \ge \limsup_{n \to \infty} \left\{ \int_{E} f_n d\nu \right\}$$
(5)

and hence combining (4) and (5), we have by definition

$$\lim_{n \to \infty} \int_E f_n d\nu = \int_E f d\nu$$

Corollary 16. *If* $\{f_n\}$ *is a uniformly bounded sequence (bounded above and below by a pair of real constants) of measurable functions such that*

$$\lim_{n \to \infty} f_n = f \qquad almost \ everywhere$$

and if $v(E) < \infty$, then

$$\lim_{n \to \infty} \int_E f_n d\nu = \int_E f d\nu.$$

LEBESGUE-STIELTJES INTEGRALS ON \mathbb{R} .

Rather than considering a general sample space Ω , we now consider the specific case when $\Omega \equiv \mathbb{R}$, with corresponding sigma-algebra which is the Borel sigma-algebra. In this case, the measure v will often be expressed in terms of (or be generated by) an increasing **real** function F on E. Let E be a set in the Borel sigma-algebra. Then for measurable function g, we can express the integral as

$$\int_{E} g d\nu = \int_{E} g dF \quad \text{or} \quad \int_{E} g d\nu = \int_{E} g(x) dF(x)$$

with special cases

$$\int_{a}^{b} g \, dF = \int_{(a,b]} g \, dF \qquad \text{and} \qquad \int_{-\infty}^{\infty} g \, dF = \int_{\mathbb{R}} g \, dF$$

7. MEASURE, INTEGRATION AND PROBABILITY DISTRIBUTIONS

In the measure-theoretic framework, **random variables** are merely measurable functions with respect to the probability space $(\Omega, \mathcal{E}, \mathbb{P})$, that is, for random variable $X = X(\omega)$, $\omega \in \Omega$, with domain E, the inverse image of Borel set B, $X^{-1}(B) \equiv \{\omega \in E : X(\omega) \in B\}$, is an element of σ -algebra \mathcal{E} . The **expectation** of X can be written in any of the following ways

$$\int_E X(\omega) \mathbb{P} \qquad \int_E X(\omega) \mathbb{P}(d\omega) \qquad \int_E X(\omega) d\mathbb{P}(\omega)$$

7.1 Lebesgue-Stieltjes Integration

If \mathbb{P} is a probability measure on \mathcal{B} , then there is a unique corresponding real function F defined for $x \in \mathbb{R}$ by $F(x) = \mathbb{P}((-\infty, x])$, termed the **distribution function**. Conversely, if F is a distribution function, then F defines a measure μ_F on the Borel sets of \mathbb{R} , \mathcal{B} : we define μ_F on \mathcal{B} via sets (a, b] by

$$\mu_F((a,b]) = F(b) - F(a)$$

and then **extend** to \mathcal{B} by using union operations. The probability space $(\mathbb{R}, \mathcal{B}, \mu_F)$ is then **completed** by considering and including null sets (under μ_F). Let \mathcal{L}_F denote the smallest σ -algebra containing \mathcal{B} and all μ_F -null sets. Thus the triple $(\mathbb{R}, \mathcal{L}_F, \mu_F)$ is the **completed** probability space.

If $g : \mathbb{R} \longrightarrow \mathbb{R}$ is a measurable function on the probability space $(\mathbb{R}, \mathcal{L}_F, \mu_F)$, then the **Lebesgue-Stieltjes integral** of g is

$$\int g \, d\mu_F = \int g(x) \, dF = \int g(x) \, dF(x).$$

7.2 The Radon-Nikodym Theorem and Change of Measure

- σ -finite Measure : a measure μ defined on a σ -algebra C of subsets of a set C is called **finite** if $\mu(C)$ is a **finite** real number. The measure μ is called σ -finite if C is the countable union of measurable sets of finite measure. A set in a measure space has σ -finite measure if it is a union of sets with finite measure.
- Absolute Continuity : If μ and ν are two measures on (C, C), then ν is **absolutely continuous** with respect to μ , denoted $\nu \ll \mu$, if and only if for all $E \in C$, $\mu(E) = 0 \Longrightarrow \nu(E) = 0$.
- *The Radon-Nikodym Theorem* : For a measure space (C, C), if measure ν is absolutely continuous with respect to a σ -finite measure μ , then there exists a measurable function f defined on C and taking values in $[0, \infty)$, such that

$$\nu(A) = \int_A f \, d\mu$$

for any measurable set A. The function f is unique almost everywhere wrt μ ; it is termed the **Radon-Nikodym Derivative** of **density** of ν with respect to μ , and is often expressed as

$$f = \frac{d\nu}{d\mu}$$

• *Change of Measure* : If μ_F is absolutely continuous wrt σ -finite measure μ , then we can rewrite

$$\int g \, d\mu_F = \int g \, \frac{d\mu_F}{d\mu} \, d\mu = \int g f \, d\mu$$

In practice, μ is either **counting** or **Lebesgue** measure.

7.3 Expectations

We can construct expectations for random variables using an identical method of construction as for integral with respect to measure; for a probability space $(\Omega, \mathcal{E}, \mathbb{P})$

1 A random variable $X : \Omega \longrightarrow \mathbb{R}$ is called **simple** if it only takes finitely many distinct values; simple random variables can be written

$$X = \sum_{i=1}^{n} x_i I_{A_i}$$

for some partition A_1, \ldots, A_n of Ω . The **expectation** of X is

$$\mathbb{E}[X] = \sum_{i=1}^{n} x_i \mathbb{P}(A_i)$$

2 Any non-negative random variable $X : \Omega \longrightarrow [0, \infty)$ is the **limit of some increasing sequence of simple variables**, $\{X_n\}$. That is, $X_n(\omega) \uparrow X(\omega)$, for all $\omega \in \Omega$. The expectation of X is

$$\mathbb{E}[X] = \lim_{n \longrightarrow \infty} \mathbb{E}[X_n]$$

and the limit may be infinite.

3 Any random variable $X : \Omega \longrightarrow \mathbb{R}$ can be written as $X = X^+ - X^-$, where

$$X^{+}(\omega) = \max\{X(\omega), 0\} \qquad X^{-}(\omega) = \max\{-X(\omega), 0\} = -\min\{X(\omega), 0\}$$

The expectation of X is

$$\mathbb{E}[X] = \mathbb{E}[X^+] - \mathbb{E}[X^-]$$

if at least one of the two expectations on the right hand side is finite.

4 Thus the expectation of any random variable, $\mathbb{E}[X]$ is well-defined for every variable X such that

$$\mathbb{E}[|X|] = \mathbb{E}[X^+ + X^-] < \infty$$

Expectation defined in this fashion obeys the following rules: if $\{X_n\}$ is a sequence of rvs with $X_n(\omega) \longrightarrow X(\omega)$ for all $\omega \in \Omega$, then

(i) Monotone Convergence: If $X_n(\omega) \ge 0$ and $X_n(\omega) \le X_{n+1}(\omega)$ for all n and ω , then

$$\mathbb{E}[X_n] \longrightarrow \mathbb{E}[X]$$

(ii) Dominated Convergence: If $|X_n(\omega)| \leq Y(\omega)$ for all n and ω , and $\mathbb{E}[|Y|] < \infty$, then

$$\mathbb{E}[X_n] \longrightarrow \mathbb{E}[X]$$

(iii) Bounded Convergence: If $|X_n(\omega)| \leq c$, for some c, and for all n and ω , then

$$\mathbb{E}[X_n] \longrightarrow \mathbb{E}[X]$$

These results hold even if $X_n(\omega) \longrightarrow X(\omega)$ for all ω except possibly ω in sets of probability zero (termed **null events**), that is, if $X_n(\omega) \longrightarrow X(\omega)$ **almost everywhere.**

One further result is of use in expectation calculations:

Fatou's Lemma : If $\{X_n\}$ is a sequence of rvs with $X_n(\omega) \ge Y(\omega)$ almost everywhere for all n and for some Y with $\mathbb{E}[Y] < \infty$, then

$$\mathbb{E}[\liminf_{n \to \infty} X_n] \le \liminf_{n \to \infty} \mathbb{E}[X_n]$$