
556: MATHEMATICAL STATISTICS I

INTRODUCTION TO MEASURE AND INTEGRATION

1. PROBABILITY AND MEASURE

In formal probability theory, a probability specification has three components:

• The Sample Space : a set Ω with elements ω
• A Sigma-Algebra : a collection of subsets of Ω, denoted E , say, that obeys the following properties

I Ω ∈ E
II Closure under countable union:

E1, E2, . . . ∈ E =⇒
∞⋃

k=1

Ek ∈ E

III Closure under complementation: E ∈ E =⇒ E′ ∈ E
• A Probability Measure : a real-valued set function P that obeys the general properties of a

measure with one additional requirement. A measure, denoted µ, is a real-valued set function
such that for arbitrary sets E and E1, E2, . . .

I Non-negativity: µ(E) ≥ 0.
II Sub-additivity:

µ

( ∞⋃

k=1

Ek

)
≤

∞∑

k=1

µ(Ek)

III Preservation under Limits: If E1 ⊂ E2 ⊂ . . . is an increasing sequence of sets, we use the
notation

lim
n−→∞En ≡

∞⋃

i=1

Ei.

Then
µ

(
lim

n−→∞En

)
= lim

n−→∞µ(En).

Similarly, if E1 ⊃ E2 ⊃ . . . is a decreasing sequence of sets, we use the notation

lim
n−→∞En ≡

∞⋂

i=1

Ei.

and again
µ

(
lim

n−→∞En

)
= lim

n−→∞µ(En).

Examples of Measures: For sample space Ω, and A ⊆ Ω,

– Counting Measure : µ(A) = |A| if A is a finite subset, µ(A) = ∞ if A is an infinite subset.
– Lebesgue Measure : If Ω ≡ R, then, for a < b,

µ((a, b)) = µ((a, b]) = µ([a, b)) = µ([a, b]) = b− a.

Probability measures have the additional property that P(Ω) = 1.

We use the terminology

• Measurable space to describe the pair (Ω, E)
• Measure space to describe the triple (Ω, E , µ)
• Probability space to describe the triple (Ω, E ,P)
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2. MEASURABLE FUNCTIONS

DEFINITION Borel σ-algebra
Let Ω ≡ R, and C be the collection of all finite open intervals of R, that is C ≡ {(a, b) : a < b ∈ R.}.
Then B ≡ σ(C) is the Borel σ-algebra, and B ∈ B are the Borel sets, which are of the form

(a, b), (a, b], [a, b), [a, b] −∞ ≤ a ≤ b ≤ ∞.

The Borel σ-algebra in R, B, is the smallest (or minimal) σ-algebra containing all open sets.
DEFINITION Measurability
The real-valued function f defined with domain E ⊂ Ω, for measurable space (Ω, E), is Borel
measurable with respect to E if the inverse image of set B, defined as

f−1 (B) ≡ {ω ∈ E : f (ω) ∈ B}
is an element of σ-algebra E , for all Borel sets B of R (strictly, of the extended real number system R∗,
including ±∞ as elements). Necessary and sufficient for f to be measurable are

(a) f−1 (A) ∈ E for all open sets A ⊂ R∗,
(b) f−1 ([−∞, x)) ∈ E for all x ∈ R∗,
(c) f−1 ([−∞, x]) ∈ E for all x ∈ R∗,
(d) f−1 ([x,∞]) ∈ E for all x ∈ R∗,
(e) f−1 ((x,∞]) ∈ E for all x ∈ R∗.

Note I It is possible to extend this definition to a general topological space Ω equipped with a topology,
that is, a collection, T , of sets in Ω that (I) T contains ∅ and Ω, (II) T is closed under finite

intersection, and (III) ifA is a sub-collection of T ,A ⊂ T , and A1, A2, A3, ... ∈ A, then
∞⋃
i=1

Ai ∈ T .

In this context, it is possible to define a general Borel σ-algebra on Ω; the open sets are the
elements T1, T2, T3, ... of the topology T , and the Borel sets are the elements of the smallest σ-
algebra generated by T , σ (T ).

Note II Strictly, a function f is a Borel function if, for B ∈ B, f−1 (B) ∈ σ (T ); however, we will generally
consider measure spaces (Ω, E) and say that f is a Borel function if it is Borel measurable, as
defined in the first paragraph above.

The measurability of functions is preserved under the following operations: if g1 and g2 are measurable
functions defined on E ⊂ Ω into R∗, and c is any real number, then all of the following composite and
other related functions are measurable

g1 + g2, g1 + c, g1g2, cg1, g1/g2, |g1|c , g1 ∨ g2, g1 ∧ g2, g
+
1 , g−1 .

where

• g1 ∨ g2(x) = max {g1(x), g2(x)}, g1 ∧ g2(x) = min {g1(x), g2(x)}
• f+(x) = f(x) ∨ 0 = max {f(x), 0}, f−(x) = −f(x) ∨ 0 = max {−f(x), 0}

so that
f(x) = f+(x)− f−(x) |f(x)| = f+(x) + f−(x).

Furthermore, if {gn} is a sequence of measurable functions, then the functions defined by

g(x) = sup
n

gn(x) g(x) = inf
n

gn(x)

are also measurable. Finally, the functions lim sup
n

gn(x) and lim inf
n

gn(x) are also measurable.
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3. INTEGRATION

DEFINITION
Simple Functions Let (Ω, E , µ) be a measure space. A simple function, ψ, is a set function defined on
elements ω of sample space Ω by

ψ (ω) =
k∑

i=1

aiIAi (ω)

for real constants a1, ..., ak and measurable sets A1, ..., Ak, for some k = 1, 2, 3, ..., where IA(ω) is the
indicator function, where

IA(ω) =
{

1 ω ∈ A
0 ω /∈ A

.

Note that any such simple function, can be re-expressed as a simple function defined for a partition of
Ω, E1, ..., El,

ψ (ω) =
l∑

i=1

eiIEi (ω)

by suitable choice of the constants e1, ..., ek.
Let ψ be a non-negative simple function, ψ : Ω −→ R?,

ψ (ω) =
k∑

i=1

aiIAi (ω)

for real constants a1, ..., ak ≥ 0 and measurable sets A1, ..., Ak ∈ E , for some k = 1, 2, 3, ....

(I) The integral of ψ with respect to µ is denoted and defined by

∫

Ω
ψ dµ =

k∑

i=1

aiµ(Ai).

(II) Now suppose that f is a non-negative (Borel) measurable function, and let Sf be the set of all
non-negative simple functions defined by

Sf ≡ {ψ : ψ(ω) ≤ f(ω), ∀ω ∈ Ω} .

Then the integral of f with respect to µ is defined by
∫

Ω
f dµ = sup

ψ∈Sf

∫

Ω
ψ dµ

that is, the supremum (least upper bound) over all possible choices of k, a1, ..., ak ∈ R+ and
A1, ..., Ak ∈ E such that, for all ω ∈ Ω,

ψ(ω) =
k∑

i=1

aiIAi(ω) ≤ f(ω)

We refer to this as the Supremum Definition.
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(III) Finally, suppose that f is an arbitrary measurable function defined on Ω. Then

f+(ω) = max{f(ω), 0} f−(ω) = max{−f(ω), 0} ∴ f(ω) = f+(ω)− f−(ω),

we define the integral of f with respect to µ by
∫

Ω
f dµ =

∫

Ω
f+ dµ−

∫

Ω
f− dµ.

where the two integrals on the right hand side are integrals of non-negative functions, and thus
given by the supremum definition above.

NOTES

(i) In (III) above, it might be that at least one of the two integrals
∫

Ω
f+ dµ

∫

Ω
f− dµ.

is not finite. If precisely one is finite, we say that
∫

Ω
f dµ = ∞.

and that the integral of f exists. If both are finite, we say that the integral of f exists and is finite,
and f is integrable with respect to µ. If neither is finite, then we say that the integral of f does not
exist, and f is not-integrable.

(ii) For E ⊂ Ω, if IE(ω) is the indicator function for set E, then we can also define∫

E
f dµ =

∫
IEf dµ

(iii) All of the following pieces of notation are equivalent and used in the literature:
∫

f dµ

∫

Ω
f dµ

∫
f(ω) dµ

∫
f(ω) dµ(ω)

∫
f(ω) µ(dω)

(iv) Previous results show that measurable functions have representations as limits of sequences of
simple functions. Other results show that measurability is preserved under composition, and
also under limit behaviour. Consider a non-negative measurable function f . Then

f = lim
n−→∞ψn

for a sequence of non-negative simple functions ψ1, ψ2, . . . with 0 ≤ ψn(ω) ≤ f(ω), for all n and
for all ω ∈ Ω. Then it can be shown

lim
n−→∞

∫
ψn dµ = lim

n−→∞

kn∑

i=1

an,iIAn,i =
k∑

i=1

aiIAi ,

say, where
lim

n−→∞ kn = k lim
n−→∞ an,i = ai lim

n−→∞ IAn,i = IAi .

Thus
lim

n−→∞

∫
ψn dµ =

∫
lim

n−→∞ψn dµ =
∫

f dµ

and the integral is preserved under the limit operation.

lim
n−→∞

∫
ψn dµ =

∫
lim

n−→∞ψn dµ =
∫

f dµ
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4. RESULTS FOR MEASURABLE FUNCTIONS

Theorem 1. MEASURABILITY UNDER COMPOSITION
Let g1 and g2 be measurable functions on E ⊂ Ω with ranges in R∗. Let f be a Borel function from R∗ × R∗
into R∗. Then the composite function h, defined on E by

h (ω) = f (g1 (ω1) , g2 (ω2))

is measurable.

Proof. The function g = (g1, g2) has domain E and range R∗ × R∗, and is measurable as g1 and g2 are
measurable, and denote h = f ◦ g (the operator ◦ indicates composition, i.e.

h (ω1, ω2) = (f ◦ g) (ω1, ω2) if h (ω1, ω2) = f (g (ω1, ω2)) = f (g1 (ω1) , g2 (ω2)) .

If B ∈ B, then f−1 (B) is a Borel set as f is a Borel function. Thus the inverse image under h,

h−1 (B) = g−1
(
f−1 (B)

)

is measurable as g1 and g2, and hence g, are measurable.

Corollary 2. If g is a measurable function from E into R∗, and f is a continuous function from R∗ into R∗,
then h = f ◦ g is measurable.

Theorem 3. MEASURABILITY UNDER ELEMENTARY OPERATIONS
Let g1 and g2 be measurable functions defined on E ⊂ Ω into R∗, and let c be any real number. Then all of the
following composite and other related functions are measurable

g1 + g2, g1 + c, g1g2, cg1, g1/g2, |g1|c , g1 ∨ g2, g1 ∧ g2, g
+
1 , g−1 .

Proof. In each case, we examine the domain of the composite function to ensure measurability in the
Borel σ-algebra. Consider g1+g2; this is not defined on the set {ω : g1 (ω) = −g2 (ω) = ±∞} (as∞±∞
is not defined), but this set is measurable, and so is the domain of g1 + g2. Let f (x1, x2) = x1 + x2 be a
continuous function defined on R∗ × R∗. Then, by Theorem 1 and its corollary, g1 + g2 is measurable.
Taking g2 = c proves that g1 + c is measurable.

The function g1g2 is defined everywhere on E; it’s measurability follows from Theorem 1, setting
f (x1, x2) = x1x2. Setting g2 = c proves that cg1 is measurable.

The function g1/g2 is defined everywhere except on the union of sets

{ω : g1 (ω) = g2 (ω) = 0} ∪ {ω : ±g1 (ω) = ±g2 (ω) = ∞}

Similarly, if c = 0, |g1|c is defined except on {ω : g1 (ω) = ±∞}; if c < 0, it is defined except on
{ω : g1 (ω) = 0}. If c > 0, it is defined everywhere. All of these sets are measurable Thus, we
consider in turn functions

f (x1, x2) = x1/x2 f (x) = xc

and use Theorem 1.

The functions g1 ∨ g2, g1 ∧ g2 are defined everywhere; so we consider functions

f(x1, x2) = max {x1, x2} f(x1, x2) = min {x1, x2}

and again use Theorem 1. Finally, setting g2 = 0 yields the measurability of g+
1 and g−1 .
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Theorem 4. If g1 and g2 are measurable functions on a common domain, then each of the sets

{ω : g1 (ω) < g2 (ω)} {ω : g1 (ω) = g2 (ω)} {ω : g1 (ω) > g2 (ω)}
is measurable.

Proof. Since g1 and g2 are measurable, then f = g1 − g2 is measurable, and thus the two sets

{ω : f (ω) > 0} {ω : f (ω) = 0}
are measurable. Since

{ω : g1 (ω) < g2 (ω)} ≡ {ω : f (ω) > 0}
and

{ω : g1 (ω) = g2 (ω)} ≡ {ω : f (ω) = 0} ∪ {ω : g1 (ω) = g2 (ω) = ±∞}
then {ω : g1 (ω) < g2 (ω)} and {ω : g1 (ω) = g2 (ω)} are measurable, and so is

{ω : g1 (ω) ≤ g2 (ω)} ≡ {ω : g1 (ω) < g2 (ω)} ∪ {ω : g1 (ω) = g2 (ω)} .

Theorem 5. MEASURABILITY UNDER LIMIT OPERATIONS
If {gn} is a sequence of measurable functions, the functions sup

n
gn and inf

n
gn are measurable.

Proof. Let g = sup
n

gn. Then for real x, consider

g−1
n ([−∞, x]) ≡ {ω : gn (ω) ≤ x}

and
g−1 ([−∞, x]) ≡ {ω : g (ω) ≤ x} .

If g = sup
n

gn, then gn ≤ g for all n, and

g (ω) ≤ x =⇒ gn (ω) ≤ x so that ω ∈ g−1 ([−∞, x]) =⇒ ω ∈ g−1
n ([−∞, x])

so that
g−1 ([−∞, x]) ⊆ g−1

n ([−∞, x])

for all n. Thus, in fact
g−1 ([−∞, x]) =

⋂
n

g−1
n ([−∞, x])

and hence g is measurable, as the intersection of measurable sets is measurable. The result for inf
n

follows by noting that
inf
n

gn = − sup
n

(−gn) .

Theorem 6. MEASURABILITY UNDER LIMINF/LIMSUP
If {gn} is a sequence of measurable functions, the functions lim sup

n
gn and lim inf

n
gn are measurable.

Proof. This follows from Theorem 5, as

lim sup
n

gn = inf
k

{
sup
n≥k

gn

}
and lim inf

n
gn = sup

k

{
inf
n≥k

gn

}
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5. SIMPLE FUNCTIONS AND THEIR CONVERGENCE PROPERTIES.

Theorem 7. A non-negative function on Ω is measurable if and only if it is the limit of an increasing sequence
of non-negative simple functions.

Proof. Suppose that g is a nonnegative measurable function. For each positive integer n, define the
simple function ψn on Ω by

ψn (ω) =
m

2n
if

m

2n
≤ g (ω) <

m + 1
2n

for m = 0, 1, 2, ..., 2n − 1, and
ψn (ω) = n if n ≤ g (ω) .

Then {ψn} is an increasing sequence of non-negative simple functions. Since

|ψn (ω)− g (ω)| < 1
2n

if n > g (ω)

and ψn (ω) = n if g (ω) = ∞, then, for all ω,

ψn (ω) → g (ω)

and we have found the sequence required for the result.

Now suppose that g is a limit of an increasing sequence of non-negative simple functions; it is measur-
able by Theorem 6.

Theorem 8. A function g defined on Ω is measurable if and only if it is the limit of a sequence of simple functions.

Proof. Suppose that g is measurable. Then g+ and g− are measurable and non-negative, and thus can
be represented as limits of simple functions

{
ψ+

n

}
and

{
ψ−n

}
, by the Theorem 7. Consider the sequence

of simple functions defined by
{
ψ+

n − ψ−n
}

; this sequence converges to g+ − g− = g, and we have the
sequence of simple functions required for the result.

Now suppose that g is a limit of a sequence of simple functions; it is measurable by Theorem 6.

6. KEY THEOREMS

The following key theorems describe the behaviour of the Lebesgue-Stieltjes integral. In particular,
the theorems specify when it is legitimate to exchange the order of limit and integral operators. In the
theorems, we have a general measure space (Ω,F , ν), and measurable set E ∈ F .

Theorem 9. Lebesgue Monotone Convergence Theorem
If {fn} is an increasing sequence of nonnegative measurable functions, and if

lim
n→∞ fn = f almost everywhere

then
lim

n→∞

∫

E
fndν =

∫

E
fdν
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Proof. Let the (real) sequence {in} be defined by

in =
∫

E
fndν.

Then, by a previous result

in =
∫

E
fndν ≤

∫

E
fn+1dν = in+1 as fn ≤ fn+1

so {in} is increasing. Let L denote the (possibly infinite) limit of {in}. Now, since fn ≤ f almost
everywhere for all n, we have (by the same previous result) that

∫

E
fndν ≤

∫

E
fdν =⇒ L ≤

∫

E
fdν. (1)

Now consider constant c with 0 < c < 1, and let ψ be any simple function satisfying 0 ≤ ψ ≤ f . Let

En ≡ {ω : ω ∈ E and cψ (ω) ≤ fn (ω)}

and as En ⊆ E, En is measurable, and because fn ≤ fn+1, En ⊆ En+1 for all n, so {En} is increasing.
Let the limit of the {En} sequence be denoted

F =
∞⋃

i=1

En.

The set E ∩ F ′ has measure zero, because lim
n→∞ fn = f a.e. and 0 ≤ cψ < ψ ≤ f. Hence, as En ⊆ E

∫

E
fndν ≥

∫

En

fndν ≥
∫

En

cψdν = c

∫

En

ψdν.

Taking the limit as n →∞,

L = lim
n→∞

∫

E
fndν ≥ c lim

n→∞

∫

En

ψdν = c

∫

F
ψdν = c

∫

E
ψdν

the final step following as E ∩ F ′ has measure zero. Thus, as this holds for all c such that 0 < c < 1,
we must have that

L ≥
∫

E
ψdν

whenever 0 ≤ ψ ≤ f . Hence L is an upper bound the integral of such a simple function on E. But,
by the supremum definition from lectures, the integral of f with respect to ν on E is the least upper
bound on the integral of such simple functions on E. Hence

L ≥
∫

E
fdν. (2)

Thus, combining (1) and (2), we have that

L = lim
n→∞

∫

E
fndν =

∫

E
fdν.
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Theorem 10. Fatou’s Lemma (or Lebesgue-Fatou Theorem)
If {fn} is a sequence of non-negative measurable functions, and if

lim inf
n→∞ fn = f almost everywhere

then ∫

E
fdν ≤ lim inf

n→∞

{∫

E
fndν

}

Proof. The function lim inf
n→∞ fn is measurable. For k = 1, 2, 3, ... let

hk = inf {fn : n ≥ k} .

Then, by definition of infimum, hk ≤ fk for all k, and thus
∫

E
hkdν ≤

∫

E
fkdν for all k =⇒ lim inf

k→∞

{∫

E
hkdν

}
≤ lim inf

k→∞

{∫

E
fkdν

}
. (3)

Now {hk} is an increasing sequence of non-negative functions, we have in the limit

lim
k→∞

hk = lim inf
n→∞ fn = f

almost everywhere. Now, by the Monotone Convergence Theorem,

lim
k→∞

{∫

E
hkdν

}
=

∫

E

{
lim

k→∞
hk

}
dν =

∫

E
fdν

Hence, by (3), ∫

E
fdν ≤ lim inf

k→∞

{∫

E
fkdν

}
.

Some corollaries follow immediately from this important theorem

1 If E1, E2, ..., En are disjoint, with
n⋃

i=1
Ei ≡ E, and f is non-negative, then

∫

E
fdν =

n∑

i=1

{∫

Ei

fdν

}

Proof: Let {ψk} be an increasing sequence of simple functions that converge to f , where

ψk =
mk∑

j=1

akjIAkj

say. Then,

∫

E
ψkdν =

mk∑

j=1

akjν (E ∩Akj) =
mk∑

j=1

n∑

i=1

akjν (Ei ∩Akj) as the Ei are disjoint

=
n∑

i=1





mk∑

j=1

akjν (Ei ∩Akj)



 =

n∑

i=1

{∫

Ei

ψkdν

}
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by hence the monotone convergence theorem,

∫

E
fdν = lim

k→∞

{∫

E
ψkdν

}
= lim

k→∞

{
n∑

i=1

{∫

Ei

ψkdν

}}
=

n∑

i=1

{
lim

k→∞

{∫

Ei

ψkdν

}}

=
n∑

i=1

{∫

Ei

{
lim

k→∞
ψk

}
dν

}
=

n∑

i=1

{∫

Ei

fdν

}
.

2 Now consider a countable (rather than merely finite) collection {Ei} with
∞⋃
i=1

Ei ≡ E. Then if f

is non-negative ∫

E
fdν =

∞∑

i=1

{∫

Ei

fdν

}

Proof: For each positive integer n, let An ≡
n⋃

i=1
Ei, and define fn = IAnf . Then {fn} is an

increasing sequence of non-negative functions, that converges to f (on E). Hence

∫

E
fdν = lim

n→∞

{∫

E
fndν

}
= lim

n→∞

{∫

An

fdν

}
= lim

n→∞

{
n∑

i=1

{∫

Ei

fdν

}}
=

∞∑

i=1

{∫

Ei

fdν

}

3 Let f be a non-negative function on Ω. Then the function defined on F by

ϕ (E) =
∫

E
fdν

is a measure. The only part of the definition of a measure that needs verifying is the countable
additivity, by the last result, we have directly that

ϕ

( ∞⋃

i=1

Ei

)
=

∞∑

i=1

ϕ (Ei)

when the {Ei} are disjoint.

For the results above (and the results proved in lectures), we have considered only the integrals of
non-negative measurable functions. We now extend them for general measurable functions, using
the decomposition into positive and negative part functions f = f+ − f− where both f+ and f− are
measurable and non-negative, and we have

∫

E
fdν =

∫

E
f+dν −

∫

E
f−dν.

Recall that we say that f is integrable if both f+ and f− are integrable, and now denote the set of all
functions integrable on E with respect to ν by LE (ν). From previous arguments we have that

f ∈ LE (ν) ⇔ f+ and f− ∈ LE (ν)

Some results can be proved for the functions in this class.
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LEMMA
If ν (E) = 0, then

f ∈ LE (ν) and
∫

E
fdν = 0

Proof. We have by definition
∫

E
fdν =

∫

E
f+dν −

∫

E
f−dν = 0− 0 = 0

LEMMA
If f ∈ LE2 (ν) and E1 ⊂ E2, then f ∈ LE1 (ν).

Proof. By a result from lectures
∫

E1

f+dν ≤
∫

E2

f+dν and
∫

E1

f−dν ≤
∫

E2

f−dν

LEMMA
If {En} is a sequence of disjoint sets with

∞⋃
n=1

En ≡ E, and f ∈ LE (ν), then

∫

E
fdν =

∞∑

n=1

{∫

En

fdν

}

Proof. The previous Lemma ensures that f ∈ LEn (ν) as En ⊂ E for all n. By using the result proved
earlier, that if f is non-negative then

∫

E
fdν =

∞∑

n=1

{∫

En

fdν

}

we use the positive and negative part decompositions

∫

E
fdν =

∫

E
f+dν −

∫

E
f−dν =

∞∑

n=1

{∫

En

f+dν

}
−

∞∑

n=1

{∫

En

f+dν

}

=
∞∑

n=1

[∫

En

f+dν −
∫

En

f−dν

]
=

∞∑

n=1

{∫

En

(
f+ − f−

)
dν

}
=

∞∑

n=1

{∫

En

fdν

}

Corollary 11. If f ∈ LΩ (ν), then the function ϕ defined on F by

ϕ (E) =
∫

E
fdν

is additive.

Proof. As for previous result.
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LEMMA
If f = g a.e. on E, and if g ∈ LE (ν), then f ∈ LE (ν) and

∫

E
fdν =

∫

E
gdν

Proof. Define A ≡ {ω : ω ∈ E, f (ω) = g (ω)}. Then E ∩A′ has measure zero, and
∫

E
f+dν =

∫

A
f+dν =

∫

A
g+dν =

∫

E
g+dν

and ∫

E
f−dν =

∫

A
f−dν =

∫

A
g−dν =

∫

E
g−dν

Adding these equations, we have immediately that f ∈ LE (ν) and
∫

E
fdν =

∫

E
gdν

LEMMA
If f ∈ LE (ν) and c is any real number, then cf ∈ LE (ν) and

∫

E
(cf) dν = c

∫

E
fdν

Proof. Consider only the non-trivial case c 6= 0. Suppose first c > 0, and let g be a non-negative
function. For any simple function ψ, say

ψ =
k∑

i=1

aiIAi

we have
ψ ≤ g ⇔ cψ ≤ cg.

and ∫

E
(cψ) dν =

k∑

i=1

(cai) ν (E ∩Ai) = c
k∑

i=1

aiν (E ∩Ai) = c

∫

E
ψdν

Therefore ∫

E
(cf) dν = c

∫

E
fdν

by the supremum definition, and the result follows for c > 0 using this result, and the decomposition
cf = cf+ − cf−. For c < 0, write

cf = (−c) f− − (−c) f+

so that the result follows, as −c > 0.

12



LEMMA
If f, g ∈ LE (ν), then f + g ∈ LE (ν) and

∫

E
(f + g) dν =

∫

E
fdν +

∫

E
gdν

Proof. We prove the result two several stages. First suppose that f and g are non-negative, and let{
ψ

(f)
n

}
and

{
ψ

(g)
n

}
be increasing sequences of simple functions with limits f and g respectively. Then{

ψ
(f)
n + ψ

(g)
n

}
has limit f + g, and as

∫

E

(
ψ(f)

n + ψ(g)
n

)
dν =

∫

E
ψ(f)

n dν +
∫

E
ψ(f)

n dν

(see this result by using the measure definition of the integral of a simple function), we have, taking
the limit as n →∞, ∫

E
(f + g) dν =

∫

E
fdν +

∫

E
gdν.

Now consider the general case; define the following subsets of E

E1 ≡ {ω : f (ω) ≥ 0, g (ω) ≥ 0}
E2 ≡ {ω : f (ω) < 0, g (ω) ≥ 0}
E3 ≡ {ω : f (ω) ≥ 0, g (ω) < 0, (f + g) (ω) ≥ 0}
E4 ≡ {ω : f (ω) < 0, g (ω) ≥ 0, (f + g) (ω) ≥ 0}
E5 ≡ {ω : f (ω) ≥ 0, g (ω) < 0, (f + g) (ω) < 0}
E6 ≡ {ω : f (ω) < 0, g (ω) ≥ 0, (f + g) (ω) < 0}

Then En, n = 1, 2, ..., 6 are disjoint, and
6⋃

n=1
En ≡ E. By the Lemma ??, proving that

∫

En

(f + g) dν =
∫

En

fdν +
∫

En

gdν

for each n is sufficient to prove the result. The proofs for each separate case are very similar; so
consider for example set E3. Then on E, the functions f,−g and f + g are non-negative, and threfore
by part one of this proof,

∫

E3

fdν =
∫

E3

(−g) dν +
∫

E3

(f + g) dν = −
∫

E3

gdν +
∫

E3

(f + g) dν

and the result follows.

LEMMA
The function f ∈ LE (ν) if and only if |f | ∈ LE (ν). In this instance,

∣∣∣∣
∫

E
fdν

∣∣∣∣ ≤
∫

E
|f | dν.

13



Proof. We have identified previously that f is integrable if the positive and negative part functions are
integrable, and this is the case if and only if the function

|f | = f+ + f−

is integrable. If this is the case, then
∣∣∣∣
∫

E
fdν

∣∣∣∣ =
∣∣∣∣
∫

E
f+ − f−dν

∣∣∣∣ ≤
∣∣∣∣
∫

E
f+dν

∣∣∣∣ +
∣∣∣∣
∫

E
f−dν

∣∣∣∣ =
∫

E
|f | dν

Corollary 12. If g ∈ LE (ν), and |f | ≤ g, then f ∈ LE (ν)

LEMMA
If f, g ∈ LE (ν), and f ≤ g a.e. on E, then

∫

E
fdν ≤

∫

E
gdν

that is, the Lebesgue-Stieltjes Integral operator preserves ordering of functions.

Proof. We have g− f ≥ 0, so the result follows from Integral Result (e) from lectures, and Lemma 6..

Corollary 13. If υ (E) < ∞, and m ≤ f ≤ M on E, for real values m and M , then by considering simple
functions ψm = mIE and ψM = MIE , for which ψm ≤ f ≤ ψM , we have

mυ (E) ≤
∫

E
fdν ≤ Mυ (E)

LEMMA
Suppose f, g ∈ LE (ν) , and that for A ⊂ E,

∫

A
fdν ≤

∫

A
gdν.

Then f ≤ g a.e. on E.

Proof. Let F1 ≡ {ω : ω ∈ E, f (ω) ≥ g (ω)}, so that f − g ≥ 0 on F1. Thus, by the assumption of the
Lemma, ∫

F
(f − g) dν = 0

and hence by f − g = 0 or f = g a.e. on F1, by Integral Result (f) from lectures.

Corollary 14. If f, g ∈ LE (ν) and if ∫

A
fdν =

∫

A
gdν.

for A ⊂ E, then f = g a.e. on E.

Theorem 15. Lebesgue Dominated Convergence Theorem
If {fn} is a sequence of measurable functions, and if

lim
n→∞ fn = f almost everywhere

and |fn| ≤ g for all n, for some g ∈ LE (ν), then

lim
n→∞

∫

E
fndν =

∫

E
fdν

14



Proof. {fn} and f are measurable functions. By using Fatou’s Lemma (Theorem 10) on non-negative
sequence {g + fn} ∫

E
(g + f) dν ≤ lim inf

n→∞

{∫

E
(g + fn) dν

}

so that ∫

E
fdν ≤ lim inf

n→∞

{∫

E
fndν

}
. (4)

Similarly, by applying the result to {g − fn}, we have that
∫

E
(g − f) dν ≤ lim inf

n→∞

{∫

E
(g − fn) dν

}
∴ −

∫

E
fdν ≤ lim inf

n→∞

{
−

∫

E
fndν

}

Multiplying through by −1, we have by properties of lim sup and lim inf that
∫

E
fdν ≥ lim sup

n→∞

{∫

E
fndν

}
(5)

and hence combining (4) and (5), we have by definition

lim
n→∞

∫

E
fndν =

∫

E
fdν

Corollary 16. If {fn} is a uniformly bounded sequence (bounded above and below by a pair of real constants) of
measurable functions such that

lim
n→∞ fn = f almost everywhere

and if υ (E) < ∞, then

lim
n→∞

∫

E
fndν =

∫

E
fdν.

LEBESGUE-STIELTJES INTEGRALS ON R.
Rather than considering a general sample space Ω, we now consider the specific case when Ω ≡ R,
with corresponding sigma-algebra which is the Borel sigma-algebra. In this case, the measure υ will
often be expressed in terms of (or be generated by) an increasing real function F on E. Let E be a set
in the Borel sigma-algebra. Then for measurable function g, we can express the integral as

∫

E
gdν =

∫

E
gdF or

∫

E
gdν =

∫

E
g(x)dF (x)

with special cases ∫ b

a
g dF =

∫

(a,b]
g dF and

∫ ∞

−∞
g dF =

∫

R
g dF
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7. MEASURE, INTEGRATION AND PROBABILITY DISTRIBUTIONS

In the measure-theoretic framework, random variables are merely measurable functions with respect
to the probability space (Ω, E ,P), that is, for random variable X = X(ω), ω ∈ Ω, with domain E, the
inverse image of Borel set B, X−1(B) ≡ {ω ∈ E : X(ω) ∈ B}, is an element of σ-algebra E . The
expectation of X can be written in any of the following ways∫

E
X(ω) P

∫

E
X(ω) P(dω)

∫

E
X(ω) dP(ω)

7.1 Lebesgue-Stieltjes Integration

If P is a probability measure on B, then there is a unique corresponding real function F defined for
x ∈ R by F (x) = P((−∞, x]), termed the distribution function. Conversely, if F is a distribution
function, then F defines a measure µF on the Borel sets of R, B: we define µF on B via sets (a, b]) by

µF ((a, b]) = F (b)− F (a)

and then extend to B by using union operations. The probability space (R,B, µF ) is then completed
by considering and including null sets (under µF ). Let LF denote the smallest σ-algebra containing B
and all µF -null sets. Thus the triple (R,LF , µF ) is the completed probability space.

If g : R −→ R is a measurable function on the probability space (R,LF , µF ), then the Lebesgue-
Stieltjes integral of g is ∫

g dµF =
∫

g(x) dF =
∫

g(x) dF (x).

7.2 The Radon-Nikodym Theorem and Change of Measure

• σ-finite Measure : a measure µ defined on a σ-algebra C of subsets of a set C is called finite if µ(C)
is a finite real number. The measure µ is called σ-finite if C is the countable union of measurable
sets of finite measure. A set in a measure space has σ-finite measure if it is a union of sets with
finite measure.

• Absolute Continuity : If µ and ν are two measures on (C, C), then ν is absolutely continuous with
respect to µ, denoted ν ¿ µ, if and only if for all E ∈ C, µ(E) = 0 =⇒ ν(E) = 0.

• The Radon-Nikodym Theorem : For a measure space (C, C), if measure ν is absolutely continuous
with respect to a σ-finite measure µ, then there exists a measurable function f defined on C and
taking values in [0,∞), such that

ν(A) =
∫

A
f dµ

for any measurable set A. The function f is unique almost everywhere wrt µ; it is termed the
Radon-Nikodym Derivative of density of ν with respect to µ, and is often expressed as

f =
dν

dµ

• Change of Measure : If µF is absolutely continuous wrt σ-finite measure µ, then we can rewrite∫
g dµF =

∫
g

dµF

dµ
dµ =

∫
gf dµ

In practice, µ is either counting or Lebesgue measure.
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7.3 Expectations

We can construct expectations for random variables using an identical method of construction as for
integral with respect to measure; for a probability space (Ω, E ,P)

1 A random variable X : Ω −→ R is called simple if it only takes finitely many distinct values;
simple random variables can be written

X =
n∑

i=1

xiIAi

for some partition A1, . . . , An of Ω. The expectation of X is

E[X] =
n∑

i=1

xiP(Ai)

2 Any non-negative random variable X : Ω −→ [0,∞) is the limit of some increasing sequence of
simple variables, {Xn}. That is, Xn(ω) ↑ X(ω), for all ω ∈ Ω. The expectation of X is

E[X] = lim
n−→∞E[Xn]

and the limit may be infinite.

3 Any random variable X : Ω −→ R can be written as X = X+ −X−, where

X+(ω) = max{X(ω), 0} X−(ω) = max{−X(ω), 0} = −min{X(ω), 0}
The expectation of X is

E[X] = E[X+]− E[X−]

if at least one of the two expectations on the right hand side is finite.

4 Thus the expectation of any random variable,E[X] is well-defined for every variable X such that

E[|X|] = E[X+ + X−] < ∞
Expectation defined in this fashion obeys the following rules: if {Xn} is a sequence of rvs with Xn(ω) −→
X(ω) for all ω ∈ Ω, then

(i) Monotone Convergence: If Xn(ω) ≥ 0 and Xn(ω) ≤ Xn+1(ω) for all n and ω, then

E[Xn] −→ E[X]

(ii) Dominated Convergence: If |Xn(ω)| ≤ Y (ω) for all n and ω, and E[|Y |] < ∞, then

E[Xn] −→ E[X]

(iii) Bounded Convergence: If |Xn(ω)| ≤ c, for some c, and for all n and ω, then

E[Xn] −→ E[X]

These results hold even if Xn(ω) −→ X(ω) for all ω except possibly ω in sets of probability zero (termed
null events), that is, if Xn(ω) −→ X(ω) almost everywhere.

One further result is of use in expectation calculations:

Fatou’s Lemma : If {Xn} is a sequence of rvs with Xn(ω) ≥ Y (ω) almost everywhere for all n and for
some Y with E[Y ] < ∞, then

E[ lim inf
n−→∞ Xn ] ≤ lim inf

n−→∞ E[Xn]
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