556: MATHEMATICAL STATISTICS 1
INTRODUCTION TO MEASURE AND INTEGRATION

1. PROBABILITY AND MEASURE

In formal probability theory, a probability specification has three components:
e The Sample Space : a set {2 with elements w
e A Sigma-Algebra: a collection of subsets of (2, denoted &, say, that obeys the following properties
I[Qe€
I Closure under countable union:

o
Fi,Ey,...€ & = UEkeg
k=1

III Closure under complementation: E € € — E' € £

e A Probability Measure : a real-valued set function P that obeys the general properties of a
measure with one additional requirement. A measure, denoted y, is a real-valued set function
such that for arbitrary sets £ and Ey, Eo, . ..

I Non-negativity: u(E) > 0.
II Sub-additivity:

7 <U Ek) <> u(E)
k=1

k=1
II Preservation under Limits: If Ey C E, C ... is an increasing sequence of sets, we use the
notation
oo
im B, = U E:.
i=1
Then

u( lim En> = lim w(E,).
n——m=a<o

n—aoo

Similarly, if £y D E» D ... is a decreasing sequence of sets, we use the notation

oo
lim E, = ﬂ E;.

n—so00 '
=1

and again
u( lim En> = lim wu(E,).

n—-aoo n—-auoOo

Examples of Measures: For sample space (2, and A C (),

— Counting Measure : j1(A) = |A| if A is a finite subset, y(A) = oo if A is an infinite subset.
— Lebesgue Measure : If Q = R, then, for a < b,

p((a,0)) = ul(a,b]) = p(la, b)) = p([a, b)) = b —a.
Probability measures have the additional property that P(£2) = 1.
We use the terminology

e Measurable space to describe the pair (2, &)
e Measure space to describe the triple (2, &, 1)
e Probability space to describe the triple (€2, &, P)



2. MEASURABLE FUNCTIONS

DEFINITION Borel o-algebra
Let © = R, and C be the collection of all finite open intervals of R, thatis C = {(a,b) : a < b € R.}.
Then B = ¢(C) is the Borel o-algebra, and B € B are the Borel sets, which are of the form

(a,b),(a,b],|a,b),a,d] —o00<a<b< oo

The Borel o-algebra in R, B, is the smallest (or minimal) o-algebra containing all open sets.
DEFINITION Measurability

The real-valued function f defined with domain E C €2, for measurable space (€2, £), is Borel
measurable with respect to £ if the inverse image of set B, defined as

f'B)={weE: f(v)eB}

is an element of o-algebra &, for all Borel sets B of R (strictly, of the extended real number system R*,
including +o00 as elements). Necessary and sufficient for f to be measurable are

(a) f~1(A) € & for all open sets A C R*,

(b) f1([-o0,7)) € € forall x € R¥,
(c) f1([~oo,n]) € € forall x € R¥,
(d) f~1([z,00]) € € forall z € R¥,

(e) f~1((z,00]) € € forall x € R*.
Note I Itis possible to extend this definition to a general topological space €2 equipped with a topology,
that is, a collection, 7, of sets in Q that (I) 7 contains ) and 2, (II) 7 is closed under finite

intersection, and (IIT) if A is a sub-collection of 7, A C 7, and A;, Ay, As,... € A, then |J A; € 7.
i=1

In this context, it is possible to define a general Borel o-algebra on (); the open sets are the

elements 71,715, T3, ... of the topology 7, and the Borel sets are the elements of the smallest o-

algebra generated by 7, o (7).

Note II Strictly, a function f is a Borel function if, for B € B, f 1 (B) € o (7 ); however, we will generally
consider measure spaces (£2,&) and say that f is a Borel function if it is Borel measurable, as
defined in the first paragraph above.

The measurability of functions is preserved under the following operations: if g; and g, are measurable
functions defined on E C 2 into R*, and c is any real number, then all of the following composite and
other related functions are measurable

g1+ 92,91 + ¢ 9192,¢91,91/92, 91|, 91 V 92, 91 /\gg,gf,gf.

where

* g1V g2(z) = max {g1(z), 92(x)}, g1 A g2(z) = min {g1(z), g2(z)}
o fH(z)=f(x)V0=max{f(z),0}, f (z) = —f(2z) VO =max{—f(z),0}

so that
f(z) = fT(z) = f(2) |f(@)] = fH(2) + [~ (2).

Furthermore, if {g,, } is a sequence of measurable functions, then the functions defined by
g(x) = sup gn(z) g(x) = inf g, (z)

are also measurable. Finally, the functions lim sup g, (z) and lim inf g,,(z) are also measurable.
n n



3. INTEGRATION

DEFINITION
Simple Functions Let (€2, £, ;1) be a measure space. A simple function, 1, is a set function defined on
elements w of sample space 2 by

k
¥(w) =) ail, (@)
i=1

for real constants ay, ..., a; and measurable sets Ay, ..., Ay, for some k = 1,2, 3, ..., where I 4(w) is the
indicator function, where
1 wed

IA(W):{O Wi A

Note that any such simple function, can be re-expressed as a simple function defined for a partition of

Q, E, .., B,
!

bw) =Y el )

i=1
by suitable choice of the constants ey, ..., e.
Let 1) be a non-negative simple function, ¢ :  — R*,

k
b W) =S aila, (@)
=1

for real constants aq, ..., ar > 0 and measurable sets A4, ..., Ay € &, forsome k = 1,2, 3, ....

(I) The integral of ) with respect to 1 is denoted and defined by

k
/ b= aip(A).
Q i=1

(I) Now suppose that f is a non-negative (Borel) measurable function, and let Sy be the set of all
non-negative simple functions defined by

Sp={y:Y(w) < f(w),Vw € Q}.

Then the integral of f with respect to p is defined by

fdu = sup/wdu
Q Q

wESf

that is, the supremum (least upper bound) over all possible choices of k, ay,...,a; € RT and
Aq, ..., Ay € Esuchthat, forall w € Q,

k
Yw) =) aila W) < f()
i=1

We refer to this as the Supremum Definition.



(III) Finally, suppose that f is an arbitrary measurable function defined on 2. Then

frw) =max{f(w),0}  f () =max{-fw),0} .. = flw)=F"(w-f (),
we define the integral of f with respect to i by

/Qfdu=/9f+du—/ﬂfdu-

where the two integrals on the right hand side are integrals of non-negative functions, and thus
given by the supremum definition above.
NOTES
(i) In (III) above, it might be that at least one of the two integrals

/Qf+ s /Qf .

is not finite. If precisely one is finite, we say that

/Qfd,u:oo.

and that the integral of f exists. If both are finite, we say that the integral of f exists and is finite,
and f is integrable with respect to p. If neither is finite, then we say that the integral of f does not
exist, and f is not-integrable.

(ii) For E C Q, if Ig(w) is the indicator function for set F, then we can also define

/EfduZ/IEfdu

(iii) All of the following pieces of notation are equivalent and used in the literature:

[ 1w /Q faw  [r@de [r@duw) [ ) )

(iv) Previous results show that measurable functions have representations as limits of sequences of
simple functions. Other results show that measurability is preserved under composition, and
also under limit behaviour. Consider a non-negative measurable function f. Then

f= lim ¢,

for a sequence of non-negative simple functions 1, s, ... with 0 < ¢, (w) < f(w), for all n and
for all w € €. Then it can be shown

kn k
lim /’(/)n dp = lim E anila,, = g aila,,
1= =

say, where

lim k, =k lim a,; =a; lim Iy, , =14,
n—-=o0 n—-~o0 n—-=o0 ’

lim wndu:/lim ¢ndp:/fd,u
n—>:ao n—aoQ

and the integral is preserved under the limit operation.

lim ¢nd,u:/lim ¢nd,u:/fd,u

Thus



4. RESULTS FOR MEASURABLE FUNCTIONS

Theorem 1. MEASURABILITY UNDER COMPOSITION
Let gy and go be measurable functions on E C Q with ranges in R*. Let f be a Borel function from R* x R*
into R*. Then the composite function h, defined on E by

h(w) = f(g1(w1),92 (w2))
is measurable.

Proof. The function g = (g1, g2) has domain F and range R* x R*, and is measurable as g; and g are
measurable, and denote h = f o g (the operator o indicates composition, i.e.

h(wiwe) = (fog)(wiwz) if  h(wi,ws) = f(g(wi,w2)) = f (g1 (w1),92 (w2)) -
If B € B, then f~! (B) is a Borel set as f is a Borel function. Thus the inverse image under b,
R (B) =g~ (f71(B))
is measurable as g; and g2, and hence g, are measurable. §

Corollary 2. If g is a measurable function from E into R*, and f is a continuous function from R* into R*,
then h = f o g is measurable.

Theorem 3. MEASURABILITY UNDER ELEMENTARY OPERATIONS
Let g1 and go be measurable functions defined on E C ) into R*, and let c be any real number. Then all of the
following composite and other related functions are measurable

g1+ 92,91 + ¢, G192, €91, 91/92, 911, g1 V g2, 91 A g2, 97, 97 -

Proof. In each case, we examine the domain of the composite function to ensure measurability in the
Borel o-algebra. Consider g; + go; this is not defined on the set {w : ¢1 (w) = —g2 (w) = £o0} (as cot o0
is not defined), but this set is measurable, and so is the domain of g1 + g2. Let f (z1,22) = x; + 22 be a
continuous function defined on R* x R*. Then, by Theorem 1 and its corollary, g; + g2 is measurable.
Taking g2 = c proves that g; + c is measurable.

The function g¢,g2 is defined everywhere on E; it’s measurability follows from Theorem 1, setting
f (x1,22) = z122. Setting go = c proves that cg; is measurable.

The function g1 /g¢- is defined everywhere except on the union of sets

{w:g1(w) =g (w) =0} U{w: ¢ (w) = £g2 (w) = o0}

Similarly, if ¢ = 0, |¢g1|° is defined except on {w : g1 (w) = £oo}; if ¢ < 0, it is defined except on
{w:¢1 (w) =0}. If ¢ > 0, it is defined everywhere. All of these sets are measurable Thus, we
consider in turn functions

[z, 22) = 1 /22 f(z)=2x°

and use Theorem 1.
The functions g; V g2, g1 A g2 are defined everywhere; so we consider functions
f(x1,x9) = max{x1, z2} f(z1,29) = min {x1,x2}

and again use Theorem 1. Finally, setting g» = 0 yields the measurability of g;” and g; . 1



Theorem 4. If g; and g, are measurable functions on a common domain, then each of the sets
wiggw) <gw}r {wigw=gw} {wgWw>gW}
is measurable.
Proof. Since g, and g are measurable, then f = g; — g2 is measurable, and thus the two sets
{fw:fw)>0} {w:f(w)=0}
are measurable. Since
w1 (w) <g(w)}={w: f(w) >0}
and
wig(Ww) =gpW}l={w: f(w)=0}U{w: g (v) = g2 (w) = Foo}
then {w: g1 (w) < g2 (w)} and {w : g1 (w) = g2 (w)} are measurable, and so is
fwrggw) <gpWl={w:g (W) <g(W)}U{w:g (w) =g (w)}.
|

Theorem 5. MEASURABILITY UNDER LIMIT OPERATIONS
If {gn} is a sequence of measurable functions, the functions sup g,, and inf g,, are measurable.
n n

Proof. Let g = sup gn. Then for real z, consider
n

gn ([=00,2]) = {w 1 gn (w) < 7}

and
97 ([~o0,2]) ={w: g (w) <z}
If g = sup g,, then g,, < g for all n, and

gw)<x=gu(w) <z sothat weg ' ([~00,2]) = weg, ([~o0,z])
so that
9" ([—o0,2]) € g, ([—o0, 2])
for all n. Thus, in fact

971 ([_007 JI]) = mgrjl ([_00737])

and hence ¢ is measurable, as the intersection of measurable sets is measurable. The result for inf
n
follows by noting that
inf g, = —sup (—gn) -
n n

Theorem 6. MEASURABILITY UNDER LIMINF/LIMSUP
If {gn} is a sequence of measurable functions, the functions lim sup g,, and lim inf g,, are measurable.
n n

Proof. This follows from Theorem 5, as

lim sup g,, = inf {sup gn} and lim inf g,, = sup { inf gn}
n E -l n>k n E (n2k



5. SIMPLE FUNCTIONS AND THEIR CONVERGENCE PROPERTIES.

Theorem 7. A non-negative function on ) is measurable if and only if it is the limit of an increasing sequence
of non-negative simple functions.

Proof. Suppose that g is a nonnegative measurable function. For each positive integer n, define the
simple function ¢, on Q2 by

m+1
2n

o) =5 i 5 <gw) <

form=20,1,2,...,2" — 1, and
Y, (W) =n if n<g(w).

Then {¢,,} is an increasing sequence of non-negative simple functions. Since

Y@) = 9@ < x> g(w)
and ¢, (w) = nif g(w) = oo, then, for all w,
U (W) = g (w)
and we have found the sequence required for the result.

Now suppose that g is a limit of an increasing sequence of non-negative simple functions; it is measur-
able by Theorem 6. 1

Theorem 8. A function g defined on (2 is measurable if and only if it is the limit of a sequence of simple functions.

Proof. Suppose that g is measurable. Then g* and g~ are measurable and non-negative, and thus can
be represented as limits of simple functions {+;' } and {¢;, }, by the Theorem 7. Consider the sequence
of simple functions defined by {1, — ¢, }; this sequence converges to g* — g~ = g, and we have the
sequence of simple functions required for the result.

Now suppose that g is a limit of a sequence of simple functions; it is measurable by Theorem 6. 1
6. KEY THEOREMS

The following key theorems describe the behaviour of the Lebesgue-Stieltjes integral. In particular,
the theorems specify when it is legitimate to exchange the order of limit and integral operators. In the
theorems, we have a general measure space ({2, 7, v), and measurable set £ € F.

Theorem 9. Lebesgue Monotone Convergence Theorem
If { fn} is an increasing sequence of nonnegative measurable functions, and if

lim f, =f almost everywhere
n—oo

then
lim fndv = / fdv



Proof. Let the (real) sequence {i,} be defined by

in:/ frndv.
E

Then, by a previous result

in = / Jndv < / Jnr1dv =i as fn < fnt1
E E

so {in} is increasing. Let L denote the (possibly infinite) limit of {i,}. Now, since f,, < f almost
everywhere for all n, we have (by the same previous result) that

/Efndl/g/Ede:>L§/Efdy. (1)

Now consider constant ¢ with 0 < ¢ < 1, and let ¥ be any simple function satisfying 0 < ¢ < f. Let
E,={w:weFand ¢ (w) < fp, (w)}

and as E,, C E, E,, is measurable, and because f, < fn11, B, € Ep4q for all n, so {E,} is increasing.
Let the limit of the { £, } sequence be denoted

oo
F:UET
=1

The set £ N F’ has measure zero, because lim f, = fa.e.and 0 < ¢ip < ¢ < f. Hence,as £, C E
n—oo

/ fndv > fndv > / cpdy = ¢ Pdu.
E En n En

Taking the limit as n — oo,

n—oo E n—oo

L= lim fndv > ¢ lim wduzc/ wduzc/ Ydy
En F E

the final step following as E N F’ has measure zero. Thus, as this holds for all ¢ such that 0 < ¢ < 1,

we must have that
L> / Pdy
E

whenever 0 < ¢ < f. Hence L is an upper bound the integral of such a simple function on £. But,
by the supremum definition from lectures, the integral of f with respect to v on E is the least upper
bound on the integral of such simple functions on E. Hence

Lzéjw. (2)

Thus, combining (1) and (2), we have that

n—oo

L= lim fndyz/ fdv.
E E



Theorem 10. Fatou’s Lemma (or Lebesgue-Fatou Theorem)
If { fr} is a sequence of non-negative measurable functions, and if

liminf f, = f almost everywhere
n—oo

then
fdv < liminf {/ fndu}
E n—oeo E

Proof. The function liminf f,, is measurable. For k =1,2,3, ... let
n—oo

hi =inf{f, :n > k}.

Then, by definition of infimum, hj, < f;, for all k£, and thus

/ hydv S/ frdv  forall k = liminf{/ hkdl/} < hmmf{/ fkdl/} (3)
E E k—oo E

Now {ht} is an increasing sequence of non-negative functions, we have in the limit

lim hy = hm 1nf fn=1r

k—oo

almost everywhere. Now, by the Monotone Convergence Theorem,

kh_{go{/Ehde}Z/ {hm hk}dy—/ fdv
/E fdvghkrgiogf{ /E fkdu}.

Some corollaries follow immediately from this important theorem

Hence, by (3),

1 If Ey, Es, ..., B, are disjoint, with U E; = E, and f is non-negative, then

(L)

Proof: Let {1, } be an increasing sequence of simple functions that converge to f, where

mp
Uy, = Z akjla,,;

=1

say. Then,

m mE n
/ Yrdv = E ap;v (ENAg;) = E E ap;v (E; N Agj) as the E; are disjoint
]:]_ jzl i=1

n mg

= Y Y ayr(Ein Ayy) :zn:{/&wkdy}

i=1 | j=1 =1



by hence the monotone convergence theorem,

/Efdu = klirﬁo{/ wkdu} = lim {é{/}s wkdu}} _ ; {klggo{/& wkd,,}}
A oo -2 {

Now consider a countable (rather than merely finite) collection { E;} with |J E; = E. Then if f

sl

Proof: For each positive integer n, let A, U E;, and define f,, = I4,f. Then {f,} is an

is non-negative

increasing sequence of non-negative functions, that converges to f (on E). Hence

o) (] s}~ S ) - (o)

=1 =1

Let f be a non-negative function on (2. Then the function defined on F by

o (E) =[Efdu

is a measure. The only part of the definition of a measure that needs verifying is the countable
additivity, by the last result, we have directly that

@(UE> :ZME

when the {E;} are disjoint.

For the results above (and the results proved in lectures), we have considered only the integrals of
non-negative measurable functions. We now extend them for general measurable functions, using
the decomposition into positive and negative part functions f = f* — f~ where both f* and f~ are
measurable and non-negative, and we have

/Efdz/:/Ef*dz/—/Ef_du.

Recall that we say that f is integrable if both f* and f~ are integrable, and now denote the set of all
functions integrable on E with respect to v by L (v). From previous arguments we have that

felp(w) e ffand f~ € Lp (V)

Some results can be proved for the functions in this class.

10



LEMMA
If v (E) =0, then

feLegw) and / fdv=0
E

Proof. We have by definition

/Efdu:/Ef+du—/Ef—du:0—0:0

LEMMA
Iff € £E2 (V) and Fy C FEs, then f € EEl (V)

Proof. By a result from lectures

frdv < frdv and frdv < fdv
Ey Eo Ey Eo

LEMMA -
If {E,} is a sequence of disjoint sets with |J E, = E,and f € Lg (v), then
=1

/Efdu:g{/Enfdy}

Proof. The previous Lemma ensures that f € L, (v) as E,, C E for all n. By using the result proved

earlier, that if f is non-negative then
fdv = { / fdy}

we use the positive and negative part decompositions

/Efdu = /Eerdu—/Ef_du:g:l{/Enf*du}—i{/Enﬁdz/}
- g[/gnﬁdy_/ﬂnfdy}zg{/&(ﬁ_f)dy}zg{/nfdy}

]
Corollary 11. If f € Lq (v), then the function ¢ defined on F by

o(B)= [ av

is additive.

Proof. As for previous result. i

11



LEMMA
If f=gae onFE,andifg € L (v), then f € Lg (v) and

/Efdu:/Eng

Proof. Define A={w:w € E, f(w) =g(w)}. Then EN A’ has measure zero, and

/Ef+dy:/Af+du:/Ag+du:/Eg+du
/Ef_dy:/Af_du:/Ag_dV:/Eg_dV

Adding these equations, we have immediately that f € L (v) and

/Efdu:/Eng

and

LEMMA
If f € Lg (v) and cis any real number, then c¢f € Lg (v) and

/E(cf)du:c/Efdy

Proof. Consider only the non-trivial case ¢ # 0. Suppose first ¢ > 0, and let g be a non-negative
function. For any simple function v, say

k
P = Z a;ly,
i—1

we have
Y <gecp<cg.
and
k k
/ (c)dv = Z (ca))v(ENA;) = cZaiV(EﬂAi) = c/ Ydv
E i=1 i=1 E
Therefore

/E(cf)dyzc/Ede

by the supremum definition, and the result follows for ¢ > 0 using this result, and the decomposition
cf =cft —cf. Forc <0, write

cf = (=) f7 = (=) fF

so that the result follows, as —¢ > 0. 1

12



LEMMA
If f,ge Lg(v), then f+g € Lg(v)and

/E(f—kg)dV:/Efdu%—/Egdy

Proof. We prove the result two several stages. First suppose that f and g are non-negative, and let
{Q/J%f )} and { %g )} be increasing sequences of simple functions with limits f and g respectively. Then

{ o 4 w,gg)} has limit f + g, and as

[ (0 +u)av= [ Dav+ [ ofpan
E E E

(see this result by using the measure definition of the integral of a simple function), we have, taking

the limit as n — oo,
/(f+g)du=/fdv+/gdl/.
E E E

Now consider the general case; define the following subsets of E

E, = {w:f(w)>0,9(w) >0}
Ey, = {w:f(w)<0,9(w) >0}
By = {w:f(w)=20,9(w) <0,(f+9)(w) =0}
Ey = {w:f(w) <0,9(w)=0,(f+9)(w) =0}
E; = {w:f(w) 20,9(w) <0,(f+9)(w) <0}
By = {w:f(w) <0,9(w)=0,(f+g)(w) <0}

6
Then E,,n = 1,2, ...,6 are disjoint, and |J E, = E. By the Lemma ??, proving that
1

n=

/ (f+g)dv= Enfdv—l—/ngdz/

n

for each n is sufficient to prove the result. The proofs for each separate case are very similar; so
consider for example set E5. Then on E, the functions f, —g and f + g are non-negative, and threfore
by part one of this proof,

ngdu—/E3(—g)d1/+/Eg(f+g)du——/Esgdy+/Es(f+g)d1/

and the result follows. g

LEMMA
The function f € Lg (v) if and only if | f| € Lg (v). In this instance,

[Efdu S/E!f\dV-

13



Proof. We have identified previously that f is integrable if the positive and negative part functions are
integrable, and this is the case if and only if the function

fl=f"+f
is integrable. If this is the case, then
/fdl/ —‘/f"'—f_dl/ S’/f‘%iu
E E E
|

Corollary 12. If g € L (v), and |f| < g, then f € LE (v)

e

= [ 1s1av

LEMMA
If f,g € Lg(v),and f < ga.e. on E, then

/Efdvg/Egdl/

that is, the Lebesgue-Stieltjes Integral operator preserves ordering of functions.
Proof. We have g — f > 0, so the result follows from Integral Result (e) from lectures, and Lemma 6.. 1

Corollary 13. If v (E) < oo, and m < f < M on E, for real values m and M, then by considering simple
functions 1, = mlg and 1y, = M I, for which ¢, < f <, we have

mu (E) < /Efdy < Mv(E)

LEMMA
Suppose f,g € L (v), and that for A C E,

/Afdyg/Agdv.

Proof. Let I} = {w:w € FE, f(w) >g(w)}, sothat f —g > 0 on F;. Thus, by the assumption of the

Lemma,
| ¢-gar=0
F

and hence by f — g = 0 or f = g a.e. on Fi, by Integral Result (f) from lectures. 1

| s = | gav.

Theorem 15. Lebesgue Dominated Convergence Theorem
If {fn} is a sequence of measurable functions, and if

Then f < ga.e.on E.

Corollary 14. If f,g € LE (v) and if

for AC E, then f = ga.e. on E.

lim f, =f almost everywhere

n—oo

and | f,| < g forall n, for some g € Lk (v), then
lim fndv = / fdv

14



Proof. {f»} and f are measurable functions. By using Fatou’s Lemma (Theorem 10) on non-negative

sequence {g + fn}
/ (g+ f)dv < liminf{/ (g—i—fn)dy}
E n—oo E

/ fdv < liminf {/ fndy} . (4)
E n—o0 E

Similarly, by applying the result to {g — f,,}, we have that

/ (9 — f)dv < liminf {/ (9— fn) dl/} — [ fdv <liminf {—/ fndy}
E n—00 E E n—00 E

Multiplying through by —1, we have by properties of lim sup and lim inf that

[E fdv > Timsup { /E fndu} (5)

and hence combining (4) and (5), we have by definition

lim fndy:/ fdv

so that

Corollary 16. If { f,,} is a uniformly bounded sequence (bounded above and below by a pair of real constants) of
measurable functions such that
lim f,=f almost everywhere

n—oo

and if v (E) < oo, then

lim fndV—/fdl/.

LEBESGUE-STIELTJES INTEGRALS ON R.

Rather than considering a general sample space €2, we now consider the specific case when (2 = R,
with corresponding sigma-algebra which is the Borel sigma-algebra. In this case, the measure v will
often be expressed in terms of (or be generated by) an increasing real function F' on E. Let E be a set
in the Borel sigma-algebra. Then for measurable function g, we can express the integral as

/gdy = / gdF or /gdu = / g(x)dF(z)
E E E E

b o)
/ng:/ g dF and / ng:/ng
a (a,b] —o0 R

with special cases
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7. MEASURE, INTEGRATION AND PROBABILITY DISTRIBUTIONS

In the measure-theoretic framework, random variables are merely measurable functions with respect
to the probability space (€2, £, P), that is, for random variable X = X (w), w € §, with domain E, the
inverse image of Borel set B, X 1(B) = {w € E : X(w) € B}, is an element of o-algebra £. The
expectation of X can be written in any of the following ways

X(w) P X(w) P(dw) X(w) dP(w)
J; J; J;

7.1 Lebesgue-Stieltjes Integration

If P is a probability measure on B3, then there is a unique corresponding real function F' defined for

z € Rby F(z) = P((—o00,z]), termed the distribution function. Conversely, if F' is a distribution

function, then F' defines a measure yr- on the Borel sets of R, B: we define - on B via sets (a, b]) by
pr((a,b]) = F(b) = F(a)

and then extend to B by using union operations. The probability space (R, B, i») is then completed

by considering and including null sets (under 1.f-). Let £ denote the smallest o-algebra containing B
and all i p-null sets. Thus the triple (R, Lr, i) is the completed probability space.

If g : R — R is a measurable function on the probability space (R, L, uf), then the Lebesgue-

Stieltjes integral of g is
[odur= [ a@ ir = [ g(o) aF(a).

7.2 The Radon-Nikodym Theorem and Change of Measure

e o-finite Measure : a measure i defined on a o-algebra C of subsets of a set C'is called finite if ;.(C')
is a finite real number. The measure p is called o-finite if C' is the countable union of measurable
sets of finite measure. A set in a measure space has o-finite measure if it is a union of sets with
finite measure.

o Absolute Continuity : If ;1 and v are two measures on (C, C), then v is absolutely continuous with
respect to p, denoted v < y, if and only if forall £ € C, u(E) = 0 = v(E) = 0.

e The Radon-Nikodym Theorem : For a measure space (C,C), if measure v is absolutely continuous
with respect to a o-finite measure 1, then there exists a measurable function f defined on C' and
taking values in [0, c0), such that

o) = [

for any measurable set A. The function f is unique almost everywhere wrt y; it is termed the
Radon-Nikodym Derivative of density of v with respect to j1, and is often expressed as

o Change of Measure : If u - is absolutely continuous wrt o-finite measure 4, then we can rewrite

d
/gdupz/gfduz/gfdu
1

In practice, y is either counting or Lebesgue measure.
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7.3 Expectations

We can construct expectations for random variables using an identical method of construction as for
integral with respect to measure; for a probability space (2, £, P)

1 A random variable X : 2 — R is called simple if it only takes finitely many distinct values;
simple random variables can be written

X = i inAi
1=1

for some partition Ay, ..., A, of Q. The expectation of X is
E[X] =) xP(4))
i=1

2 Any non-negative random variable X : Q@ — [0, c0) is the limit of some increasing sequence of
simple variables, { X, }. Thatis, X,,(w) T X (w), for all w € Q. The expectation of X is
E[X]= lim E[X,]

and the limit may be infinite.
3 Any random variable X : 2 — R can be writtenas X = X * — X—, where
X*(w) = max{X (©),0} X~ (w) = max{—X (@), 0} = —min{X (w), 0}
The expectation of X is
E[X] = B[X "] - E[X ]
if at least one of the two expectations on the right hand side is finite.
4 Thus the expectation of any random variable, IE[X] is well-defined for every variable X such that
E|X]|=EX"+X ]<o0
Expectation defined in this fashion obeys the following rules: if { X, } is a sequence of rvs with X, (w) —
X(w) forallw € Q, then
(i) Monotone Convergence: If X, (w) > 0 and X, (w) < X,,41(w) for all n and w, then
E[X,] — E[X]
(ii) Dominated Convergence: If | X, (w)| < Y (w) for all n and w, and E[|Y'|] < oo, then
E[X,] — E[X]
(iii) Bounded Convergence: If | X, (w)| < ¢, for some ¢, and for all n and w, then
E[X,] — E[X]
These results hold even if X,,(w) — X (w) for all w except possibly w in sets of probability zero (termed
null events), that is, if X,,(w) — X (w) almost everywhere.
One further result is of use in expectation calculations:

Fatou’s Lemma : If {X,,} is a sequence of rvs with X,,(w) > Y (w) almost everywhere for all n and for
some Y with E[Y] < oo, then
E[liminf X,, ] < liminf E[X,,]

n——oo n——ov
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