556: Mathematical Statistics I

Asymptotic Approximations And The Delta Method

To approximate the distribution of elements in sequence of random variables $\left\{X_{n}\right\}$ for large n, we attempt to find sequences of constants $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ such that $Z_{n}=a_{n} X_{n}+b_{n} \xrightarrow{d} Z$, where Z has some distribution characterized by cdf F_{Z}. Then, for large $n, F_{Z_{n}}(z) \bumpeq F_{Z}(z)$, so

$$
F_{X_{n}}(x)=P\left[X_{n} \leq x\right]=P\left[a_{n} X_{n}+b_{n} \leq a_{n} x+b_{n}\right]=F_{Z_{n}}\left(a_{n} x+b_{n}\right) \bumpeq F_{Z}\left(a_{n} x+b_{n}\right) .
$$

EXAMPLE Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. such that $X_{i} \sim \operatorname{Exp}(1)$, and let $Y_{n}=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. Then by a previous result, $F_{Y_{n}}(y)=\left\{F_{X}(y)\right\}^{n}$, so for $y>0$, $F_{Y_{n}}(y)=\left\{1-e^{-y}\right\}^{n} \longrightarrow 0$, and there is no limiting distribution. However, if we take $a_{n}=1$ and $b_{n}=-\log n$, and set $Z_{n}=a_{n} Y_{n}+b_{n}$, then as $n \longrightarrow \infty$,

$$
\begin{aligned}
& F_{Z_{n}}(z)=\operatorname{Pr}\left[Z_{n} \leq z\right]=\operatorname{Pr}\left[Y_{n} \leq z+\log n\right]=\left\{1-e^{-z-\log n}\right\}^{n} \longrightarrow \exp \left\{-e^{-z}\right\}=F_{Z}(z), \\
\therefore & F_{Y_{n}}(y)=P\left[Y_{n} \leq y\right]=P\left[Z_{n} \leq y-\log n\right] \bumpeq F_{Z}(y-\log n)=\exp \left\{-e^{-y+\log n}\right\}=\exp \left\{-n e^{-y}\right\}
\end{aligned}
$$

and by differentiating

$$
f_{Y_{n}}(y) \bumpeq n e^{-y} \exp \left\{-n e^{-y}\right\} \quad y>0 .
$$

This can be compared with the exact version

$$
f_{Y_{n}}(y)=n e^{-y}\left(1-e^{-y}\right)^{n} \quad y>0 .
$$

The figure below compares the approximations for $n=50,100,500,1000$. Solid lines use the exact formula, dotted lines use the approximation, histograms are 5000 simulated values.

DEFINITION (ASYMPTOTIC NORMALITY)

A sequence of random variables $\left\{X_{n}\right\}$ is asymptotically normally distributed as $n \longrightarrow \infty$ if there exist sequences of real constants $\left\{\mu_{n}\right\}$ and $\left\{\sigma_{n}\right\}$ (with $\sigma_{n}>0$) such that

$$
\frac{X_{n}-\mu_{n}}{\sigma_{n}} \xrightarrow{d} Z \sim N(0,1) .
$$

The notation $X_{n} \dot{\sim} N\left(\mu_{n}, \sigma_{n}^{2}\right)$ or $X_{n} \sim A N\left(\mu_{n}, \sigma_{n}^{2}\right)$ as $n \longrightarrow \infty$ is commonly used.

THEOREM (THE DELTA METHOD)

Consider sequence of random variables $\left\{X_{n}\right\}$ such that

$$
\sqrt{n}\left(X_{n}-\mu\right) \xrightarrow{d} X .
$$

Suppose that $g($.$) is a function such that first derivative \dot{g}($.$) is continuous in a neighbourhood of \mu$, with $\dot{g}(\mu) \neq 0$. Then

$$
\sqrt{n}\left(g\left(X_{n}\right)-g(\mu)\right) \xrightarrow{d} \dot{g}(\mu) X .
$$

In particular, if

$$
\sqrt{n}\left(X_{n}-\mu\right) \xrightarrow{d} X \sim N\left(0, \sigma^{2}\right) .
$$

then

$$
\sqrt{n}\left(g\left(X_{n}\right)-g(\mu)\right) \xrightarrow{d} \dot{g}(\mu) X \sim N\left(0,\{\dot{g}(\mu)\}^{2} \sigma^{2}\right) .
$$

Proof. Consider a Taylor series expansion of $g\left(X_{n}\right)$ about μ;

$$
\begin{equation*}
g\left(X_{n}\right)=g(\mu)+\dot{g}(\mu)\left(X_{n}-\mu\right)+\sum_{r=2}^{\infty} \frac{g^{(r)}(\mu)}{r!}\left(X_{n}-\mu\right)^{r} \tag{1}
\end{equation*}
$$

Now as

$$
\sqrt{n}\left(X_{n}-\mu\right) \xrightarrow{d} X \quad \Longrightarrow \quad X_{n}-\mu \xrightarrow{d} 0 \quad \Longrightarrow \quad X_{n} \xrightarrow{d} \mu
$$

it can be shown that

$$
\sum_{r=2}^{\infty} \frac{g^{(r)}(\mu)}{r!}\left(X_{n}-\mu\right)^{r} \xrightarrow{d} 0
$$

and we can rewrite equation (1) that

$$
g\left(X_{n}\right)=g(\mu)+\dot{g}(\mu)\left(X_{n}-\mu\right)+o_{p}(1)
$$

using the stochastic order notation, where $o_{p}(1)$ indicates a term that converges in probability to zero. Thus using Slutsky's Theorem, we have that

$$
\sqrt{n}\left(g\left(X_{n}\right)-g(\mu)\right)=\dot{g}(\mu) \sqrt{n}\left(X_{n}-\mu\right) \xrightarrow{d} \dot{g}(\mu) X
$$

and if $X \sim N\left(0, \sigma^{2}\right)$, it follows from the properties of the Normal distribution that

$$
\sqrt{n}\left(g\left(X_{n}\right)-g(\mu)\right) \xrightarrow{d} N\left(0,\{\dot{g}(\mu)\}^{2} \sigma^{2}\right) .
$$

Note: This result extends to the multivariate case. Consider a sequence of vector random variables $\left\{{\underset{\sim}{X}}_{n}\right\}$ such that

$$
\sqrt{n}(\underset{\sim}{X}-\underset{\sim}{\mu}) \xrightarrow{d} \underset{\sim}{X}
$$

and $\underset{\sim}{g}: \mathbb{R}^{k} \longrightarrow \mathbb{R}^{d}$ is a vector-valued function with first derivative matrix $\underset{\sim}{\dot{g}}($.$) which is continuous in a$ neighbourhood of $\underset{\sim}{\mu}$, with $\underset{\sim}{\dot{g}} \underset{\sim}{\mu}) \neq \underline{0}$. Note that $\underset{\sim}{g}$ can be considered as a $d \times 1$ vector of scalar functions.

$$
\underset{\sim}{g}(\underset{\sim}{x})=\left(g_{1}(\underset{\sim}{x}), \ldots, g_{d}(\underset{\sim}{x})\right)^{\top} .
$$

Note that $\underset{\sim}{\underset{g}{\underset{\sim}{x}}} \underset{\sim}{x})$ is a $(d \times k)$ matrix with (i, j) th element

$$
\frac{\partial g_{i}(\underset{x}{x})}{\partial x_{j}}
$$

Under these assumptions, in general

$$
\sqrt{n}\left(\underset{\sim}{g}\left({\underset{\sim}{x}}_{n}^{X}\right)-\underset{\sim}{g}(\underset{\sim}{\mu})\right) \xrightarrow{d} \underset{\sim}{\dot{g}}(\underset{\sim}{\mu}) \underset{\sim}{X} .
$$

and in particular, if

$$
\sqrt{n}\left({\underset{\sim}{X}}_{n}-\underset{\sim}{\mu}\right) \xrightarrow{d} \underset{\sim}{X} \sim N(0, \Sigma) .
$$

where Σ is a positive definite, symmetric $k \times k$ matrix, then

$$
\sqrt{n}(\underset{\sim}{g}(\underset{\sim}{X})-\underset{\sim}{g}(\underset{\sim}{\mu})) \xrightarrow{d} \underset{\sim}{\dot{g}}(\underset{\sim}{\mu}) X \sim N\left(0,\{\underset{\sim}{\underset{\sim}{g}}(\mu)\} \Sigma\{\underset{\sim}{\dot{g}}(\mu)\}^{\top}\right) .
$$

THEOREM (THE SECOND ORDER DELTA METHOD: Normal case)

Consider sequence of random variables $\left\{X_{n}\right\}$ such that

$$
\sqrt{n}\left(X_{n}-\mu\right) \xrightarrow{d} N\left(0, \sigma^{2}\right) .
$$

Suppose that $g($.$) is a function such that first derivative \dot{g}($.$) is continuous in a neighbourhood of \mu$, with $\dot{g}(\mu)=0$, but second derivative exists at μ with $\ddot{g}(\mu) \neq 0$. Then

$$
n\left(g\left(X_{n}\right)-g(\mu)\right) \xrightarrow{d} \sigma^{2} \frac{\ddot{g}(\mu)}{2} X
$$

where $X \sim \chi_{1}^{2}$.
Proof. Uses a second order Taylor approximation; informally

$$
g\left(X_{n}\right)=g(\mu)+\dot{g}(\mu)\left(X_{n}-\mu\right)+\frac{\ddot{g}(\mu)}{2}\left(X_{n}-\mu\right)^{2}+o_{p}(1)
$$

thus, as $\dot{g}(\mu)=0$,

$$
g\left(X_{n}\right)-g(\mu)=\frac{\ddot{g}(\mu)}{2}\left(X_{n}-\mu\right)^{2}+o_{p}(1)
$$

and thus

$$
n\left(g\left(X_{n}\right)-g(\mu)\right)=\frac{\ddot{g}(\mu)}{2}\left\{\sqrt{n}\left(X_{n}-\mu\right)\right\}^{2} \xrightarrow{d} \sigma^{2} \frac{\ddot{g}(\mu)}{2} Z^{2}
$$

where $Z^{2} \sim \chi_{1}^{2}$.

EXAMPLES

1. Under the conditions of the Central Limit Theorem, for random variables X_{1}, \ldots, X_{n} and their sample mean random variable \bar{X}_{n}

$$
\sqrt{n}\left(\bar{X}_{n}-\mu\right) \xrightarrow{d} X \sim N\left(0, \sigma^{2}\right) .
$$

Consider $g(x)=x^{2}$, so that $\dot{g}(x)=2 x$, and hence, if $\mu \neq 0$,

$$
\sqrt{n}\left(\bar{X}_{n}{ }^{2}-\mu^{2}\right) \xrightarrow{d} X \sim N\left(0,4 \mu^{2} \sigma^{2}\right)
$$

and

$$
\bar{X}_{n}{ }^{2} \sim A N\left(\mu^{2}, 4 \mu^{2} \sigma^{2} / n\right)
$$

If $\mu=0$, we proceed by a different route to compute the approximate distribution of $\bar{X}_{n}{ }^{2}$; note that, if $\mu=0$,

$$
\sqrt{n X}_{n} \xrightarrow{d} X \sim N\left(0, \sigma^{2}\right)
$$

so therefore

$$
n \bar{X}_{n}^{2}=\left(\sqrt{n} \bar{X}_{n}\right)^{2} \xrightarrow{d} X^{2} \sim \operatorname{Gamma}\left(1 / 2,1 /\left(2 \sigma^{2}\right)\right)
$$

by elementary transformation results. Hence, for large n,

$$
\bar{X}_{n}{ }^{2} \dot{\sim} \operatorname{Gamma}\left(1 / 2, n /\left(2 \sigma^{2}\right)\right)
$$

2. Again under the conditions of the CLT, consider the distribution of $1 / \bar{X}_{n}$. In this case, we have a function $g(x)=1 / x$, so $\dot{g}(x)=-1 / x^{2}$, and if $\mu \neq 0$, the Delta method gives

$$
\sqrt{n}\left(1 / \bar{X}_{n}-1 / \mu\right) \xrightarrow{d} X \sim N\left(0, \sigma^{2} / \mu^{4}\right)
$$

or,

$$
\frac{1}{\bar{X}_{n}} \sim A N\left(1 / \mu, n^{-1} \sigma^{2} / \mu^{4}\right)
$$

