556: MATHEMATICAL STATISTICS 1
THE KULLBACK-LEIBLER DIVERGENCE

The Kullback-Leibler (KL) divergence between two probability distributions with densities fo and f;
with supports X and X; respectively is defined as
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Hence
K (fo, f1) = 0.

Now clearly, if fp and f; are identical, so that fi(z) = fo(x) for all z € Xy = Xj, then

K(f(bfl) =0.

For the converse, note that for all real z > 0
logex <x—1 (1)

with equality only when = = 1, as the plot demonstrates.
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In the KL calculation, only if fi(x) = fo(x),
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only if fi(z) = fo(z).

so therefore

Therefore
K(fo,f1) =0 = fi(z) = folx) forallz € Xo = X;.

Exercise: Prove equation (1) without the use of graphical aids; show that
x—1—-logz >0
for all z.

Note that
K(fo, f1) # K(f1, fo)

so the divergence is not a distance measure as it is not symmetric. A symmetrized version, Kg, where

Ks(fo, 1) = K(fo, f1) + K (f1, fo)

is therefore sometimes used.



