556: Mathematical Statistics I

The Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence between two probability distributions with densities f_{0} and f_{1} with supports \mathbb{X}_{0} and \mathbb{X}_{1} respectively is defined as

$$
K\left(f_{0}, f_{1}\right)=\int_{\mathbb{X}_{0}} \log \frac{f_{0}(x)}{f_{1}(x)} f_{0}(x) d x=E_{f_{0}}\left[\log \frac{f_{0}(x)}{f_{1}(x)}\right]
$$

Using Jensen's Inequality on the convex function $g(x)=-\log x$

$$
\begin{aligned}
-K\left(f_{0}, f_{1}\right)=E_{f_{0}}\left[-\log \frac{f_{0}(x)}{f_{1}(x)}\right]=E_{f_{0}}\left[\log \frac{f_{1}(x)}{f_{0}(x)}\right] & \leq \log E_{f_{0}}\left[\frac{f_{1}(x)}{f_{0}(x)}\right] \\
& =\log \left\{\int_{\mathbb{X}_{0}} \frac{f_{1}(x)}{f_{0}(x)} f_{0}(x) d x\right\} \\
& =\log \left\{\int_{\mathbb{X}_{0}} f_{1}(x) d x\right\} \leq \log 1=0
\end{aligned}
$$

Hence

$$
K\left(f_{0}, f_{1}\right) \geq 0 .
$$

Now clearly, if f_{0} and f_{1} are identical, so that $f_{1}(x)=f_{0}(x)$ for all $x \in \mathbb{X}_{0} \equiv \mathbb{X}_{1}$, then

$$
K\left(f_{0}, f_{1}\right)=0 .
$$

For the converse, note that for all real $x \geq 0$

$$
\begin{equation*}
\log x \leq x-1 \tag{1}
\end{equation*}
$$

with equality only when $x=1$, as the plot demonstrates.

Therefore

$$
\log \frac{f_{0}(x)}{f_{1}(x)} \leq \frac{f_{0}(x)}{f_{1}(x)}-1
$$

with equality only if for all x

$$
\frac{f_{0}(x)}{f_{1}(x)}=1 \quad \text { or } \quad f_{1}(x)=f_{0}(x)
$$

In the KL calculation, only if $f_{1}(x)=f_{0}(x)$,

$$
E_{f_{0}}\left[\log \frac{f_{1}(x)}{f_{0}(x)}\right]=E_{f_{0}}\left[\left(\frac{f_{1}(x)}{f_{0}(x)}-1\right)\right],
$$

so therefore

$$
E_{f_{0}}\left[\left(\frac{f_{1}(x)}{f_{0}(x)}-1\right)\right]=\int\left(\frac{f_{1}(x)}{f_{0}(x)}-1\right) f_{0}(x) d x=\int\left(f_{1}(x)-f_{0}(x)\right) d x=0
$$

only if $f_{1}(x)=f_{0}(x)$.
Therefore

$$
K\left(f_{0}, f_{1}\right)=0 \quad \Longleftrightarrow \quad f_{1}(x)=f_{0}(x) \quad \text { for all } x \in \mathbb{X}_{0} \equiv \mathbb{X}_{1} .
$$

Exercise: Prove equation (1) without the use of graphical aids; show that

$$
x-1-\log x \geq 0
$$

for all x.
Note that

$$
K\left(f_{0}, f_{1}\right) \neq K\left(f_{1}, f_{0}\right)
$$

so the divergence is not a distance measure as it is not symmetric. A symmetrized version, K_{S}, where

$$
K_{S}\left(f_{0}, f_{1}\right)=K\left(f_{0}, f_{1}\right)+K\left(f_{1}, f_{0}\right)
$$

is therefore sometimes used.

