556: MATHEMATICAL STATISTICS 1
INEQUALITIES

5.1 Concentration and Tail Probability Inequalities

Lemma (CHEBYCHEV’S LEMMA) If X is a random variable, then for non-negative function h, and
c>0,

Pr [h(X) > c} < M

C

Proof (continuous case) : Suppose that X has density function fx which is positive for x € X. Let
A={xeX:h(z)>c} C X.Then,as h(x) > con A,

By, [h(X)] = / W) fx(z) do = / h(e) fx (z) de + / ha) fx (x) da

A A’
> /h(x)fx(x) dx
A
> /cfx(:@ do = ¢Pr[X € A = ¢ Pr[h(X) >

A

and the result follows.

e SPECIAL CASEI-THE MARKOV INEQUALITY
If h(z) = |z|" for r > 0, so
E: | X"
C
Alternately stated (by Casella and Berger) as follows: If P[Y > 0] = 1 and P[Y = 0] < 1, then for
any r >0
Er Y
PlY >r] < x Y]
T

with equality if and only if

for some 0 < p < 1.

e SPECIAL CASE Il - THE CHEBYCHEV INEQUALITY
Suppose that X is a random variable with expectation p and variance o2. Then h(z) = (z — p)
and ¢ = k202, for k > 0,

2

P|(X —p)? > K202 <1/Kk?
or equivalently
P(|X — p| > ko] < 1/k2
Setting € = ko gives
P|X —p| > € <o?/e
or equivalently
P(IX —p| <€ >1-0%/.



Theorem (CHERNOFF BOUNDS)

Suppose that X7, ..., X,, are independent binary trials (known as “Poisson trials”) such that
o . 1-— pi T = 0

and zero otherwise. Let X = (X; +--- 4+ X,,), so that Ey, [X]| = >"" | p; = p, say. Then for d > 0

od j
PIX > 1+dpu] < {(1+d)(1+d)} :
If 0 < d <1, asimpler bound is

PIX > (1 +d)u] < exp{—pd*/3}.
Proof Leta > 0. Then, using the Chebychev Lemma with h(z) = €?®, and ¢ = e*(1+)#, we have

PIX > (1 + d)u] = Plexp{aX} = expla(1 + d)pu}) < 2xlxPlaX]]

= axpla(l + dyu) o

But, by independence,

Egclexp{aX}] = [ Ep lexpfaXid] = [[lpie® + (1 =pi)] = [ 11 +pile® = )]
=1 i i=1

Now fory > 0,
2

=1ty + =14y

so setting y; = p;(e® — 1) and using this inequality term by term, we conclude from equation (1) that

Egylexp{aX}] = ] [1 +pi(e" = 1)] <II@@M%6 —1H—*mp{§:pze—4J}=emﬂu@“—1ﬂ‘
=1

=1 =1

Hence

exp {p(e® — 1)}
P[X > (1+d)u] < exp{a(l + d)u}

and setting a = log(1 + d) yields

e

ehd ! '
P2 (At dul < G gpms = {<1+d><”d>}

For 0 < d <1, we have that .
e? 9
{MM} < exp{—pnd”/3}.
To see this, consider taking logs, and the function
g(d) = d — (14 d)log(1 +d) + d?/3.
We need to show that g(d) is bounded above by zero for 0 < d < 1. Clearly g(0) = 0, and taking
derivatives twice we have
1
(1+d)
Therefore g™ (0) = 0, ¢ (0) = —1/3 < 0and g™ (1) = —log2 4 2/3 < 0, so gV (d) stays negative for

all 0 < d < 1 as there is no solution of ¢ (d) = 0 in this interval. Thus g(d) must also be negative for
all d in this range.

g (d) = —log(1 + d) +2d/3 g (d) = -

+2/3.



Theorem (A CHERNOFF BOUND USING MGEFS)
If X is a random variable, with mgf M x(t) defined on a neighbourhood (—#, h) of zero. Then

PIX >a] <e “Mx(t) forO0<t<h

Proof Using the Chebychev Lemma with h(z) = €'* and ¢ = e, for t > 0,

Ep ™) _ Mx(1)

P[X > a] = P[tX > at] = Plexp{tX} > exp{at}] < =7 et

provided t < h also. Using similar methods,

P[X <a]<e ™Mx(t) for —h<t<0

Theorem (TAIL BOUNDS FOR THE NORMAL DENSITY)
If Z~ N(0,1), thenfort¢ >0

\/5 L el <prfjz] >4 < \/516t2/2
ml+t2 Tt

Proof By symmetry, Pr[|Z| > t] = 2 Pr[Z > t], so

1/2 0 1/2 o) 1/2 —t2/2
Piz>1 = (— / e dr < (L / Loty o (L) T
2T ‘ 27 ; t 27 t

Similarly, for ¢ > 0,

o0 _ 2/2 OOJZ _ 2/2 1 _ 2/2 & o0 1 _ 2/2 ]. —t2/2 1 o0 _ 2/2
/ e ” d:tz/ —e Vitdr=|——e" —/ —Qex dr > —e —2/ e T/ dx
¢ P T ‘ PR t t“ Jy

after writing 1 = x/x, then integrating by parts, and then noting that, on (t,00), x > t <= 1/2% < 1/t?,
and that the integrand is non-negative. Therefore, combining terms

1 o0 _2/2 1 —t2/2
1+ —= e Tl dr > —e
) ), t

and cross-multiplying by the positive term t?/(1 + t?) yields

/ e e dr > e Pr|Z]| >t]| >/ ———= € .
¢ 1+ ¢2 w14t

To see the quality of the approximation, the table below shows the values of the bounding values for ¢
ranging from 1 to 5. Clearly the bounds improve as ¢ gets larger.

t 1.0 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0

Lower | 2.420e-01 1.196e-01 4.319e-02 1.209e-02 2.659e-03 4.610e-04 6.298e-05 6.770e-06 5.718e-07
True 3.173e-01 1.336e-01 4.550e-02 1.242e-02 2.700e-03 4.653e-04 6.334e-05 6.795e-06 5.733e-07
Upper | 4.83%-01 1.727e-01 5.399e-02 1.402e-02 2.955e-03 4.987e-04 6.692e-05 7.104e-06 5.947e-07




5.2 Expectation Inequalities

Lemma Leta,b> 0and p,q > 1 satisfy
pl4+qg =1 (2)
Then
pltaP +q b7 >ab
with equality if and only if a? = b9.

Proof Fixb > 0. Let
g(a;b) =p~taP +q b1 — ab.

We require that g(a; b) > 0 for all a. Differentiating wrt a for fixed b yields ¢! (a; b) = a?~* — b, so that
g(a;b) is minimized (the second derivative is strictly positive at all ) when a?~! = b, and at this value
of a, the function takes the value

pral +q (@ —a(@ ) =ptaP+qgta —a? =0

as, by equation (2), 1/p+1/q¢ =1 = (p — 1)q = p. As the second derivative is strictly positive at all a,
the minimum is attained at the unique value of a where a?~! = b, where, raising both sides to power
q yields a? = b1.

Theorem (HOLDER’S INEQUALITY)
Suppose that X and Y are two random variables, and p, ¢ > 1 satisfy 2. Then

|Epy XY < Ep IXY )] < {Bp | X PP LB (Y]}

Proof (continuous case) For the first inequality,

By XY = / oyl fxy (@ y) do dy > / / wyfxy (@, y) de dy = By, | [XY]

and
By, [XY] = / / ryfxy(e,y) de dy > / / eyl fxy(@,y) de dy = — By [ XY

SO
_EfX,YHXYH < EfX,Y[XY] < EfX,YHXYH ‘EfX,Y[XY” < EfX,YHXYH'

For the second inequality, set
X Y]
‘= 1/p N 1/q°
{Ep [ X[PT} {Ep Y]]}
Then from the previous lemma

X ! yie o | XY|
Er [|X[P] En Y19 ™ (B [IX[P]}VP { By, [ ]9]} 4

and taking expectations yields, on the left hand side,

-1 EfoX’p] q—l Efy[|Y|q]
EfXHX’p] EfYHY‘q]

=pl+qg =1

and on the right hand side
By [XY]]

{Ep IX PP By, [V ]9}/

and the result follows.



Theorem (CAUCHY-SCHWARZ INEQUALITY)
Suppose that X and Y are two random variables.

1/2

‘EfX,Y[XY” < Efx,YHXYH < {EfXHX‘Q]} {EfYHY|2]}1/2

Proof Setp = g = 2 in the Holder Inequality.
Corollaries:

(a) Let uy and 1y denote the expectations of X and Y respectively. Then, by the Cauchy-Schwarz

inequality
By [(X = i)Y = uy)]| < LB [(X = )2} 2 {Ep [(Y = iy )21}
so that
Epe y [(X = ux)(Y = py)] < Bp (X — px 1B [(Y = iy )?)
and hence

2
{COUfX,Y[X7 Y]} < VanX [X] Varfy [Y]

(b) Lyapunov’s Inequality: Define Y = 1 with probability one. Then, for 1 < p < oo
Ep [IX1) < {Bp [IX P17

Let1 <7 < p. Then
Ep [IXI] < {Ep [IXPP}YP
and letting s = pr > r yields
Ep [[X]"] < {Ep [IX])Y7?
so that
{ErIXITYT < (Ep IXP1Y°

forl <r < s < oo.

Theorem (MINKOWSKI'S INEQUALITY)
Suppose that X and Y are two random variables, and 1 < p < co. Then

1
{Erey [|X + Y PP < (B (IX PRV + (B, [V PI}VP
Proof Write

Ep X +YP = Epy (IX +Y]IX + Y P

< Epy (IXINX + Y P+ Br [IY]IX + Y P

by the triangle inequality |z + y| < |z| + |y|. Using Holder’s Inequality on the terms on the right hand
side, for g selected to satisfy 1/p +1/¢ =1,

_1yp) Ve _, Ve
By IX Y] < (B [P { By 15X + Y10} g, (v P17 { B 1 + Y120}
and dividing through by {Ey, , [|X + Y[¢(P~1)] }l/q yields

Ere  [|X 4+ Y|P]
e SABIXPIYYP + (B [y P
(B, [|X +Y[a-D]} M

and the result follows as ¢(p — 1) =p,and 1 —1/¢ = 1/p.

5



5.3 Jensen’s Inequality

Jensen’s Inequality gives a lower bound on expectations of convex functions. Recall that a function
g(z) is convex if, for 0 < A < 1,

gz + (1= Ny) < Ag(x) + (1 = Ng(y)

for all x and y. Alternatively, function g(z) is convex if

d? @)
a2 Wty =97 (2) 20.

Conversely, g(z) is concave if —g(z) is convex.

Theorem (JENSEN’S INEQUALITY)
Suppose that X is a random variable with expectation 4, and function g is convex. Then

By [9(X)] = g(Eyy [X])
with equality if and only if, for every line a + bz that is a tangent to g at p
Plg(X) =a+bX]=1.

that is, g() is linear.

Proof Let!(z) = a + bx be the equation of the tangent at # = p. Then, for each z, g(z) > a + bz as in
the figure below.

9(x)

‘I(x) =a+bx

Figure 1: The function g(z) and its tangent at x = p.



Thus
Er(9(X)] = Epyla+bX] = a+bEs [X] = () = g(p) = 9(Efy [X])

as required. Also, if g(z) is linear, then equality follows by properties of expectations. Suppose that
Epy [9(X)] = 9(Epy [X]) = g(u)

but g(z) is convex, but not linear. Let [(x) = a + bz be the tangent to g at ;. Then by convexity

g(r) —1(x) >0 .. /<g<x>z<x>>fx<x>dx= / o) fx () de - / @) fx(z) dz > 0

and hence
Epclg(X)] > Epy [[(X)]-
But () is linear, so Ef, [I[(X)] = a + bE, [X] = g(n), yielding the contradiction

B [9(X)] > g(Epy [X]).

and the result follows.
Corollary and examples:

e If g(x) is concave, then
Epy [9(X)] < g(Ejy [X])

2

e g(x) = z* is convex, thus

Epy [X?] > {Eyy [X)}?

e g(x) = logz is concave, thus
Efy [log X] <log{Ey, [X]}

Lemma Suppose that X is a random variable, with finite expectation . Let g be a non-decreasing
function. Then

Eplg(X)(X = )] >0

Proof By definition,

Bl -] = [ " g@) (@ — w) fx (@) de
m oo
- / o) — 1) fx () di + / o) (& — ) fx (x) d.
—00 I
Now i u
/_ o) — 1) fx (@) da > / 9(u) (& — 1) fx () da

as, on (—oo, 1), x < 1, S0 x — j is negative, and thus as ¢ is non-decreasing, on this range

g(x)(x — p) > g(p)(z — p)



as the left hand side is less negative than the right hand side. Similarly,

/ T g(@) (@ — ) fx () da > / " g(u) (@ — ) fx (x) da

o

as, on (1, 00), x > 1, S0 x — p is positive, and thus as g is non-decreasing, on this range

g(x)(x —p) > g(p)(z — p)

as the left hand side is more positive than the right hand side. Hence

By lo(X)(X — )] > / 9(1)(@ — ) fx () de + /Oog(u)(l‘—u)fx(w)dw
_—— /_°°<w—mfx<x>dx=o



