
556: MATHEMATICAL STATISTICS I

INEQUALITIES

5.1 Concentration and Tail Probability Inequalities

Lemma (CHEBYCHEV’S LEMMA) If X is a random variable, then for non-negative function h, and
c > 0,

Pr [h(X) ≥ c] ≤ EfX
[h(X)]
c

Proof (continuous case) : Suppose that X has density function fX which is positive for x ∈ X. Let
A = {x ∈ X : h(x) ≥ c} ⊆ X . Then, as h(x) ≥ c on A,

EfX
[h(X)] =

∫
h(x)fX(x) dx =

∫

A
h(x)fX(x) dx +

∫

A′
h(x)fX(x) dx

≥
∫

A
h(x)fX(x) dx

≥
∫

A
cfX(x) dx = c Pr [X ∈ A] = c Pr [h(X) ≥ c]

and the result follows.

• SPECIAL CASE I - THE MARKOV INEQUALITY
If h(x) = |x|r for r > 0, so

P [|X|r ≥ c] ≤ EfX
[|X|r]
c

.

Alternately stated (by Casella and Berger) as follows: If P [Y ≥ 0] = 1 and P [Y = 0] < 1, then for
any r > 0

P [Y ≥ r] ≤ EfX
[Y ]

r

with equality if and only if
P [Y = r] = p = 1− P [Y = 0]

for some 0 < p ≤ 1.

• SPECIAL CASE II - THE CHEBYCHEV INEQUALITY
Suppose that X is a random variable with expectation µ and variance σ2. Then h(x) = (x − µ)2

and c = k2σ2, for k > 0,
P

[
(X − µ)2 ≥ k2σ2

]
≤ 1/k2

or equivalently
P [|X − µ| ≥ kσ] ≤ 1/k2.

Setting ε = kσ gives
P [|X − µ| ≥ ε] ≤ σ2/ε2

or equivalently
P [|X − µ| < ε] ≥ 1− σ2/ε2.
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Theorem (CHERNOFF BOUNDS)
Suppose that X1, . . . , Xn are independent binary trials (known as ”Poisson trials”) such that

P [Xi = x] =
{

1− pi x = 0
pi x = 1

and zero otherwise. Let X = (X1 + · · ·+ Xn), so that EfX
[X] =

∑n
i=1 pi = µ, say. Then for d > 0

P [X ≥ (1 + d)µ] ≤
{

ed

(1 + d)(1+d)

}µ

.

If 0 ≤ d ≤ 1, a simpler bound is

P [X ≥ (1 + d)µ] ≤ exp
{−µd2/3

}
.

Proof Let a > 0. Then, using the Chebychev Lemma with h(x) = eax, and c = ea(1+d)µ, we have

P [X ≥ (1 + d)µ] = P [exp{aX} ≥ exp{a(1 + d)µ}] ≤ EfX
[exp{aX}]

exp{a(1 + d)µ} . (1)

But, by independence,

EfX
[exp{aX}] =

n∏

i=1

EfXi
[exp{aXi}] =

n∏

i=1

[pie
a + (1− pi)] =

n∏

i=1

[1 + pi(ea − 1)]

Now for y ≥ 0,

ey = 1 + y +
y2

2
+ · · · ≥ 1 + y

so setting yi = pi(ea − 1) and using this inequality term by term, we conclude from equation (1) that

EfX
[exp{aX}] =

n∏

i=1

[1 + pi(ea − 1)] ≤
n∏

i=1

exp{pi(ea − 1)} = exp

{
n∑

i=1

pi(ea − 1)

}
= exp {µ(ea − 1)} .

Hence

P [X ≥ (1 + d)µ] ≤ exp {µ(ea − 1)}
exp{a(1 + d)µ}

and setting a = log(1 + d) yields

P [X ≥ (1 + d)µ] ≤ eµd

(1 + d)µ(1+d)
=

{
ed

(1 + d)(1+d)

}µ

For 0 ≤ d ≤ 1, we have that {
ed

(1 + d)(1+d)

}µ

≤ exp{−µd2/3}.

To see this, consider taking logs, and the function

g(d) = d− (1 + d) log(1 + d) + d2/3.

We need to show that g(d) is bounded above by zero for 0 ≤ d ≤ 1. Clearly g(0) = 0, and taking
derivatives twice we have

g(1)(d) = − log(1 + d) + 2d/3 g(2)(d) = − 1
(1 + d)

+ 2/3.

Therefore g(1)(0) = 0, g(2)(0) = −1/3 < 0 and g(1)(1) = − log 2 + 2/3 < 0, so g(1)(d) stays negative for
all 0 < d ≤ 1 as there is no solution of g(1)(d) = 0 in this interval. Thus g(d) must also be negative for
all d in this range.
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Theorem (A CHERNOFF BOUND USING MGFS)
If X is a random variable, with mgf MX(t) defined on a neighbourhood (−h, h) of zero. Then

P [X ≥ a] ≤ e−atMX(t) for 0 < t < h

Proof Using the Chebychev Lemma with h(x) = etx and c = eat, for t > 0,

P [X ≥ a] = P [tX ≥ at] = P [exp{tX} ≥ exp{at}] ≤ EfX
[etX ]

eat
=

MX(t)
eat

provided t < h also. Using similar methods,

P [X ≤ a] ≤ e−atMX(t) for − h < t < 0

Theorem (TAIL BOUNDS FOR THE NORMAL DENSITY)
If Z ∼ N(0, 1), then for t > 0

√
2
π

t

1 + t2
e−t2/2 ≤ Pr[|Z| ≥ t] ≤

√
2
π

1
t
e−t2/2

Proof By symmetry, Pr[|Z| ≥ t] = 2 Pr[Z ≥ t], so

P [Z ≥ t] =
(

1
2π

)1/2 ∫ ∞

t
e−x2/2 dx ≤

(
1
2π

)1/2 ∫ ∞

t

x

t
e−x2/2 dx =

(
1
2π

)1/2 e−t2/2

t
.

Similarly, for t > 0,
∫ ∞

t
e−x2/2 dx ≡

∫ ∞

t

x

x
e−x2/2 dx =

[
−1

x
e−x2/2

]∞

t

−
∫ ∞

t

1
x2

e−x2/2 dx ≥ 1
t
e−t2/2 − 1

t2

∫ ∞

t
e−x2/2 dx

after writing 1 = x/x, then integrating by parts, and then noting that, on (t,∞), x > t ⇐⇒ 1/x2 < 1/t2,
and that the integrand is non-negative. Therefore, combining terms

(
1 +

1
t2

) ∫ ∞

t
e−x2/2 dx ≥ 1

t
e−t2/2

and cross-multiplying by the positive term t2/(1 + t2) yields

∫ ∞

t
e−x2/2 dx ≥ t

1 + t2
e−t2/2 ∴ Pr[|Z| > t] ≥

√
2
π

t

1 + t2
e−t2/2.

To see the quality of the approximation, the table below shows the values of the bounding values for t
ranging from 1 to 5. Clearly the bounds improve as t gets larger.

t 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Lower 2.420e-01 1.196e-01 4.319e-02 1.209e-02 2.659e-03 4.610e-04 6.298e-05 6.770e-06 5.718e-07
True 3.173e-01 1.336e-01 4.550e-02 1.242e-02 2.700e-03 4.653e-04 6.334e-05 6.795e-06 5.733e-07
Upper 4.839e-01 1.727e-01 5.399e-02 1.402e-02 2.955e-03 4.987e-04 6.692e-05 7.104e-06 5.947e-07
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5.2 Expectation Inequalities

Lemma Let a, b > 0 and p, q > 1 satisfy

p−1 + q−1 = 1. (2)

Then
p−1 ap + q−1 bq ≥ ab

with equality if and only if ap = bq.

Proof Fix b > 0. Let
g(a; b) = p−1 ap + q−1 bq − ab.

We require that g(a; b) ≥ 0 for all a. Differentiating wrt a for fixed b yields g(1)(a; b) = ap−1 − b, so that
g(a; b) is minimized (the second derivative is strictly positive at all a) when ap−1 = b, and at this value
of a, the function takes the value

p−1 ap + q−1 (ap−1)q − a(ap−1) = p−1 ap + q−1 ap − ap = 0

as, by equation (2), 1/p + 1/q = 1 =⇒ (p− 1)q = p. As the second derivative is strictly positive at all a,
the minimum is attained at the unique value of a where ap−1 = b, where, raising both sides to power
q yields ap = bq.

Theorem (HÖLDER’S INEQUALITY)
Suppose that X and Y are two random variables, and p, q > 1 satisfy 2. Then

|EfX,Y
[XY ]| ≤ EfX,Y

[|XY |] ≤ {EfX
[|X|p]}1/p {EfY

[|Y |q]}1/q

Proof (continuous case) For the first inequality,

EfX,Y
[|XY |] =

∫∫
|xy|fX,Y (x, y) dx dy ≥

∫∫
xyfX,Y (x, y) dx dy = EfX,Y

[XY ]

and
EfX,Y

[XY ] =
∫∫

xyfX,Y (x, y) dx dy ≥
∫∫

−|xy|fX,Y (x, y) dx dy = −EfX,Y
[|XY |]

so
−EfX,Y

[|XY |] ≤ EfX,Y
[XY ] ≤ EfX,Y

[|XY |] ∴ |EfX,Y
[XY ]| ≤ EfX,Y

[|XY |].
For the second inequality, set

a =
|X|

{EfX
[|X|p]}1/p

b =
|Y |

{EfY
[|Y |q]}1/q

.

Then from the previous lemma

p−1 |X|p
EfX

[|X|p] + q−1 |Y |q
EfY

[|Y |q] ≥
|XY |

{EfX
[|X|p]}1/p {EfY

[|Y |q]}1/q

and taking expectations yields, on the left hand side,

p−1 EfX
[|X|p]

EfX
[|X|p] + q−1 EfY

[|Y |q]
EfY

[|Y |q] = p−1 + q−1 = 1

and on the right hand side
EfX,Y

[|XY |]
{EfX

[|X|p]}1/p {EfY
[|Y |q]}1/q

and the result follows.
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Theorem (CAUCHY-SCHWARZ INEQUALITY)
Suppose that X and Y are two random variables.

|EfX,Y
[XY ]| ≤ EfX,Y

[|XY |] ≤ {
EfX

[|X|2]}1/2 {
EfY

[|Y |2]}1/2

Proof Set p = q = 2 in the Hölder Inequality.

Corollaries:

(a) Let µX and µY denote the expectations of X and Y respectively. Then, by the Cauchy-Schwarz
inequality

|EfX,Y
[(X − µX)(Y − µY )]| ≤ {

EfX
[(X − µX)2]

}1/2 {
EfY

[(Y − µY )2]
}1/2

so that
EfX,Y

[(X − µX)(Y − µY )] ≤ EfX
[(X − µX)2]EfY

[(Y − µY )2]

and hence {
CovfX,Y

[X,Y ]
}2 ≤ V arfX

[X] V arfY
[Y ].

(b) Lyapunov’s Inequality: Define Y = 1 with probability one. Then, for 1 < p < ∞
EfX

[|X|] ≤ {EfX
[|X|p]}1/p .

Let 1 < r < p. Then
EfX

[|X|r] ≤ {EfX
[|X|pr]}1/p

and letting s = pr > r yields
EfX

[|X|r] ≤ {EfX
[|X|s]}r/s

so that
{EfX

[|X|r]}1/r ≤ {EfX
[|X|s]}1/s

for 1 < r < s < ∞.

Theorem (MINKOWSKI’S INEQUALITY)
Suppose that X and Y are two random variables, and 1 ≤ p < ∞. Then

{
EfX,Y

[|X + Y |p]}1/p ≤ {EfX
[|X|p]}1/p + {EfY

[|Y |p]}1/p

Proof Write

EfX,Y
[|X + Y |p] = EfX,Y

[|X + Y ||X + Y |p−1]

≤ EfX,Y
[|X||X + Y |p−1] + EfX,Y

[|Y ||X + Y |p−1]

by the triangle inequality |x + y| ≤ |x|+ |y|. Using Hölder’s Inequality on the terms on the right hand
side, for q selected to satisfy 1/p + 1/q = 1,

EfX,Y
[|X+Y |p] ≤ {EfX

[|X|p]}1/p
{

EfX,Y
[|X + Y |q(p−1)]

}1/q
+{EfY

[|Y |p]}1/p
{

EfX,Y
[|X + Y |q(p−1)]

}1/q

and dividing through by
{
EfX,Y

[|X + Y |q(p−1)]
}1/q

yields

EfX,Y
[|X + Y |p]

{
EfX,Y

[|X + Y |q(p−1)]
}1/q

≤ {EfX
[|X|p]}1/p + {EfY

[|Y |p]}1/p

and the result follows as q(p− 1) = p, and 1− 1/q = 1/p.

5



5.3 Jensen’s Inequality

Jensen’s Inequality gives a lower bound on expectations of convex functions. Recall that a function
g(x) is convex if, for 0 < λ < 1,

g(λx + (1− λ)y) ≤ λg(x) + (1− λ)g(y)

for all x and y. Alternatively, function g(x) is convex if

d2

dt2
{g(t)}t=x = g(2)(x) ≥ 0.

Conversely, g(x) is concave if −g(x) is convex.

Theorem (JENSEN’S INEQUALITY)
Suppose that X is a random variable with expectation µ, and function g is convex. Then

EfX
[g(X)] ≥ g(EfX

[X])

with equality if and only if, for every line a + bx that is a tangent to g at µ

P [g(X) = a + bX] = 1.

that is, g(x) is linear.

Proof Let l(x) = a + bx be the equation of the tangent at x = µ. Then, for each x, g(x) ≥ a + bx as in
the figure below.

0 1 2 3 4 5

0
1

2
3

4
5

x

g(
x)

µ = 2

l(x) = a + bx

g(x)

Figure 1: The function g(x) and its tangent at x = µ.
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Thus
EfX

[g(X)] ≥ EfX
[a + bX] = a + bEfX

[X] = l(µ) = g(µ) = g(EfX
[X])

as required. Also, if g(x) is linear, then equality follows by properties of expectations. Suppose that

EfX
[g(X)] = g(EfX

[X]) = g(µ)

but g(x) is convex, but not linear. Let l(x) = a + bx be the tangent to g at µ. Then by convexity

g(x)− l(x) > 0 ∴
∫

(g(x)− l(x))fX(x) dx =
∫

g(x)fX(x) dx−
∫

l(x)fX(x) dx > 0

and hence
EfX

[g(X)] > EfX
[l(X)].

But l(x) is linear, so EfX
[l(X)] = a + bEfX

[X] = g(µ), yielding the contradiction

EfX
[g(X)] > g(EfX

[X]).

and the result follows.

Corollary and examples:

• If g(x) is concave, then
EfX

[g(X)] ≤ g(EfX
[X])

• g(x) = x2 is convex, thus
EfX

[
X2

] ≥ {EfX
[X]}2

• g(x) = log x is concave, thus
EfX

[log X] ≤ log {EfX
[X]}

Lemma Suppose that X is a random variable, with finite expectation µ. Let g be a non-decreasing
function. Then

EfX
[g(X)(X − µ)] ≥ 0

Proof By definition,

EfX
[g(X)(X − µ)] =

∫ ∞

−∞
g(x)(x− µ)fX(x) dx

=
∫ µ

−∞
g(x)(x− µ)fX(x) dx +

∫ ∞

µ
g(x)(x− µ)fX(x) dx.

Now ∫ µ

−∞
g(x)(x− µ)fX(x) dx ≥

∫ µ

−∞
g(µ)(x− µ)fX(x) dx

as, on (−∞, µ), x < µ, so x− µ is negative, and thus as g is non-decreasing, on this range

g(x)(x− µ) ≥ g(µ)(x− µ)
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as the left hand side is less negative than the right hand side. Similarly,
∫ ∞

µ
g(x)(x− µ)fX(x) dx ≥

∫ ∞

µ
g(µ)(x− µ)fX(x) dx

as, on (µ,∞), x > µ, so x− µ is positive, and thus as g is non-decreasing, on this range

g(x)(x− µ) ≥ g(µ)(x− µ)

as the left hand side is more positive than the right hand side. Hence

EfX
[g(X)(X − µ)] ≥

∫ µ

−∞
g(µ)(x− µ)fX(x) dx +

∫ ∞

µ
g(µ)(x− µ)fX(x) dx

= g(µ)
∫ ∞

−∞
(x− µ)fX(x) dx = 0
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