556: Mathematical Statistics I

INEQUALITIES

5.1 Concentration and Tail Probability Inequalities

Lemma (CHEBYCHEV'S LEMMA) If X is a random variable, then for non-negative function h, and $c>0$,

$$
\operatorname{Pr}[h(X) \geq c] \leq \frac{E_{f_{X}}[h(X)]}{c}
$$

Proof (continuous case) : Suppose that X has density function f_{X} which is positive for $x \in \mathbb{X}$. Let $\mathcal{A}=\{x \in \mathbb{X}: h(x) \geq c\} \subseteq X$. Then, as $h(x) \geq c$ on \mathcal{A},

$$
\begin{aligned}
E_{f_{X}}[h(X)]=\int h(x) f_{X}(x) d x & =\int_{\mathcal{A}} h(x) f_{X}(x) d x+\int_{\mathcal{A}^{\prime}} h(x) f_{X}(x) d x \\
& \geq \int_{\mathcal{A}} h(x) f_{X}(x) d x \\
& \geq \int_{\mathcal{A}} c f_{X}(x) d x=c \operatorname{Pr}[X \in \mathcal{A}]=c \operatorname{Pr}[h(X) \geq c]
\end{aligned}
$$

and the result follows.

- SPECIAL CASE I - THE MARKOV INEQUALITY

If $h(x)=|x|^{r}$ for $r>0$, so

$$
P\left[|X|^{r} \geq c\right] \leq \frac{E_{f_{X}}\left[|X|^{r}\right]}{c}
$$

Alternately stated (by Casella and Berger) as follows: If $P[Y \geq 0]=1$ and $P[Y=0]<1$, then for any $r>0$

$$
P[Y \geq r] \leq \frac{E_{f_{X}}[Y]}{r}
$$

with equality if and only if

$$
P[Y=r]=p=1-P[Y=0]
$$

for some $0<p \leq 1$.

- SPECIAL CASE II - THE CHEBYCHEV INEQUALITY

Suppose that X is a random variable with expectation μ and variance σ^{2}. Then $h(x)=(x-\mu)^{2}$ and $c=k^{2} \sigma^{2}$, for $k>0$,

$$
P\left[(X-\mu)^{2} \geq k^{2} \sigma^{2}\right] \leq 1 / k^{2}
$$

or equivalently

$$
P[|X-\mu| \geq k \sigma] \leq 1 / k^{2}
$$

Setting $\epsilon=k \sigma$ gives

$$
P[|X-\mu| \geq \epsilon] \leq \sigma^{2} / \epsilon^{2}
$$

or equivalently

$$
P[|X-\mu|<\epsilon] \geq 1-\sigma^{2} / \epsilon^{2} .
$$

Theorem (CHERNOFF BOUNDS)

Suppose that X_{1}, \ldots, X_{n} are independent binary trials (known as "Poisson trials") such that

$$
P\left[X_{i}=x\right]=\left\{\begin{array}{cc}
1-p_{i} & x=0 \\
p_{i} & x=1
\end{array}\right.
$$

and zero otherwise. Let $X=\left(X_{1}+\cdots+X_{n}\right)$, so that $E_{f_{X}}[X]=\sum_{i=1}^{n} p_{i}=\mu$, say. Then for $d>0$

$$
P[X \geq(1+d) \mu] \leq\left\{\frac{e^{d}}{(1+d)^{(1+d)}}\right\}^{\mu}
$$

If $0 \leq d \leq 1$, a simpler bound is

$$
P[X \geq(1+d) \mu] \leq \exp \left\{-\mu d^{2} / 3\right\}
$$

Proof Let $a>0$. Then, using the Chebychev Lemma with $h(x)=e^{a x}$, and $c=e^{a(1+d) \mu}$, we have

$$
\begin{equation*}
P[X \geq(1+d) \mu]=P[\exp \{a X\} \geq \exp \{a(1+d) \mu\}] \leq \frac{E_{f_{X}}[\exp \{a X\}]}{\exp \{a(1+d) \mu\}} \tag{1}
\end{equation*}
$$

But, by independence,

$$
E_{f_{X}}[\exp \{a X\}]=\prod_{i=1}^{n} E_{f_{X_{i}}}\left[\exp \left\{a X_{i}\right\}\right]=\prod_{i=1}^{n}\left[p_{i} e^{a}+\left(1-p_{i}\right)\right]=\prod_{i=1}^{n}\left[1+p_{i}\left(e^{a}-1\right)\right]
$$

Now for $y \geq 0$,

$$
e^{y}=1+y+\frac{y^{2}}{2}+\cdots \geq 1+y
$$

so setting $y_{i}=p_{i}\left(e^{a}-1\right)$ and using this inequality term by term, we conclude from equation (1) that

$$
E_{f_{X}}[\exp \{a X\}]=\prod_{i=1}^{n}\left[1+p_{i}\left(e^{a}-1\right)\right] \leq \prod_{i=1}^{n} \exp \left\{p_{i}\left(e^{a}-1\right)\right\}=\exp \left\{\sum_{i=1}^{n} p_{i}\left(e^{a}-1\right)\right\}=\exp \left\{\mu\left(e^{a}-1\right)\right\}
$$

Hence

$$
P[X \geq(1+d) \mu] \leq \frac{\exp \left\{\mu\left(e^{a}-1\right)\right\}}{\exp \{a(1+d) \mu\}}
$$

and setting $a=\log (1+d)$ yields

$$
P[X \geq(1+d) \mu] \leq \frac{e^{\mu d}}{(1+d)^{\mu(1+d)}}=\left\{\frac{e^{d}}{(1+d)^{(1+d)}}\right\}^{\mu}
$$

For $0 \leq d \leq 1$, we have that

$$
\left\{\frac{e^{d}}{(1+d)^{(1+d)}}\right\}^{\mu} \leq \exp \left\{-\mu d^{2} / 3\right\} .
$$

To see this, consider taking logs, and the function

$$
g(d)=d-(1+d) \log (1+d)+d^{2} / 3
$$

We need to show that $g(d)$ is bounded above by zero for $0 \leq d \leq 1$. Clearly $g(0)=0$, and taking derivatives twice we have

$$
g^{(1)}(d)=-\log (1+d)+2 d / 3 \quad g^{(2)}(d)=-\frac{1}{(1+d)}+2 / 3 .
$$

Therefore $g^{(1)}(0)=0, g^{(2)}(0)=-1 / 3<0$ and $g^{(1)}(1)=-\log 2+2 / 3<0$, so $g^{(1)}(d)$ stays negative for all $0<d \leq 1$ as there is no solution of $g^{(1)}(d)=0$ in this interval. Thus $g(d)$ must also be negative for all d in this range.

Theorem (A CHERNOFF BOUND USING MGFS)

If X is a random variable, with $\operatorname{mgf} M_{X}(t)$ defined on a neighbourhood $(-h, h)$ of zero. Then

$$
P[X \geq a] \leq e^{-a t} M_{X}(t) \quad \text { for } 0<t<h
$$

Proof Using the Chebychev Lemma with $h(x)=e^{t x}$ and $c=e^{a t}$, for $t>0$,

$$
P[X \geq a]=P[t X \geq a t]=P[\exp \{t X\} \geq \exp \{a t\}] \leq \frac{E_{f_{X}}\left[e^{t X}\right]}{e^{a t}}=\frac{M_{X}(t)}{e^{a t}}
$$

provided $t<h$ also. Using similar methods,

$$
P[X \leq a] \leq e^{-a t} M_{X}(t) \quad \text { for }-h<t<0
$$

Theorem (TAIL BOUNDS FOR THE NORMAL DENSITY)

If $Z \sim N(0,1)$, then for $t>0$

$$
\sqrt{\frac{2}{\pi}} \frac{t}{1+t^{2}} e^{-t^{2} / 2} \leq \operatorname{Pr}[|Z| \geq t] \leq \sqrt{\frac{2}{\pi}} \frac{1}{t} e^{-t^{2} / 2}
$$

Proof By symmetry, $\operatorname{Pr}[|Z| \geq t]=2 \operatorname{Pr}[Z \geq t]$, so

$$
P[Z \geq t]=\left(\frac{1}{2 \pi}\right)^{1 / 2} \int_{t}^{\infty} e^{-x^{2} / 2} d x \leq\left(\frac{1}{2 \pi}\right)^{1 / 2} \int_{t}^{\infty} \frac{x}{t} e^{-x^{2} / 2} d x=\left(\frac{1}{2 \pi}\right)^{1 / 2} \frac{e^{-t^{2} / 2}}{t} .
$$

Similarly, for $t>0$,

$$
\int_{t}^{\infty} e^{-x^{2} / 2} d x \equiv \int_{t}^{\infty} \frac{x}{x} e^{-x^{2} / 2} d x=\left[-\frac{1}{x} e^{-x^{2} / 2}\right]_{t}^{\infty}-\int_{t}^{\infty} \frac{1}{x^{2}} e^{-x^{2} / 2} d x \geq \frac{1}{t} e^{-t^{2} / 2}-\frac{1}{t^{2}} \int_{t}^{\infty} e^{-x^{2} / 2} d x
$$

after writing $1=x / x$, then integrating by parts, and then noting that, on $(t, \infty), x>t \Longleftrightarrow 1 / x^{2}<1 / t^{2}$, and that the integrand is non-negative. Therefore, combining terms

$$
\left(1+\frac{1}{t^{2}}\right) \int_{t}^{\infty} e^{-x^{2} / 2} d x \geq \frac{1}{t} e^{-t^{2} / 2}
$$

and cross-multiplying by the positive term $t^{2} /\left(1+t^{2}\right)$ yields

$$
\int_{t}^{\infty} e^{-x^{2} / 2} d x \geq \frac{t}{1+t^{2}} e^{-t^{2} / 2} \quad \therefore \quad \operatorname{Pr}[|Z|>t] \geq \sqrt{\frac{2}{\pi}} \frac{t}{1+t^{2}} e^{-t^{2} / 2}
$$

To see the quality of the approximation, the table below shows the values of the bounding values for t ranging from 1 to 5 . Clearly the bounds improve as t gets larger.

t	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
Lower	$2.420 \mathrm{e}-01$	$1.196 \mathrm{e}-01$	$4.319 \mathrm{e}-02$	$1.209 \mathrm{e}-02$	$2.659 \mathrm{e}-03$	$4.610 \mathrm{e}-04$	$6.298 \mathrm{e}-05$	$6.770 \mathrm{e}-06$	$5.718 \mathrm{e}-07$
True	$3.173 \mathrm{e}-01$	$1.336 \mathrm{e}-01$	$4.550 \mathrm{e}-02$	$1.242 \mathrm{e}-02$	$2.700 \mathrm{e}-03$	$4.653 \mathrm{e}-04$	$6.334 \mathrm{e}-05$	$6.795 \mathrm{e}-06$	$5.733 \mathrm{e}-07$
Upper	$4.839 \mathrm{e}-01$	$1.727 \mathrm{e}-01$	$5.399 \mathrm{e}-02$	$1.402 \mathrm{e}-02$	$2.955 \mathrm{e}-03$	$4.987 \mathrm{e}-04$	$6.692 \mathrm{e}-05$	$7.104 \mathrm{e}-06$	$5.947 \mathrm{e}-07$

5.2 Expectation Inequalities

Lemma Let $a, b>0$ and $p, q>1$ satisfy

$$
\begin{equation*}
p^{-1}+q^{-1}=1 . \tag{2}
\end{equation*}
$$

Then

$$
p^{-1} a^{p}+q^{-1} b^{q} \geq a b
$$

with equality if and only if $a^{p}=b^{q}$.
Proof Fix $b>0$. Let

$$
g(a ; b)=p^{-1} a^{p}+q^{-1} b^{q}-a b .
$$

We require that $g(a ; b) \geq 0$ for all a. Differentiating wrt a for fixed b yields $g^{(1)}(a ; b)=a^{p-1}-b$, so that $g(a ; b)$ is minimized (the second derivative is strictly positive at all a) when $a^{p-1}=b$, and at this value of a, the function takes the value

$$
p^{-1} a^{p}+q^{-1}\left(a^{p-1}\right)^{q}-a\left(a^{p-1}\right)=p^{-1} a^{p}+q^{-1} a^{p}-a^{p}=0
$$

as, by equation (2), $1 / p+1 / q=1 \Longrightarrow(p-1) q=p$. As the second derivative is strictly positive at all a, the minimum is attained at the unique value of a where $a^{p-1}=b$, where, raising both sides to power q yields $a^{p}=b^{q}$.

Theorem (HÖLDER'S INEQUALITY)

Suppose that X and Y are two random variables, and $p, q>1$ satisfy 2 . Then

$$
\left|E_{f_{X, Y}}[X Y]\right| \leq E_{f_{X, Y}}[|X Y|] \leq\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}\left\{E_{f_{Y}}\left[|Y|^{q}\right]\right\}^{1 / q}
$$

Proof (continuous case) For the first inequality,

$$
E_{f_{X, Y}}[|X Y|]=\iint|x y| f_{X, Y}(x, y) d x d y \geq \iint x y f_{X, Y}(x, y) d x d y=E_{f_{X, Y}}[X Y]
$$

and

$$
E_{f_{X, Y}}[X Y]=\iint x y f_{X, Y}(x, y) d x d y \geq \iint-|x y| f_{X, Y}(x, y) d x d y=-E_{f_{X, Y}}[|X Y|]
$$

so

$$
-E_{f_{X, Y}}[|X Y|] \leq E_{f_{X, Y}}[X Y] \leq E_{f_{X, Y}}[|X Y|] \quad \therefore \quad\left|E_{f_{X, Y}}[X Y]\right| \leq E_{f_{X, Y}}[|X Y|] .
$$

For the second inequality, set

$$
a=\frac{|X|}{\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}} \quad b=\frac{|Y|}{\left\{E_{f_{Y}}\left[|Y|^{q}\right]\right\}^{1 / q}} .
$$

Then from the previous lemma

$$
p^{-1} \frac{|X|^{p}}{E_{f_{X}}\left[|X|^{p}\right]}+q^{-1} \frac{|Y|^{q}}{E_{f_{Y}}\left[|Y|^{q}\right]} \geq \frac{|X Y|}{\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}\left\{E_{f_{Y}}\left[|Y|^{q}\right]\right\}^{1 / q}}
$$

and taking expectations yields, on the left hand side,

$$
p^{-1} \frac{E_{f_{X}}\left[|X|^{p}\right]}{E_{f_{X}}\left[|X|^{p}\right]}+q^{-1} \frac{E_{f_{Y}}\left[|Y|^{q}\right]}{E_{f_{Y}}\left[|Y|^{q}\right]}=p^{-1}+q^{-1}=1
$$

and on the right hand side

$$
\frac{E_{f_{X, Y}}[|X Y|]}{\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}\left\{E_{f_{Y}}\left[|Y|^{q}\right]\right\}^{1 / q}}
$$

and the result follows.

Theorem (CAUCHY-SCHWARZ INEQUALITY)

Suppose that X and Y are two random variables.

$$
\left|E_{f_{X, Y}}[X Y]\right| \leq E_{f_{X, Y}}[|X Y|] \leq\left\{E_{f_{X}}\left[|X|^{2}\right]\right\}^{1 / 2}\left\{E_{f_{Y}}\left[|Y|^{2}\right]\right\}^{1 / 2}
$$

Proof Set $p=q=2$ in the Hölder Inequality.

Corollaries:

(a) Let μ_{X} and μ_{Y} denote the expectations of X and Y respectively. Then, by the Cauchy-Schwarz inequality

$$
\left|E_{f_{X, Y}}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]\right| \leq\left\{E_{f_{X}}\left[\left(X-\mu_{X}\right)^{2}\right]\right\}^{1 / 2}\left\{E_{f_{Y}}\left[\left(Y-\mu_{Y}\right)^{2}\right]\right\}^{1 / 2}
$$

so that

$$
E_{f_{X, Y}}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \leq E_{f_{X}}\left[\left(X-\mu_{X}\right)^{2}\right] E_{f_{Y}}\left[\left(Y-\mu_{Y}\right)^{2}\right]
$$

and hence

$$
\left\{\operatorname{Cov}_{f_{X, Y}}[X, Y]\right\}^{2} \leq \operatorname{Var}_{f_{X}}[X] \operatorname{Var}_{f_{Y}}[Y]
$$

(b) Lyapunov's Inequality: Define $Y=1$ with probability one. Then, for $1<p<\infty$

$$
E_{f_{X}}[|X|] \leq\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}
$$

Let $1<r<p$. Then

$$
E_{f_{X}}\left[|X|^{r}\right] \leq\left\{E_{f_{X}}\left[|X|^{p r}\right]\right\}^{1 / p}
$$

and letting $s=p r>r$ yields

$$
E_{f_{X}}\left[|X|^{r}\right] \leq\left\{E_{f_{X}}\left[|X|^{s}\right]\right\}^{r / s}
$$

so that

$$
\left\{E_{f_{X}}\left[|X|^{r}\right]\right\}^{1 / r} \leq\left\{E_{f_{X}}\left[|X|^{s}\right]\right\}^{1 / s}
$$

for $1<r<s<\infty$.

Theorem (MINKOWSKI'S INEQUALITY)

Suppose that X and Y are two random variables, and $1 \leq p<\infty$. Then

$$
\left\{E_{f_{X, Y}}\left[|X+Y|^{p}\right]\right\}^{1 / p} \leq\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}+\left\{E_{f_{Y}}\left[|Y|^{p}\right]\right\}^{1 / p}
$$

Proof Write

$$
\begin{aligned}
E_{f_{X, Y}}\left[|X+Y|^{p}\right] & =E_{f_{X, Y}}\left[|X+Y \| X+Y|^{p-1}\right] \\
& \leq E_{f_{X, Y}}\left[|X||X+Y|^{p-1}\right]+E_{f_{X, Y}}\left[|Y \| X+Y|^{p-1}\right]
\end{aligned}
$$

by the triangle inequality $|x+y| \leq|x|+|y|$. Using Hölder's Inequality on the terms on the right hand side, for q selected to satisfy $1 / p+1 / q=1$,
$E_{f_{X, Y}}\left[|X+Y|^{p}\right] \leq\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}\left\{E_{f_{X, Y}}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}+\left\{E_{f_{Y}}\left[|Y|^{p}\right]\right\}^{1 / p}\left\{E_{f_{X, Y}}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}$
and dividing through by $\left\{E_{f_{X, Y}}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}$ yields

$$
\frac{E_{f_{X, Y}}\left[|X+Y|^{p}\right]}{\left\{E_{f_{X, Y}}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}} \leq\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}+\left\{E_{f_{Y}}\left[|Y|^{p}\right]\right\}^{1 / p}
$$

and the result follows as $q(p-1)=p$, and $1-1 / q=1 / p$.

5.3 Jensen's Inequality

Jensen's Inequality gives a lower bound on expectations of convex functions. Recall that a function $g(x)$ is convex if, for $0<\lambda<1$,

$$
g(\lambda x+(1-\lambda) y) \leq \lambda g(x)+(1-\lambda) g(y)
$$

for all x and y. Alternatively, function $g(x)$ is convex if

$$
\frac{d^{2}}{d t^{2}}\{g(t)\}_{t=x}=g^{(2)}(x) \geq 0
$$

Conversely, $g(x)$ is concave if $-g(x)$ is convex.
Theorem (JENSEN'S INEQUALITY)
Suppose that X is a random variable with expectation μ, and function g is convex. Then

$$
E_{f_{X}}[g(X)] \geq g\left(E_{f_{X}}[X]\right)
$$

with equality if and only if, for every line $a+b x$ that is a tangent to g at μ

$$
P[g(X)=a+b X]=1 .
$$

that is, $g(x)$ is linear.
Proof Let $l(x)=a+b x$ be the equation of the tangent at $x=\mu$. Then, for each $x, g(x) \geq a+b x$ as in the figure below.

Figure 1: The function $g(x)$ and its tangent at $x=\mu$.

Thus

$$
E_{f_{X}}[g(X)] \geq E_{f_{X}}[a+b X]=a+b E_{f_{X}}[X]=l(\mu)=g(\mu)=g\left(E_{f_{X}}[X]\right)
$$

as required. Also, if $g(x)$ is linear, then equality follows by properties of expectations. Suppose that

$$
E_{f_{X}}[g(X)]=g\left(E_{f_{X}}[X]\right)=g(\mu)
$$

but $g(x)$ is convex, but not linear. Let $l(x)=a+b x$ be the tangent to g at μ. Then by convexity

$$
g(x)-l(x)>0 \quad \therefore \quad \int(g(x)-l(x)) f_{X}(x) d x=\int g(x) f_{X}(x) d x-\int l(x) f_{X}(x) d x>0
$$

and hence

$$
E_{f_{X}}[g(X)]>E_{f_{X}}[l(X)] .
$$

But $l(x)$ is linear, so $E_{f_{X}}[l(X)]=a+b E_{f_{X}}[X]=g(\mu)$, yielding the contradiction

$$
E_{f_{X}}[g(X)]>g\left(E_{f_{X}}[X]\right) .
$$

and the result follows.

Corollary and examples:

- If $g(x)$ is concave, then

$$
E_{f_{X}}[g(X)] \leq g\left(E_{f_{X}}[X]\right)
$$

- $g(x)=x^{2}$ is convex, thus

$$
E_{f_{X}}\left[X^{2}\right] \geq\left\{E_{f_{X}}[X]\right\}^{2}
$$

- $g(x)=\log x$ is concave, thus

$$
E_{f_{X}}[\log X] \leq \log \left\{E_{f_{X}}[X]\right\}
$$

Lemma Suppose that X is a random variable, with finite expectation μ. Let g be a non-decreasing function. Then

$$
E_{f_{X}}[g(X)(X-\mu)] \geq 0
$$

Proof By definition,

$$
\begin{aligned}
E_{f_{X}}[g(X)(X-\mu)] & =\int_{-\infty}^{\infty} g(x)(x-\mu) f_{X}(x) d x \\
& =\int_{-\infty}^{\mu} g(x)(x-\mu) f_{X}(x) d x+\int_{\mu}^{\infty} g(x)(x-\mu) f_{X}(x) d x
\end{aligned}
$$

Now

$$
\int_{-\infty}^{\mu} g(x)(x-\mu) f_{X}(x) d x \geq \int_{-\infty}^{\mu} g(\mu)(x-\mu) f_{X}(x) d x
$$

as, on $(-\infty, \mu), x<\mu$, so $x-\mu$ is negative, and thus as g is non-decreasing, on this range

$$
g(x)(x-\mu) \geq g(\mu)(x-\mu)
$$

as the left hand side is less negative than the right hand side. Similarly,

$$
\int_{\mu}^{\infty} g(x)(x-\mu) f_{X}(x) d x \geq \int_{\mu}^{\infty} g(\mu)(x-\mu) f_{X}(x) d x
$$

as, on $(\mu, \infty), x>\mu$, so $x-\mu$ is positive, and thus as g is non-decreasing, on this range

$$
g(x)(x-\mu) \geq g(\mu)(x-\mu)
$$

as the left hand side is more positive than the right hand side. Hence

$$
\begin{aligned}
E_{f_{X}}[g(X)(X-\mu)] & \geq \int_{-\infty}^{\mu} g(\mu)(x-\mu) f_{X}(x) d x+\int_{\mu}^{\infty} g(\mu)(x-\mu) f_{X}(x) d x \\
& =g(\mu) \int_{-\infty}^{\infty}(x-\mu) f_{X}(x) d x=0
\end{aligned}
$$

