556: MATHEMATICAL STATISTICS 1

FAMILIES OF DISTRIBUTIONS

4.1 Location-Scale Families

Definition: Location Scale Family
A location-scale family is a family of distributions formed by translation and rescaling of a standard
family member.

Suppose that f(z) is a pdf. Then if y and o > 0 are constants then

Flalno) = ~ (e - w)/o)

is also a pdf; f(z|u,0) > 0, and

o0 oo 1 o0
| talmeyas= [ ft@ oy = [ sy =1
setting y = (z — pt) /o) in the penultimate integral.

e f(z|u, o) is termed a location-scale family
e if o = 1 we have a location family: f(z|u) = f(x — p)

e if 4 = 0 we have a scale family: f(z|o) = f(z/0)/c

Example : Normal distribution family

- (@)l 2
f(@lp,o) = <27r102>1/2 exp {—2; (x — M)Q}

Example : Exponential distribution family

flx) = e* x>0

falpo) = Ze@ e 5y
g

flalp) = et T >

Note that X is a random variable with pdf fx(z) = f(x|u, o) (the location-scale family member) if and
only if there exists another random variable Z with f(z) = f(z) (the standard member) such that

X=0Z+p

that is, if X is a linear (location-scale) transformation of a standard random variable Z.



4.2 Exponential Families

Definition: Exponential Family
A family of pdfs/pmfs is called an exponential family if it can be expressed

k
f(]8) = h(z)c(@) exp {Z w; (Q)tj(ﬂﬁ)} = h(z)c(@) exp {w(Q)TE(fE)}
j=1

for all x € R, where § € O is a d-dimensional parameter vector, and

e h(x) > 0is a function that does not depend on §

e ¢(f) > 0is a function that does not depend on x

e t(z) = (t1(z),...,tx(z))T is a vector of real-valued functions that do not depend on §

e w(z) = (wi(f),..., wp(d))T is a vector of real-valued functions that do not depend on z

An exponential family distribution is termed natural if £ = 1 and ¢, (z) = «.

Example : Binomial(n,f) for 0 < 6 <1
Forz € {0,1,...,n} =X,

F(al0) = (Z) 6o(1— 0)"—" = <Z> (1—0)" (&) _ (Z) (1 0)"exp {log <1f9> y;}

e k=1
o h(z) = Ix(x) (”

), where () is the indicator function for set A
x

wo =1 14

. ()= (1-0)"
o ti(x)==x

o wi(f) =log (&)

Example : Normal(u, 0?)
Forx € R,

o hz)=1
1 1/2 ,U2
o () =c(u,0%) = Py =53
$2 <27ro*2> { 202}
o ti(x) = 5 to(z) =x
o wi(8) = g, wa() = Ly



Note that the support of an exponential family distribution f(z|f) cannot depend on §.

Example :
Suppose, for § > 0,

f(:c|0):%exp{1—§} x>0

and zero otherwise. Then

e k=1,0=20

e h(z) = elp,)(T)
e(0) = 1/0

ti(x) ==

wi(f) =1/0

but the support of f(x|f) depends on @ so this is not an exponential family distribution.

4.2.1 Parameterization
We can reparameterize an exponential family distribution from 6 to n = (71, ... ,nk)T by setting n; =

w;(0) for each j, and write

k
f(aln) = h(z)e™ (n) exp {Z njtj(a?)} = h(z)c*(n) exp {QTE(OC)} :
j=1
n is termed the natural or canonical parameter
Let H be the region of R* defined by

H= {g : /_Z h(z) exp {ng(x)} dx < oo}

Then, for n € H, we must have

) = | [~ worexw {ne)} al h

Note that

is a subset of H.

Example : Binomial(n,0)
Natural parameter:

=1 L “— 0= el
=108 1-06 C 1+4en

- {(Yor ) 2

so that



Natural parameter space: here (interpreting the integral as a Lebesgue integral)

[ v =5 ()t <

z=0

for all finite values of n, so H = R.

Example : Normal(u, 0?)
Natural parameters:

n=(m,m)" = (1/0* n/o?)T

_ (M _ma?

fatn) = (22) " exp { - 2 hexp { - 4 o

Natural parameter space: this density will be integrable with respect to x if and only if 1 > 0, so
H=R" xR

so that

Definition: Curved Exponential Family
An exponential family indexed by parameter 6 is termed curved if

dim(0) = d < k

4.2.2 Expectation and Variance for Exponential Families

Definition: Score Function
For pmf/pdf fx with d-dimensional parameter §, the score function, S(z;§), is a d x 1 vector with jth

element equal to

0
i(x;0) = —1 .
The quantity S(X;6) is a d-dimensional random variable.
Lemma Under certain regularity conditions

Ep [S(X;0)] =0

Proof In the case d = 1; let
. d
fx(x]0) = @f}((ﬂﬁ)
Then

B[00 = [ Swopxtelyar = [{Gonsx(el)} fx(elo) da

fx(x0)
/{h@m}mwmw
d
= @fX(JUL@ dzx

- Gl et o

provided that the order of the differentiation wrt 6 and the integration wrt z can be exchanged.
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Definition: Fisher Information
For pmf/pdf fx with d-dimensional parameter ¢, the Fisher Information, Z(9), is a d x d matrix
defined as the variance-covariance matrix of the score random variable S, that is

1(0) = Varg [S(X:0)] = Er[S(X:0)S(X;0)"]
with (4, j)th element equal to
Er[Si(X;0)8;(X;0)]

The Fisher Information is a constant d x d matrix in which each of the elements is a function of §.

Lemma Under certain regularity conditions, if the pmf/pdf is twice partially differentiable with re-

spect to the elements of 6, then
Z(9) = —Eypx [P (X;0)]

where ¥(X;0) is the d x d matrix of second partial derivatives with (i, j)th element equal to
2

Proof In the case d = 1; from above

/ {jg log fx (x ’Q)} fx(x|0) dz =0

so therefore, differentiating again wrt 0

/ [{592 log fx(x|0) fx(x 9)} + {jelogfx(x@ cj@fx($’9)}] de =0 (1)
But .
AMNEIE gg:zg f(al6) = L 1x(al6) = fx(a10) -5 log fx («]0)

so therefore

2
/ jg log fX(:UW fx(x]0) dx = / {ddH log fx (x|@) } fx(x)0) dx

and so substituting into equation (1) above, we have

/{jaz log fx(x|0) fx(a:\e)} dx = —/{C;lelogfx(x|g)}2fx(x|0) da

of equivalently

2

EfX |:(Zg2 log fx(az\ﬁ)] = _Efx = EfX [S(X,6)2]

[ L ox et}

so that, as Er, [S(X;0)] =0,

2
Bry [ gz 08 x| = ~Vary, [SX:0).

Note that if a = (a1, ...,aq)', then

Varp,[a"S(X;0)] = aZ(0)a"



Example : Binomial(n,0)

F(z]0) = <Z>9IO——0W‘I ze{0,1,...,n}

so that p 0
r n—zr xT—n
Hence ¥ 8 B, (X] 9
—-n fx —n
E X;0)=F = =
Fx [S(X;0)] Ix [9(1_9)] 6(1 —0) 0
as X ~ Binomial(n,0) yields E¢, [X] = nf. For the second derivative
d? x n—x
g2 108 fx(x|f) = — o5 — =0y
so that 2 B, [X] X
S il _ ix n— 5fx
2(9) = Efx |:d92 long(xw)] 92 + (1 — 9)2
and as Ef, [X]| = nf, we have
1(0):@+n—n0: 1

02" (1-6)2 0(1—9)

Example : Poisson(\)

67)‘ T

=2 aeqor)

so that

d T
S(w; \) = 5 log fx(alA) = T ~ 1
Hence x B (X]
Ep [S(X50)] = By {A—l} = fxf—l =0

as X ~ Poisson()) yields E¢, [X] = A. For the second derivative
2

d
iy | - _

X
A2
so that

2
I(A) = —Ejy [jv log fX(ﬂ?M)] - EfigX]

and as Ey, [X] = A\, we have

I(\) = %



Results for the Exponential Family

If
fx(z|0) = h(x)c(8) exp {Zw] }

then, forl=1,...,d,

o a Call) .
5i(0:0) = - Tog Fx(z1) = o7 log el0) + Z (8 0 LS @)t5(0)
00, —c(9) =
where 9c(6) O (9)
) ~ dc(@ . _ Ow;(l
Cl(Q) - 891 w]l(Q) 891
But, for each I, E¢, [S;(X;0)] = 0, so therefore, for [ =1,...,d,
E zk: b (0)t(X)| = _alw 0 6)
Ix = w5I\Z); - C(Q) - ael gclg).

By a similar calculation

Z w]ll

k
. 0?
Varg, [Z wji(9)t; (X )] = g losc(@) — By,

where 52 )
. w —~.
win(Q) = nglg
Example : Binomial(n,0)
Feto) = (") (1 = 0y exp f1og (L
z|0) = . exp ¢ log { 1— 7 x
so that
0 n x
wy(6) = log<1_9> log ¢(0) = nlog(1l — 6) S(x,@)——1_9+0(1_9>.
From the result above 5
Eyy [11(0)t1(X)] = — - log c(@)
00,
that is
1 n



Note that in the natural (canonical) parameterization

log fx(|n) = log h(x) + log ¢*(n —|—an
so that, using the arguments above for [ = 1,...,d,

E¢ (X)) = log ¢* (77) Varg, [ti(X)] = —=— log c*(n)

377[

4.2.3 Independent random variables from the Exponential Family

Suppose that X1, ..., X,, are independent and identically distributed random variables, with pmf/pdf
fx(z]@) in the Exponential Family. Then the joint pmf/pdf for X = (X1,..., X,,)" takes the form

n n k
Fx(@l0) =[] fx(il0) = [ [ (@i)e(®) exp {ng LA } = H(2)C(9) exp {ij(ﬁ)ﬁ(z)}
i=1 i=1 j=1

where

H(z) = [ ) C(9) = {c(@)}" Tj(z) =) tj(wi).
; i=1

4.2.4 Alternative construction of the Exponential Family

Suppose that f(z) is a pmf/pdf with corresponding mgf M (t) (presumed to exist in a neighbourhood
of zero), so that

M(t) = [ ¢ @) de = exp(K (1))
and K (t) = log M (t) is the cumulant generating function. Now suppose that f(z) = exp{g(z)}. Then

exp{K(t)} = M(t) = /etxf(x) dr = /emeg(“) dr = /emﬂ(x) dzx.
Hence, dividing through by exp{ K(t)}, we have that

/6tas+g(a:)—K(t) dr — 1

and also that the integrand is non-negative. Thus, for all ¢ for which M (¢) exists,
f(zlt) = exp{te + g(x) — K(1)} = f(z) exp{te — K(t)}
is a valid pdf. If we sett =1, h(z) = f(x) = exp{g(x)} and ¢*(n) = exp{—K(¢)}, then
f(xln) = h(z)e*(n) exp{nz}

and we see that f(z|n) is an exponential family member with natural parameter . The pmf/pdf f(x|t)
is termed the exponential tilting of f(x), with expectation

gt (1) = — S (K (1)} = K(1)

and variance
d2

2 ..
- log ¢*(t) = —%{—K(t)} = K(t).



4.2.5 The Exponential Dispersion Model

Consider the model

logc 1 & T
F(al6, 6) = exp 4 d(z.6) + 72 0ti(a) p = Ha)e(@) exp { w10

where 7(¢) > 0 is a function of dispersion parameter ¢ > 0.

In this model, using the previous results, we see that the expectation is unchanged compared to the
Exponential Family model by the presence of the term r(¢), but the variance is modified by a factor of

().

Example : Binomial(n, )

7e(el6) = () on.n @) exp {ntontt - 0) +10g (125 ) o

LetY = X/n, so that

Fr(ylo. ¢) = @ji) L10,6,26,..13(y/ ) exp {qlg {log(l —0)+ylog (i&)] }

where ¢ = 1/n. Note that
Ep Y] =6=p

say, and
Vary, [Y] = ¢0(1 — 0) = ¢V (u)
where V(u) = (1 — p) is the variance function.

Thus the exponential dispersion model allows separate modelling of mean and variance.

4.3 Convolution Families

The convolution of functions g and h is a function written g o h, which is defined by

gohly)= [ gy - ) d

Now if X; and X, are independent random variables with marginal pdfs fx, and fx, respectively,
then the random variable Y = X; + X5 has a pdf that can be determined using the multivariate
transformation result. If we use dummy variable Z = X1, then

Z = X3 X1 = 7
—
Y = Xi+Xo Xo = Y-—Z
which is a transformation with Jacobian 1. Thus

D= [ farewi= [ faxGo-ad= [ @iy -0 d

so we can see that the pdf of Y is computed as the convolution of fx, and fx,.

A family of distributions, F, is closed under convolution if

fi,foeF = fiofoeF



For independent random variables X; and X, with pdfs f; and f; in a family F, closure under convo-
lution implies that the random variable Y = X; + X5 also has a pdf in F.

This concept is closely related to the idea of infinite divisibility, decomposibility, and self-decomposibility.
e Infinite Divisibility : A probability distribution for rv X is infinitely divisible if, for all positive

integers n, there exists a sequence of independent and identically distributed rvs 7,1, ..., Z,,

such that X and .
Tn =3 Znj
j=1

have the same distribution, that is, the characteristic function of X can be written
Cx(t) ={Cz(t)}"

for some characteristic function C.
e Decomposability : A probability distribution for rv X is decomposable if

Cx(t) = Cx, (1)Cx,(t)
for two characteristic functions C'y, and Cx, so that
X =X;1+ X5

where X; and X, are independent rvs with characteristic functions Cx, and Cyx,.
e Self-Decomposability : A probability distribution for rv X is self-decomposable if

Cx(t) = {Cx, (1)}
for characteristic function C'y, so that
X=X+ X

where X; and X are independent identically distributed rvs with characteristic function CY; .

4.4 Hierarchical Models

A hierarchical model is a model constructed by considering a series of distributions at different levels
of a “hierarchy” that together, after marginalization, combine to yield the distribution of the observable
quantities.

Example : A three-level model
Consider the three-level hierarchical model:

LEVEL 3 : A>0 Fixed parameter
LEVEL 2 : N ~ Poisson(\)
LEVEL 1: X|N =n,0 ~ Binomial(n,§)

Then the marginal pmf for X is given by

Fx(@]0,0) =" fxpn(xin, 6,0) fy(n|X).
n=0

By elementary calculation, we see that X ~ Poisson(\0)

()\e)xe—,\e

‘ z=0,1,....
x!

fX<x‘97)‘) -
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Example : A three-level model
Consider the three-level hierarchical model:

LEVEL 3 : a,3>0 Fixed parameters
LEVEL 2 : Y ~ Gamma(a, 3)
LEVEL1: X|Y =y ~ Poisson(y)

Then the marginal pdf for X is given by
fxtala,g) = [ frv (el (vla. 5) dy.

A general K-level hierarchical model can be specified in terms of K vector random variables:

LEVELK : X, = (Xi1,- s Xicng)"

LEVEL2 : X, = (Xo1,..., Xon,)"
LEVEL1 : X, = (Xu1,.... X1n,)"

The hierarchical model specifies the joint distribution via a series of conditional independence as-
sumptions, so that

K-1
f)~(17"")~(1<<£1’ s 7;@[() = f—XK(Ek) H f?gk|2§k+1(£k’£k+1)
k=1

where

ng
f)é,c\)jkﬂ@k@kﬂ) = H Fe(zrjla )
j=1

that is, at level k in the hierarchy, the random variables are taken to be conditionally independent
given the values of variables at level £ + 1.

The uppermost level, Level K, can be taken to be a degenerate model, with mass function equal to 1 at
a set of fixed values.

Example : A three-level model
Consider the three-level hierarchical model:

LEVEL 3 : 0,72 >0  Fixed parameters
LEVEL 2 : My, ...,Myp ~ Normal(f,1?) Independent
LEVEL 1 : Forl=1,...,L:
X, Xiny |Mp = my ~ Normal(my, 1)
where all the X;; are conditionally independent given Mj, ..., M,

For random variables X,Y and Z, we write X | Y | Z if X and Y are conditionally independent given
Z, so that in the above model
Xlljl J_ Xl2j2 | Ml’ “e e 7]\4"[/

for all Iy, ji, 2, jo.

11



Special Cases of Hierarchical Models

1. Finite Mixture Models

L
LEVEL 3 : L > 1 (integer), 7y, ..., m with0 <m <1land Zm =1,and#y,...,01
=1

LEVEL2: X ~ fx(z|z,L)withX ={1,2,...,L}such thatPr[X =] =m
LEVEL1: Y|X =1~ fi(y|6))

where f; is some pmf or pdf with parameters ¢;. Then

fr(ylx, 8, L) = me ylz) fx(z Zﬁ ylo)m

This is a finite mixture distribution: the observed Y are drawn from L distinct sub-populations
characterized by pmf/pdf fi, ..., fr and parameters 01, ..., 0, with sub-population proportions
T,...,TL.

Note that if My, ..., M|, are the mgfs corresponding to fi, ..., fr, then

L
= mM(t)
=1

2. Random Sums
LEVEL3: §,¢ (fixed parameters)
LEVEL2: X ~ fx(z|¢)withX = {0,1,2,...}

LEVEL1: Yi,...,Y,|X =2 ~ fy(y|@) (independent), and S = ZYZ
i=1
Then, by the law of iterated expectation,

Ms(t) = By, [e] = By [Bpg 51X = o]

ofgrp-]

= Ep [{My(t)}Y]
= Gx(My(t))

= Eyy, Efy\x

where G'x is the factorial mgf (or pgf) for X. By a similar calculation,
Gs(t) = Gx(Gy(1)).

For example, if X ~ Poisson(¢), then

Gs(t) = exp{o(Gy(t) — 1)}
is the pgf of S. Expanding the pgf as a power series in ¢ yields the pmf of S.

12



Example : Branching Process

Consider a sequence of generations of an organism; let .S; be the total number of individuals in
the ith generation, for i = 0,1, 2, .... Suppose that fx is a pmf with support X = {0,1,2,...}.

e Generation 0: Sy ~ fx(z|p)
e Generation 1: Given Sy = s, let
511, ce ,5130|So = S0 such that Slj ~ fx(ZL"(ﬁ), with Slj1 1 Sljz for all jl,jg
and set .
0
Si=> S
j=1
is the total number of individuals in the 1st generation. S;; is the number of offspring of the
jth individual in the zeroth generation.
e Generationi: Given S;_1 = s;_1, let

Sity -3 Sis;_1|Si—1 = si—1 suchthat S;; ~ fx(z|¢) (independent)

and set
Si—1

Si=>_ Sy
j=1
Let G; be the pgf of S;. Then, by recursion, we have
Gi(t) = Gi—1(Gx (1)) = Gi—2(Gx (Gx (1)) = -+ = Gx(Gx (- - Gx(Gx () --+))

that is, an 7 + 1-fold iterated calculation.

. Location-Scale Mixtures

LEVEL3: 4 Fixed parameters
LEVEL2: M,V ~ fay(m,v|8)
LEVEL1: Y|M =m,V =v~ fyarv(ylm,v)

where

Friny(slm,o) = f (y - m)

v

that is a location-scale family distribution, mixed over different location and scale parameters
with mixing distribution fyy .

Example : Scale Mixtures of Normal Distributions
LEVEL 3 : [}

LEVEL2: V ~ fy(v|@)
LEVEL1: Y|V =v~ fyjy(ylv) = Normal(0, g(v))

for some positive function g.
For example, if
11
Y|V =v ~ Normal(0,v™1) V ~ Gamma (2,2>

13



then by elementary calculations, we find that

1 1
fy(y) = 11 yeR Y ~ Cauchy.

The scale mixture of normal distributions family includes the Student, Double Exponential and
Logistic as special cases.

Moments of location-scale mixtures can be computed using the law of iterated expectation. The
location-scale mixture construction allows the modelling of

e skewness through the mixture over different locations
e kurtosis through the mixture over different scales

Example : Location-Scale Mixtures of Normal Distributions
Suppose M and V are independent, with
M ~ Exponential(1/2) V ~ Gamma(2,1/2)

and
Y|M =m,V =v~ Normal(m,1/v)

Then the marginal distribution of Y is given by

fr(y) = /OOO /OOO Sy (ylm, ) far(m) fy (v) dm dv

which can most readily be examined by simulation. The figure below depicts a histogram of
10000 values simulated from the model, and demonstrates the skewness of the marginal of Y.

1500
1

1000
J

Frequency
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