556: Mathematical Statistics I

Families of Distributions

4.1 Location-Scale Families

Definition: Location Scale Family

A location-scale family is a family of distributions formed by translation and rescaling of a standard family member.
Suppose that $f(x)$ is a pdf. Then if μ and $\sigma>0$ are constants then

$$
f(x \mid \mu, \sigma)=\frac{1}{\sigma} f((x-\mu) / \sigma)
$$

is also a pdf; $f(x \mid \mu, \sigma) \geq 0$, and

$$
\int_{-\infty}^{\infty} f(x \mid \mu, \sigma) d x=\int_{-\infty}^{\infty} \frac{1}{\sigma} f((x-\mu) / \sigma) d x=\int_{-\infty}^{\infty} f(y) d y=1
$$

setting $y=(x-\mu) / \sigma)$ in the penultimate integral.

- $f(x \mid \mu, \sigma)$ is termed a location-scale family
- if $\sigma=1$ we have a location family: $f(x \mid \mu)=f(x-\mu)$
- if $\mu=0$ we have a scale family: $f(x \mid \sigma)=f(x / \sigma) / \sigma$

Example : Normal distribution family

$$
\begin{aligned}
f(x) & =\left(\frac{1}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{1}{2} x^{2}\right\} \\
f(x \mid \mu, \sigma) & =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 2} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}
\end{aligned}
$$

Example : Exponential distribution family

$$
\begin{aligned}
f(x) & =e^{-x} & & x>0 \\
f(x \mid \mu, \sigma) & =\frac{1}{\sigma} e^{-(x-\mu) / \sigma} & & x>\mu \\
f(x \mid \mu) & =e^{-(x-\mu)} & & x>\mu
\end{aligned}
$$

Note that X is a random variable with pdf $f_{X}(x)=f(x \mid \mu, \sigma)$ (the location-scale family member) if and only if there exists another random variable Z with $f_{Z}(z)=f(z)$ (the standard member) such that

$$
X=\sigma Z+\mu
$$

that is, if X is a linear (location-scale) transformation of a standard random variable Z.

4.2 Exponential Families

Definition: Exponential Family

A family of pdfs/pmfs is called an exponential family if it can be expressed

$$
f(x \mid \underset{\sim}{\mid})=h(x) c(\underset{\sim}{\theta}) \exp \left\{\sum_{j=1}^{k} w_{j}(\underset{\sim}{\theta}) t_{j}(x)\right\}=h(x) c(\underset{\sim}{\theta}) \exp \left\{\underset{\sim}{w}(\underset{\sim}{(})^{\top} \underset{\sim}{t}(x)\right\}
$$

for all $x \in \mathbb{R}$, where $\underset{\sim}{\theta} \in \Theta$ is a d-dimensional parameter vector, and

- $h(x) \geq 0$ is a function that does not depend on $\underset{\sim}{\theta}$
- $c(\theta) \geq 0$ is a function that does not depend on x
- $\underset{\sim}{t}(x)=\left(t_{1}(x), \ldots, t_{k}(x)\right)^{\top}$ is a vector of real-valued functions that do not depend on $\underset{\sim}{\theta}$
- $\underset{\sim}{w}(x)=\left(w_{1}(\underset{\sim}{\theta}), \ldots, w_{k}(\underset{\sim}{\theta})\right)^{\top}$ is a vector of real-valued functions that do not depend on x

An exponential family distribution is termed natural if $k=1$ and $t_{1}(x)=x$.
Example: $\operatorname{Binomial}(n, \theta)$ for $0<\theta<1$
For $x \in\{0,1, \ldots, n\} \equiv \mathbb{X}$,

$$
f(x \mid \theta)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x}=\binom{n}{x}(1-\theta)^{n}\left(\frac{\theta}{1-\theta}\right)^{x}=\binom{n}{x}(1-\theta)^{n} \exp \left\{\log \left(\frac{\theta}{1-\theta}\right) x\right\}
$$

- $k=1$
- $h(x)=I_{\mathbb{X}}(x)\binom{n}{x}$, where $I_{A}(x)$ is the indicator function for set A

$$
I_{A}(x)= \begin{cases}1 & x \in A \\ 0 & x \notin A\end{cases}
$$

- $c(\underset{\sim}{\theta})=(1-\theta)^{n}$
- $t_{1}(x)=x$
- $w_{1}(\underset{\sim}{\theta})=\log \left(\frac{\theta}{1-\theta}\right)$

Example : $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$
For $x \in \mathbb{R}$,

$$
f\left(x \mid \mu, \sigma^{2}\right)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 2} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 2} \exp \left\{-\frac{\mu^{2}}{2 \sigma^{2}}\right\} \exp \left\{-\frac{x^{2}}{2 \sigma^{2}}+\frac{\mu x}{\sigma^{2}}\right\}
$$

- $k=2, \underset{\sim}{\theta}=\left(\mu, \sigma^{2}\right)^{\top}$
- $h(x)=1$
- $c(\underset{\sim}{\theta})=c\left(\mu, \sigma^{2}\right)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 2} \exp \left\{-\frac{\mu^{2}}{2 \sigma^{2}}\right\}$
- $t_{1}(x)=-\frac{x^{2}}{2}, t_{2}(x)=x$
- $w_{1}(\underset{\sim}{\theta})=\frac{1}{\sigma^{2}}, w_{2}(\underset{\sim}{\theta})=\frac{\mu}{\sigma^{2}}$

Note that the support of an exponential family distribution $f(x \mid \underset{\sim}{\theta})$ cannot depend on $\underset{\sim}{\theta}$.

Example :

Suppose, for $\theta>0$,

$$
f(x \mid \theta)=\frac{1}{\theta} \exp \left\{1-\frac{x}{\theta}\right\} \quad x>\theta
$$

and zero otherwise. Then

- $k=1, \underset{\sim}{\theta}=\theta$
- $h(x)=e I_{[\theta, \infty)}(x)$
- $c(\underset{\sim}{\theta})=1 / \theta$
- $t_{1}(x)=x$
- $w_{1}(\underset{\sim}{\theta})=1 / \theta$
but the support of $f(x \mid \theta)$ depends on θ so this is not an exponential family distribution.

4.2.1 Parameterization

We can reparameterize an exponential family distribution from $\underset{\sim}{\theta}$ to $\underset{\sim}{\eta}=\left(\eta_{1}, \ldots, \eta_{k}\right)^{\top}$ by setting $\eta_{j}=$ $w_{j}(\underset{\sim}{\theta})$ for each j, and write

$$
f(x \mid \underset{\sim}{\eta})=h(x) c^{\star}(\underset{\sim}{\eta}) \exp \left\{\sum_{j=1}^{k} \eta_{j} t_{j}(x)\right\}=h(x) c^{\star}(\underset{\sim}{\eta}) \exp \left\{{\underset{\sim}{\eta}}^{\top} \underset{\sim}{t}(x)\right\} .
$$

η is termed the natural or canonical parameter
Let \mathcal{H} be the region of \mathbb{R}^{k} defined by

$$
\mathcal{H} \equiv\left\{\underset{\sim}{\eta}: \int_{-\infty}^{\infty} h(x) \exp \left\{{\underset{\sim}{\eta}}^{\top} \underset{\sim}{t}(x)\right\} d x<\infty\right\}
$$

Then, for $\underset{\sim}{\eta} \in \mathcal{H}$, we must have

$$
c^{\star}(\underset{\sim}{\eta})=\left[\int_{-\infty}^{\infty} h(x) \exp \left\{{\underset{\sim}{\eta}}_{\sim}^{\top} \underset{\sim}{t}(x)\right\} d x\right]^{-1}
$$

Note that

$$
\left\{\underset{\sim}{w}(\underset{\sim}{\theta})=\left(w_{1}(\underset{\sim}{\theta}), \ldots, w_{k}(\underset{\sim}{\theta})\right)^{\top}: \theta \in \Theta\right\}
$$

is a subset of \mathcal{H}.
Example : $\operatorname{Binomial}(n, \theta)$
Natural parameter:

$$
\eta=\log \left(\frac{\theta}{1-\theta}\right) \quad \Longleftrightarrow \quad \theta=\frac{e^{\eta}}{1+e^{\eta}}
$$

so that

$$
f(x \mid \eta)=\left\{\binom{n}{x} I_{\{0,1, \ldots, n\}}(x)\right\} \frac{e^{\eta x}}{\left(1+e^{\eta}\right)^{n}}
$$

Natural parameter space: here (interpreting the integral as a Lebesgue integral)

$$
\int_{-\infty}^{\infty} h(x) \exp \left\{{\underset{\sim}{\eta}}_{\sim}^{\tau}(x)\right\} d x=\sum_{x=0}^{n}\binom{n}{x} \exp \{\eta x\}<\infty
$$

for all finite values of η, so $\mathcal{H} \equiv \mathbb{R}$.
Example : $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$
Natural parameters:

$$
\underset{\sim}{\eta}=\left(\eta_{1}, \eta_{2}\right)^{\top}=\left(1 / \sigma^{2}, \mu / \sigma^{2}\right)^{\top}
$$

so that

$$
f(x \mid \underset{\sim}{\eta})=\left(\frac{\eta_{1}}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{\eta_{2}^{2}}{2 \eta_{1}}\right\} \exp \left\{-\frac{\eta_{1} x^{2}}{2}+\eta_{2} x\right\}
$$

Natural parameter space: this density will be integrable with respect to x if and only if $\eta_{1}>0$, so $\mathcal{H} \equiv \mathbb{R}^{+} \times \mathbb{R}$.

Definition: Curved Exponential Family

An exponential family indexed by parameter θ is termed curved if

$$
\operatorname{dim}(\underset{\sim}{\theta})=d<k
$$

4.2.2 Expectation and Variance for Exponential Families

Definition: Score Function

For pmf/pdf f_{X} with d-dimensional parameter $\underset{\sim}{\theta}$, the score function, $\underset{\sim}{S}(x ; \underset{\sim}{\theta})$, is a $d \times 1$ vector with j th element equal to

$$
S_{j}(x ; \underset{\sim}{\theta})=\frac{\partial}{\partial \theta_{j}} \log f_{X}(x \mid \underset{\sim}{\theta}) .
$$

The quantity $\underset{\sim}{S}(X ; \underset{\sim}{\theta})$ is a d-dimensional random variable.
Lemma Under certain regularity conditions

$$
E_{f_{X}}[\underset{\sim}{S}(X ; \underset{\sim}{\theta})]=\underset{\sim}{0}
$$

Proof In the case $d=1$; let

$$
\dot{f}_{X}(x \mid \theta)=\frac{d}{d \theta} f_{X}(x \mid \theta)
$$

Then

$$
\begin{aligned}
E_{f_{X}}[S(X ; \theta)]=\int S(x ; \theta) f_{X}(x \mid \theta) d x & =\int\left\{\frac{d}{d \theta} \log f_{X}(x \mid \theta)\right\} f_{X}(x \mid \theta) d x \\
& =\int\left\{\frac{\dot{f}_{X}(x \mid \theta)}{f_{X}(x \mid \theta)}\right\} f_{X}(x \mid \theta) d x \\
& =\int \frac{d}{d \theta} f_{X}(x \mid \underset{\sim}{\theta}) d x \\
& =\frac{d}{d \theta}\left\{\int f_{X}(x \mid \underset{\sim}{x}) d x\right\}=0
\end{aligned}
$$

provided that the order of the differentiation wrt θ and the integration wrt x can be exchanged.

Definition: Fisher Information

For pmf/pdf f_{X} with d-dimensional parameter $\underset{\sim}{\theta}$, the Fisher Information, $\mathcal{I}(\underset{\sim}{\theta})$, is a $d \times d$ matrix defined as the variance-covariance matrix of the score random variable $\underset{\sim}{S}$, that is

$$
\mathcal{I}(\underset{\sim}{\theta})=\operatorname{Var}_{f_{X}}[\underset{\sim}{S}(X ; \underset{\sim}{\theta})]=E_{f_{X}}\left[\underset{\sim}{S}(X ; \underset{\sim}{\theta}) \underset{\sim}{S}(X ; \underset{\sim}{\theta})^{\mathrm{T}}\right]
$$

with (i, j) th element equal to

$$
E_{f_{X}}\left[S_{i}(X ; \theta) S_{j}(X ; \theta)\right]
$$

The Fisher Information is a constant $d \times d$ matrix in which each of the elements is a function of θ.
Lemma Under certain regularity conditions, if the pmf/pdf is twice partially differentiable with respect to the elements of θ, then

$$
\mathcal{I}(\underset{\sim}{\theta})=-E_{f_{X}}[\Psi(X ; \underset{\sim}{\theta})]
$$

where $\Psi(X ; \underset{\sim}{\theta})$ is the $d \times d$ matrix of second partial derivatives with (i, j) th element equal to

$$
\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log f_{X}(x \mid \theta)
$$

Proof In the case $d=1$; from above

$$
\int\left\{\frac{d}{d \theta} \log f_{X}(x \mid \underset{\sim}{\theta})\right\} f_{X}(x \mid \theta) d x=0
$$

so therefore, differentiating again wrt θ

$$
\begin{equation*}
\int\left[\left\{\frac{d^{2}}{d \theta^{2}} \log f_{X}(x \mid \theta) f_{X}(x \mid \theta)\right\}+\left\{\frac{d}{d \theta} \log f_{X}(x \mid \theta) \frac{d}{d \theta} f_{X}(x \mid \theta)\right\}\right] d x=0 \tag{1}
\end{equation*}
$$

But

$$
\frac{d}{d \theta} \log f_{X}(x \mid \underset{\sim}{\theta})=\frac{\dot{f}_{X}(x \mid \theta)}{f_{X}(x \mid \theta)} \quad \therefore \quad \dot{f}_{X}(x \mid \theta)=\frac{d}{d \theta} f_{X}(x \mid \theta)=f_{X}(x \mid \theta) \frac{d}{d \theta} \log f_{X}(x \mid \theta)
$$

so therefore

$$
\int \frac{d}{d \theta} \log f_{X}(x \mid \underset{\sim}{x}) \frac{d}{d \theta} f_{X}(x \mid \theta) d x=\int\left\{\frac{d}{d \theta} \log f_{X}(x \mid \underset{\sim}{x})\right\}^{2} f_{X}(x \mid \theta) d x
$$

and so substituting into equation (1) above, we have

$$
\int\left\{\frac{d^{2}}{d \theta^{2}} \log f_{X}(x \mid \underset{\sim}{\theta}) f_{X}(x \mid \theta)\right\} d x=-\int\left\{\frac{d}{d \theta} \log f_{X}(x \mid \underset{\sim}{\theta})\right\}^{2} f_{X}(x \mid \theta) d x
$$

of equivalently

$$
E_{f_{X}}\left[\frac{d^{2}}{d \theta^{2}} \log f_{X}(x \mid \theta)\right]=-E_{f_{X}}\left[\left\{\frac{d}{d \theta} \log f_{X}(x \mid \theta)\right\}^{2}\right]=E_{f_{X}}\left[S(X ; \theta)^{2}\right]
$$

so that, as $E_{f_{X}}[S(X ; \theta)]=0$,

$$
E_{f_{X}}\left[\frac{d^{2}}{d \theta^{2}} \log f_{X}(x \mid \theta)\right]=-\operatorname{Var}_{f_{X}}[S(X ; \theta)]
$$

Note that if $\underset{\sim}{a}=\left(a_{1}, \ldots, a_{d}\right)^{\top}$, then

$$
\operatorname{Var}_{f_{X}}\left[{\underset{\sim}{\top}}^{\top} \underset{\sim}{S}(X ; \underset{\sim}{\theta})\right]=\underset{\sim}{a \mathcal{I}}(\underset{\sim}{\theta}){\underset{\sim}{a}}^{\top}
$$

Example: $\operatorname{Binomial}(n, \theta)$

$$
f(x \mid \theta)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x} \quad x \in\{0,1, \ldots, n\}
$$

so that

$$
S(x ; \theta)=\frac{d}{d \theta} \log f_{X}(x \mid \theta)=\frac{x}{\theta}-\frac{n-x}{1-\theta}=\frac{x-n \theta}{\theta(1-\theta)} .
$$

Hence

$$
E_{f_{X}}[S(X ; \theta)]=E_{f_{X}}\left[\frac{X-n \theta}{\theta(1-\theta)}\right]=\frac{E_{f_{X}}[X]-n \theta}{\theta(1-\theta)}=0
$$

as $X \sim \operatorname{Binomial}(n, \theta)$ yields $E_{f_{X}}[X]=n \theta$. For the second derivative

$$
\frac{d^{2}}{d \theta^{2}} \log f_{X}(x \mid \theta)=-\frac{x}{\theta^{2}}-\frac{n-x}{(1-\theta)^{2}}
$$

so that

$$
\mathcal{I}(\theta)=-E_{f_{X}}\left[\frac{d^{2}}{d \theta^{2}} \log f_{X}(x \mid \theta)\right]=\frac{E_{f_{X}}[X]}{\theta^{2}}+\frac{n-E_{f_{X}}[X]}{(1-\theta)^{2}}
$$

and as $E_{f_{X}}[X]=n \theta$, we have

$$
\mathcal{I}(\theta)=\frac{n \theta}{\theta^{2}}+\frac{n-n \theta}{(1-\theta)^{2}}=\frac{1}{\theta(1-\theta)}
$$

Example : Poisson (λ)

$$
f(x \mid \lambda)=\frac{e^{-\lambda} \lambda^{x}}{x!} \quad x \in\{0,1, \ldots\}
$$

so that

$$
S(x ; \lambda)=\frac{d}{d \lambda} \log f_{X}(x \mid \lambda)=\frac{x}{\lambda}-1
$$

Hence

$$
E_{f_{X}}[S(X ; \lambda)]=E_{f_{X}}\left[\frac{X}{\lambda}-1\right]=\frac{E_{f_{X}}[X]}{\lambda}-1=0
$$

as $X \sim \operatorname{Poisson}(\lambda)$ yields $E_{f_{X}}[X]=\lambda$. For the second derivative

$$
\frac{d^{2}}{d \lambda^{2}} \log f_{X}(x \mid \lambda)=-\frac{x}{\lambda^{2}}
$$

so that

$$
\mathcal{I}(\lambda)=-E_{f_{X}}\left[\frac{d^{2}}{d \lambda^{2}} \log f_{X}(x \mid \lambda)\right]=\frac{E_{f_{X}}[X]}{\lambda^{2}}
$$

and as $E_{f_{X}}[X]=\lambda$, we have

$$
\mathcal{I}(\lambda)=\frac{1}{\lambda}
$$

Results for the Exponential Family

If

$$
f_{X}(x \mid \underset{\sim}{\theta})=h(x) c(\theta) \exp \left\{\sum_{j=1}^{k} w_{j}(\underset{\sim}{\theta}) t_{j}(x)\right\}
$$

then, for $l=1, \ldots, d$,

$$
S_{l}(x ; \underset{\sim}{\theta})=\frac{\partial}{\partial \theta_{l}} \log f_{X}(x \mid \underset{\sim}{\theta})=\frac{\partial}{\partial \theta_{l}} \log c(\underset{\sim}{\theta})+\sum_{j=1}^{k} \dot{w}_{j l}(\underset{\sim}{\theta}) t_{j}(x)=\frac{\dot{c}_{l}(\underset{\sim}{\theta})}{c(\underset{\sim}{\theta})}+\sum_{j=1}^{k} \dot{w}_{j l}(\underset{\sim}{\theta}) t_{j}(x)
$$

where

$$
\dot{c}_{l}(\theta)=\frac{\partial c(\underset{\sim}{\theta})}{\partial \theta_{l}} \quad \quad \dot{w}_{j l}(\underset{\sim}{(\theta)})=\frac{\partial w_{j}(\underset{\theta}{\theta})}{\partial \theta_{l}} .
$$

But, for each $l, E_{f_{X}}\left[S_{l}(X ; \theta)\right]=0$, so therefore, for $l=1, \ldots, d$,

$$
E_{f_{X}}\left[\sum_{j=1}^{k} \dot{w}_{j l}(\underset{\sim}{\theta}) t_{j}(X)\right]=-\frac{\dot{c}_{l}(\underset{\sim}{\theta})}{c(\underset{\sim}{\theta})}=-\frac{\partial}{\partial \theta_{l}} \log c(\underset{\sim}{\theta}) .
$$

By a similar calculation

$$
\operatorname{Var}_{f_{X}}\left[\sum_{j=1}^{k} \dot{w}_{j l}(\underline{\theta}) t_{j}(X)\right]=-\frac{\partial^{2}}{\partial \theta_{l}^{2}} \log c(\underset{\sim}{\theta})-E_{f_{X}}\left[\sum_{j=1}^{k} \ddot{w}_{j l l}(\theta) t_{j}(X)\right]
$$

where

$$
\dot{w}_{j l l}(\underset{\sim}{\theta})=\frac{\partial^{2} w_{j}(\underset{\theta}{\theta})}{\partial \theta_{l}^{2}}
$$

Example : $\operatorname{Binomial}(n, \theta)$

$$
f(x \mid \theta)=\binom{n}{x}(1-\theta)^{n} \exp \left\{\log \left(\frac{\theta}{1-\theta}\right) x\right\}
$$

so that

$$
w_{1}(\theta)=\log \left(\frac{\theta}{1-\theta}\right) \quad \log c(\theta)=n \log (1-\theta) \quad S(x ; \theta)=-\frac{n}{1-\theta}+\frac{x}{\theta(1-\theta)} .
$$

From the result above

$$
E_{f_{X}}\left[\dot{w}_{11}(\theta) t_{1}(X)\right]=-\frac{\partial}{\partial \theta_{l}} \log c(\underset{\sim}{\theta})
$$

that is

$$
E_{f_{X}}\left[\frac{1}{\theta(1-\theta)} X\right]=\frac{n}{1-\theta} \quad \therefore \quad E_{f_{X}}[X]=n \theta
$$

Note that in the natural (canonical) parameterization

$$
\log f_{X}(x \mid \underset{\sim}{\eta})=\log h(x)+\log c^{\star}(\underset{\sim}{\eta})+\sum_{j=1}^{k} \eta_{j} t_{j}(X)
$$

so that, using the arguments above for $l=1, \ldots, d$,

$$
E_{f_{X}}\left[t_{l}(X)\right]=-\frac{\partial}{\partial \eta_{l}} \log c^{\star}(\underset{\sim}{\eta}) \quad \operatorname{Var}_{f_{X}}\left[t_{l}(X)\right]=-\frac{\partial^{2}}{\partial \eta_{l}^{2}} \log c^{\star}(\underset{\sim}{\eta})
$$

4.2.3 Independent random variables from the Exponential Family

Suppose that X_{1}, \ldots, X_{n} are independent and identically distributed random variables, with $\mathrm{pmf} / \mathrm{pdf}$ $f_{X}(x \mid \underset{\sim}{x})$ in the Exponential Family. Then the joint pmf/pdf for $\underset{\sim}{X}=\left(X_{1}, \ldots, X_{n}\right)^{\top}$ takes the form

$$
f_{\underset{\sim}{X}}(\underset{\sim}{x} \mid \underset{\sim}{\theta})=\prod_{i=1}^{n} f_{X}\left(x_{i} \mid \underset{\sim}{\theta}\right)=\prod_{i=1}^{n} h\left(x_{i}\right) c(\underset{\sim}{\theta}) \exp \left\{\sum_{j=1}^{k} w_{j}(\underset{\sim}{\theta}) t_{j}\left(x_{i}\right)\right\}=H(\underset{\sim}{x}) C(\underset{\sim}{\theta}) \exp \left\{\sum_{j=1}^{k} w_{j}(\underset{\sim}{\theta}) T_{j}(\underset{\sim}{x})\right\}
$$

where

$$
H(\underset{\sim}{x})=\prod_{i=1}^{n} h\left(x_{i}\right) \quad C(\underset{\sim}{\theta})=\{c(\underset{\sim}{\theta})\}^{n} \quad T_{j}(\underset{\sim}{x})=\sum_{i=1}^{n} t_{j}\left(x_{i}\right) .
$$

4.2.4 Alternative construction of the Exponential Family

Suppose that $f(x)$ is a pmf/pdf with corresponding $\operatorname{mgf} M(t)$ (presumed to exist in a neighbourhood of zero), so that

$$
M(t)=\int e^{t x} f(x) d x=\exp \{K(t)\}
$$

and $K(t)=\log M(t)$ is the cumulant generating function. Now suppose that $f(x)=\exp \{g(x)\}$. Then

$$
\exp \{K(t)\}=M(t)=\int e^{t x} f(x) d x=\int e^{t x} e^{g(x)} d x=\int e^{t x+g(x)} d x
$$

Hence, dividing through by $\exp \{K(t)\}$, we have that

$$
\int e^{t x+g(x)-K(t)} d x=1
$$

and also that the integrand is non-negative. Thus, for all t for which $M(t)$ exists,

$$
f(x \mid t)=\exp \{t x+g(x)-K(t)\}=f(x) \exp \{t x-K(t)\}
$$

is a valid pdf. If we set $t=\eta, h(x)=f(x)=\exp \{g(x)\}$ and $c^{\star}(\eta)=\exp \{-K(t)\}$, then

$$
f(x \mid \eta)=h(x) c^{\star}(\eta) \exp \{\eta x\}
$$

and we see that $f(x \mid \eta)$ is an exponential family member with natural parameter η. The $\mathrm{pmf} / \mathrm{pdf} f(x \mid t)$ is termed the exponential tilting of $f(x)$, with expectation

$$
-\frac{d}{d t} \log c^{\star}(t)=-\frac{d}{d t}\{-K(t)\}=\dot{K}(t)
$$

and variance

$$
-\frac{d^{2}}{d t^{2}} \log c^{\star}(t)=-\frac{d^{2}}{d t^{2}}\{-K(t)\}=\ddot{K}(t) .
$$

4.2.5 The Exponential Dispersion Model

Consider the model

$$
f(x \mid \underset{\sim}{\theta}, \phi)=\exp \left\{d(x, \phi)+\frac{\log c(\underset{\theta}{\theta})}{r(\phi)}+\frac{1}{r(\phi)} \sum_{j=1}^{k} w_{j}(\underset{\sim}{\theta}) t_{j}(x)\right\}=h(x) c(\underset{\sim}{\theta}) \exp \left\{\underset{\sim}{w}(\underset{\sim}{\theta})^{\top} \underset{\sim}{t}(x)\right\}
$$

where $r(\phi)>0$ is a function of dispersion parameter $\phi>0$.
In this model, using the previous results, we see that the expectation is unchanged compared to the Exponential Family model by the presence of the term $r(\phi)$, but the variance is modified by a factor of $r(\phi)$.

Example: $\operatorname{Binomial}(n, \theta)$

$$
f_{X}(x \mid \theta)=\binom{n}{x} I_{\{0,1, \ldots, n\}}(x) \exp \left\{n \log (1-\theta)+\log \left(\frac{\theta}{1-\theta}\right) x\right\}
$$

Let $Y=X / n$, so that

$$
f_{Y}(y \mid \theta, \phi)=\binom{1 / \phi}{y / \phi} I_{\{0, \phi, 2 \phi, \ldots, 1\}}(y / \phi) \exp \left\{\frac{1}{\phi}\left[\log (1-\theta)+y \log \left(\frac{\theta}{1-\theta}\right)\right]\right\}
$$

where $\phi=1 / n$. Note that

$$
E_{f_{Y}}[Y]=\theta=\mu
$$

say, and

$$
\operatorname{Var}_{f_{Y}}[Y]=\phi \theta(1-\theta)=\phi V(\mu)
$$

where $V(\mu)=\mu(1-\mu)$ is the variance function.
Thus the exponential dispersion model allows separate modelling of mean and variance.

4.3 Convolution Families

The convolution of functions g and h is a function written $g \circ h$, which is defined by

$$
g \circ h(y)=\int_{-\infty}^{\infty} g(x) h(y-x) d x .
$$

Now if X_{1} and X_{2} are independent random variables with marginal pdfs $f_{X_{1}}$ and $f_{X_{2}}$ respectively, then the random variable $Y=X_{1}+X_{2}$ has a pdf that can be determined using the multivariate transformation result. If we use dummy variable $Z=X_{1}$, then

$$
\left.\begin{array}{rl}
Z & =X_{1} \\
Y & =X_{1}+X_{2}
\end{array}\right\} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
X_{1}=Z \\
X_{2}=Y-Z
\end{array}\right.
$$

which is a transformation with Jacobian 1. Thus

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{Z, Y}(z, y) d z=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}(z, y-z) d z=\int_{-\infty}^{\infty} f_{X_{1}}(x) f_{X_{2}}(y-x) d x
$$

so we can see that the pdf of Y is computed as the convolution of $f_{X_{1}}$ and $f_{X_{2}}$.
A family of distributions, \mathcal{F}, is closed under convolution if

$$
f_{1}, f_{2} \in \mathcal{F} \quad \Longrightarrow \quad f_{1} \circ f_{2} \in \mathcal{F}
$$

For independent random variables X_{1} and X_{2} with pdfs f_{1} and f_{2} in a family \mathcal{F}, closure under convolution implies that the random variable $Y=X_{1}+X_{2}$ also has a pdf in \mathcal{F}.

This concept is closely related to the idea of infinite divisibility, decomposibility, and self-decomposibility.

- Infinite Divisibility : A probability distribution for rv X is infinitely divisible if, for all positive integers n, there exists a sequence of independent and identically distributed rvs $Z_{n 1}, \ldots, Z_{n n}$ such that X and

$$
Z_{n}=\sum_{j=1}^{n} Z_{n j}
$$

have the same distribution, that is, the characteristic function of X can be written

$$
C_{X}(t)=\left\{C_{Z}(t)\right\}^{n}
$$

for some characteristic function C_{Z}.

- Decomposability : A probability distribution for rv X is decomposable if

$$
C_{X}(t)=C_{X_{1}}(t) C_{X_{2}}(t)
$$

for two characteristic functions $C_{X_{1}}$ and $C_{X_{2}}$ so that

$$
X=X_{1}+X_{2}
$$

where X_{1} and X_{2} are independent rvs with characteristic functions $C_{X_{1}}$ and $C_{X_{2}}$.

- Self-Decomposability : A probability distribution for rv X is self-decomposable if

$$
C_{X}(t)=\left\{C_{X_{1}}(t)\right\}^{2}
$$

for characteristic function $C_{X_{1}}$ so that

$$
X=X_{1}+X_{2}
$$

where X_{1} and X_{2} are independent identically distributed rvs with characteristic function $C_{X_{1}}$.

4.4 Hierarchical Models

A hierarchical model is a model constructed by considering a series of distributions at different levels of a "hierarchy" that together, after marginalization, combine to yield the distribution of the observable quantities.
Example : A three-level model
Consider the three-level hierarchical model:

$$
\begin{array}{lll}
\text { LEVEL 3 : } & \lambda>0 & \text { Fixed parameter } \\
\text { LEVEL 2 : } & N \sim \operatorname{Poisson}(\lambda) & \\
\text { LEVEL 1 : } & X \mid N=n, \theta \sim \operatorname{Binomial}(n, \theta) &
\end{array}
$$

Then the marginal pmf for X is given by

$$
f_{X}(x \mid \theta, \lambda)=\sum_{n=0}^{\infty} f_{X \mid N}(x \mid n, \theta, \lambda) f_{N}(n \mid \lambda)
$$

By elementary calculation, we see that $X \sim \operatorname{Poisson}(\lambda \theta)$

$$
f_{X}(x \mid \theta, \lambda)=\frac{(\lambda \theta)^{x} e^{-\lambda \theta}}{x!} \quad x=0,1, \ldots
$$

Example : A three-level model

Consider the three-level hierarchical model:
LEVEL 3: $\alpha, \beta>0 \quad$ Fixed parameters
LEVEL 2: $\quad Y \sim \operatorname{Gamma}(\alpha, \beta)$
LEVEL 1: $\quad X \mid Y=y \sim \operatorname{Poisson}(y)$
Then the marginal pdf for X is given by

$$
f_{X}(x \mid \alpha, \beta)=\int_{0}^{\infty} f_{X \mid Y}(x \mid y) f_{Y}(y \mid \alpha, \beta) d y
$$

A general K-level hierarchical model can be specified in terms of K vector random variables:

$$
\begin{aligned}
\text { LEVEL K } & :{\underset{\sim}{X}}_{K}=\left(X_{K 1}, \ldots, X_{K n_{K}}\right)^{\top} \\
\vdots & \vdots
\end{aligned}
$$

$$
\text { LEVEL } 2:{\underset{\sim}{x}}_{2}=\left(X_{21}, \ldots, X_{2 n_{2}}\right)^{\top}
$$

$$
\text { LEVEL } 1: \underset{\sim}{X}=\left(X_{11}, \ldots, X_{1 n_{1}}\right)^{\top}
$$

The hierarchical model specifies the joint distribution via a series of conditional independence assumptions, so that

$$
f_{{\underset{X}{X}}_{1}, \ldots,{\underset{\sim}{X}}_{K}}\left({\underset{\sim}{x}}_{1}, \ldots,{\underset{\sim}{x}}_{K}\right)=f_{{\underset{\sim}{X}}_{K}}({\underset{x}{*}}) \prod_{k=1}^{K-1} f_{{\underset{\sim}{X}}_{k}} \mid{\underset{\sim}{k+1}}\left({\underset{\sim}{x}}_{k} \mid{\underset{\sim}{x+1}}\right)
$$

where

$$
f_{{\underset{\sim}{X}}_{k} \mid} \mid{\underset{\sim}{k+1}}\left({\underset{x}{x}}_{k} \mid{\underset{x}{x+1}}\right)=\prod_{j=1}^{n_{k}} f_{k}\left(x_{k j} \mid{\underset{\sim}{x+1}}\right)
$$

that is, at level k in the hierarchy, the random variables are taken to be conditionally independent given the values of variables at level $k+1$.
The uppermost level, Level K, can be taken to be a degenerate model, with mass function equal to 1 at a set of fixed values.

Example : A three-level model

Consider the three-level hierarchical model:
LEVEL 3: $\quad \theta, \tau^{2}>0 \quad$ Fixed parameters
LEVEL 2: $\quad M_{1}, \ldots, M_{L} \sim \operatorname{Normal}\left(\theta, \tau^{2}\right) \quad$ Independent
LEVEL 1: \quad For $l=1, \ldots, L$:
$X_{l 1}, \ldots, X_{l n_{l}} \mid M_{l}=m_{l} \sim \operatorname{Normal}\left(m_{l}, 1\right)$
where all the $X_{l j}$ are conditionally independent given M_{1}, \ldots, M_{L}
For random variables X, Y and Z, we write $X \perp Y \mid Z$ if X and Y are conditionally independent given Z, so that in the above model

$$
X_{l_{1} j_{1}} \perp X_{l_{2} j_{2}} \mid M_{1}, \ldots, M_{L}
$$

for all $l_{1}, j_{1}, l_{2}, j_{2}$.

Special Cases of Hierarchical Models

1. Finite Mixture Models

LEVEL 3: $\quad L \geq 1$ (integer), π_{1}, \ldots, π_{l} with $0 \leq \pi_{l} \leq 1$ and $\sum_{l=1}^{L} \pi_{l}=1$, and $\theta_{1}, \ldots, \theta_{L}$
LEVEL $2: \quad X \sim f_{X}(x \mid \pi, L)$ with $\mathbb{X} \equiv\{1,2, \ldots, L\}$ such that $\operatorname{Pr}[X=l]=\pi_{l}$
LEVEL 1: $\quad Y \mid X=l \sim f_{l}\left(y \mid \theta_{l}\right)$
where f_{l} is some pmf or pdf with parameters θ_{l}. Then

$$
f_{Y}(y \mid \pi, \theta, L)=\sum_{l=1}^{L} f_{Y \mid X}(y \mid x) f_{X}(x)=\sum_{l=1}^{L} f_{l}\left(y \mid \theta_{l}\right) \pi_{l}
$$

This is a finite mixture distribution: the observed Y are drawn from L distinct sub-populations characterized by pmf/pdf f_{1}, \ldots, f_{L} and parameters $\theta_{1}, \ldots, \theta_{L}$, with sub-population proportions π_{1}, \ldots, π_{L}.

Note that if M_{1}, \ldots, M_{L} are the mgfs corresponding to f_{1}, \ldots, f_{L}, then

$$
M_{Y}(t)=\sum_{l=1}^{L} \pi_{l} M_{l}(t)
$$

2. Random Sums

LEVEL 3 : $\quad \theta, \phi \quad$ (fixed parameters)
LEVEL $2: \quad X \sim f_{X}(x \mid \phi)$ with $\mathbb{X} \equiv\{0,1,2, \ldots\}$
LEVEL 1: $\quad Y_{1}, \ldots, Y_{n} \mid X=x \sim f_{Y}(y \mid \ell)$ (independent), and $S=\sum_{i=1}^{x} Y_{i}$
Then, by the law of iterated expectation,

$$
\begin{aligned}
M_{S}(t)=E_{f_{S}}\left[e^{t S}\right] & =E_{f_{X}}\left[E_{f_{S \mid X}}\left[e^{t S} \mid X=x\right]\right] \\
& =E_{f_{X}}\left[E_{f_{Y \mid X}}\left[\exp \left\{t \sum_{i=1}^{x} Y_{i}\right\} \mid X=x\right]\right] \\
& =E_{f_{X}}\left[\left\{M_{Y}(t)\right\}^{X}\right] \\
& =G_{X}\left(M_{Y}(t)\right)
\end{aligned}
$$

where G_{X} is the factorial mgf (or pgf) for X. By a similar calculation,

$$
G_{S}(t)=G_{X}\left(G_{Y}(t)\right)
$$

For example, if $X \sim \operatorname{Poisson}(\phi)$, then

$$
G_{S}(t)=\exp \left\{\phi\left(G_{Y}(t)-1\right)\right\}
$$

is the pgf of S. Expanding the pgf as a power series in t yields the pmf of S.

Example : Branching Process

Consider a sequence of generations of an organism; let S_{i} be the total number of individuals in the i th generation, for $i=0,1,2, \ldots$. Suppose that f_{X} is a pmf with support $\mathbb{X} \equiv\{0,1,2, \ldots\}$.

- Generation 0 : $S_{0} \sim f_{X}(x \mid \phi)$
- Generation 1 : Given $S_{0}=s_{0}$, let

$$
S_{11}, \ldots, S_{1 s_{0}} \mid S_{0}=s_{0} \quad \text { such that } \quad S_{1 j} \sim f_{X}(x \mid \phi), \text { with } S_{1 j_{1}} \perp S_{1 j_{2}} \text { for all } j_{1}, j_{2}
$$

and set

$$
S_{1}=\sum_{j=1}^{s_{0}} S_{1 j}
$$

is the total number of individuals in the 1st generation. $S_{1 j}$ is the number of offspring of the j th individual in the zeroth generation.

- Generation i: Given $S_{i-1}=s_{i-1}$, let

$$
S_{i 1}, \ldots, S_{i s_{i-1}} \mid S_{i-1}=s_{i-1} \quad \text { such that } \quad S_{i j} \sim f_{X}(x \mid \phi) \text { (independent) }
$$

and set

$$
S_{i}=\sum_{j=1}^{s_{i-1}} S_{i j}
$$

Let G_{i} be the pgf of S_{i}. Then, by recursion, we have

$$
G_{i}(t)=G_{i-1}\left(G_{X}(t)\right)=G_{i-2}\left(G_{X}\left(G_{X}(t)\right)\right)=\cdots=G_{X}\left(G_{X}\left(\cdots G_{X}\left(G_{X}(t)\right) \cdots\right)\right)
$$

that is, an $i+1$-fold iterated calculation.

3. Location-Scale Mixtures

LEVEL 3 : ℓ
Fixed parameters
LEVEL 2: $\quad M, V \sim f_{M, V}(m, v \mid \ell)$
LEVEL $1: \quad Y \mid M=m, V=v \sim f_{Y \mid M, V}(y \mid m, v)$
where

$$
f_{Y \mid M, V}(y \mid m, v)=\frac{1}{v} f\left(\frac{y-m}{v}\right)
$$

that is a location-scale family distribution, mixed over different location and scale parameters with mixing distribution $f_{M, V}$.

Example : Scale Mixtures of Normal Distributions

LEVEL 3 : ℓ
LEVEL 2: $\quad V \sim f_{V}(v \mid \theta)$
LEVEL 1: $\quad Y \mid V=v \sim f_{Y \mid V}(y \mid v) \equiv \operatorname{Normal}(0, g(v))$
for some positive function g.
For example, if

$$
Y \left\lvert\, V=v \sim \operatorname{Normal}\left(0, v^{-1}\right) \quad V \sim \operatorname{Gamma}\left(\frac{1}{2}, \frac{1}{2}\right)\right.
$$

then by elementary calculations, we find that

$$
f_{Y}(y)=\frac{1}{\pi} \frac{1}{1+y^{2}} \quad y \in \mathbb{R} \quad \therefore \quad Y \sim \text { Cauch } y .
$$

The scale mixture of normal distributions family includes the Student, Double Exponential and Logistic as special cases.

Moments of location-scale mixtures can be computed using the law of iterated expectation. The location-scale mixture construction allows the modelling of

- skewness through the mixture over different locations
- kurtosis through the mixture over different scales

Example : Location-Scale Mixtures of Normal Distributions

Suppose M and V are independent, with

$$
M \sim \operatorname{Exponential}(1 / 2) \quad V \sim \operatorname{Gamma}(2,1 / 2)
$$

and

$$
Y \mid M=m, V=v \sim \operatorname{Normal}(m, 1 / v)
$$

Then the marginal distribution of Y is given by

$$
f_{Y}(y)=\int_{0}^{\infty} \int_{0}^{\infty} f_{Y \mid M, V}(y \mid m, v) f_{M}(m) f_{V}(v) d m d v
$$

which can most readily be examined by simulation. The figure below depicts a histogram of 10000 values simulated from the model, and demonstrates the skewness of the marginal of Y.

