
556: MATHEMATICAL STATISTICS I

FAMILIES OF DISTRIBUTIONS

4.1 Location-Scale Families

Definition: Location Scale Family
A location-scale family is a family of distributions formed by translation and rescaling of a standard
family member.

Suppose that f(x) is a pdf. Then if µ and σ > 0 are constants then

f(x|µ, σ) =
1
σ

f((x− µ)/σ)

is also a pdf; f(x|µ, σ) ≥ 0, and
∫ ∞

−∞
f(x|µ, σ) dx =

∫ ∞

−∞

1
σ

f((x− µ)/σ) dx =
∫ ∞

−∞
f(y) dy = 1

setting y = (x− µ)/σ) in the penultimate integral.

• f(x|µ, σ) is termed a location-scale family

• if σ = 1 we have a location family: f(x|µ) = f(x− µ)

• if µ = 0 we have a scale family: f(x|σ) = f(x/σ)/σ

Example : Normal distribution family

f(x) =
(

1
2π

)1/2

exp
{
−1

2
x2

}

f(x|µ, σ) =
(

1
2πσ2

)1/2

exp
{
− 1

2σ2
(x− µ)2

}

Example : Exponential distribution family

f(x) = e−x x > 0

f(x|µ, σ) =
1
σ

e−(x−µ)/σ x > µ

f(x|µ) = e−(x−µ) x > µ

Note that X is a random variable with pdf fX(x) = f(x|µ, σ) (the location-scale family member) if and
only if there exists another random variable Z with fZ(z) = f(z) (the standard member) such that

X = σZ + µ

that is, if X is a linear (location-scale) transformation of a standard random variable Z.
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4.2 Exponential Families

Definition: Exponential Family
A family of pdfs/pmfs is called an exponential family if it can be expressed

f(x|θ˜) = h(x)c(θ˜) exp





k∑

j=1

wj(θ˜)tj(x)



 = h(x)c(θ˜) exp

{
w
˜
(θ˜)Tt

˜
(x)

}

for all x ∈ R, where θ˜ ∈ Θ is a d-dimensional parameter vector, and

• h(x) ≥ 0 is a function that does not depend on θ˜• c(θ˜) ≥ 0 is a function that does not depend on x

• t
˜
(x) = (t1(x), . . . , tk(x))T is a vector of real-valued functions that do not depend on θ˜

• w
˜
(x) = (w1(θ˜), . . . , wk(θ˜))T is a vector of real-valued functions that do not depend on x

An exponential family distribution is termed natural if k = 1 and t1(x) = x.

Example : Binomial(n, θ) for 0 < θ < 1
For x ∈ {0, 1, . . . , n} ≡ X,

f(x|θ) =
(

n

x

)
θx(1− θ)n−x =

(
n

x

)
(1− θ)n

(
θ

1− θ

)x

=
(

n

x

)
(1− θ)n exp

{
log

(
θ

1− θ

)
x

}

• k = 1

• h(x) = IX(x)
(

n

x

)
, where IA(x) is the indicator function for set A

IA(x) =
{

1 x ∈ A

0 x /∈ A

• c(θ˜) = (1− θ)n

• t1(x) = x

• w1(θ˜) = log
(

θ

1− θ

)

Example : Normal(µ, σ2)
For x ∈ R,

f(x|µ, σ2) =
(

1
2πσ2

)1/2

exp
{
− 1

2σ2
(x− µ)2

}
=

(
1

2πσ2

)1/2

exp
{
− µ2

2σ2

}
exp

{
− x2

2σ2
+

µx

σ2

}

• k = 2, θ˜ = (µ, σ2)T

• h(x) = 1

• c(θ˜) = c(µ, σ2) =
(

1
2πσ2

)1/2

exp
{
− µ2

2σ2

}

• t1(x) = −x2

2
, t2(x) = x

• w1(θ˜) =
1
σ2

, w2(θ˜) =
µ

σ2
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Note that the support of an exponential family distribution f(x|θ˜) cannot depend on θ˜.

Example :
Suppose, for θ > 0,

f(x|θ) =
1
θ

exp
{

1− x

θ

}
x > θ

and zero otherwise. Then

• k = 1, θ˜ = θ

• h(x) = eI[θ,∞)(x)

• c(θ˜) = 1/θ

• t1(x) = x

• w1(θ˜) = 1/θ

but the support of f(x|θ) depends on θ so this is not an exponential family distribution.

4.2.1 Parameterization

We can reparameterize an exponential family distribution from θ˜ to η
˜

= (η1, . . . , ηk)T by setting ηj =

wj(θ˜) for each j, and write

f(x|η
˜
) = h(x)c?(η

˜
) exp





k∑

j=1

ηjtj(x)



 = h(x)c?(η

˜
) exp

{
η
˜
Tt

˜
(x)

}
.

η
˜

is termed the natural or canonical parameter

Let H be the region of Rk defined by

H ≡
{

η
˜

:
∫ ∞

−∞
h(x) exp

{
η
˜
Tt

˜
(x)

}
dx < ∞

}

Then, for η
˜
∈ H, we must have

c?(η
˜
) =

[∫ ∞

−∞
h(x) exp

{
η
˜
Tt

˜
(x)

}
dx

]−1

Note that {
w
˜
(θ˜) = (w1(θ˜), . . . , wk(θ˜))T : θ ∈ Θ

}

is a subset of H.

Example : Binomial(n, θ)
Natural parameter:

η = log
(

θ

1− θ

)
⇐⇒ θ =

eη

1 + eη

so that

f(x|η) =
{(

n

x

)
I{0,1,...,n}(x)

}
eηx

(1 + eη)n
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Natural parameter space: here (interpreting the integral as a Lebesgue integral)
∫ ∞

−∞
h(x) exp

{
η
˜
Tt

˜
(x)

}
dx =

n∑

x=0

(
n

x

)
exp {ηx} < ∞

for all finite values of η, so H ≡ R.

Example : Normal(µ, σ2)
Natural parameters:

η
˜

= (η1, η2)T = (1/σ2, µ/σ2)T

so that

f(x|η
˜
) =

( η1

2π

)1/2
exp

{
− η2

2

2η1

}
exp

{
−η1x

2

2
+ η2x

}

Natural parameter space: this density will be integrable with respect to x if and only if η1 > 0, so
H ≡ R+ × R.

Definition: Curved Exponential Family
An exponential family indexed by parameter θ is termed curved if

dim(θ˜) = d < k

4.2.2 Expectation and Variance for Exponential Families

Definition: Score Function
For pmf/pdf fX with d-dimensional parameter θ˜, the score function, S

˜
(x; θ˜), is a d× 1 vector with jth

element equal to

Sj(x; θ˜) =
∂

∂θj
log fX(x|θ˜).

The quantity S
˜
(X; θ˜) is a d-dimensional random variable.

Lemma Under certain regularity conditions

EfX
[S
˜
(X; θ˜)] = 0

˜

Proof In the case d = 1; let

ḟX(x|θ) =
d

dθ
fX(x|θ˜)

Then

EfX
[S(X; θ)] =

∫
S(x; θ)fX(x|θ) dx =

∫ {
d

dθ
log fX(x|θ˜)

}
fX(x|θ) dx

=
∫ {

ḟX(x|θ)
fX(x|θ)

}
fX(x|θ) dx

=
∫

d

dθ
fX(x|θ˜) dx

=
d

dθ

{∫
fX(x|θ˜) dx

}
= 0

provided that the order of the differentiation wrt θ and the integration wrt x can be exchanged.
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Definition: Fisher Information
For pmf/pdf fX with d-dimensional parameter θ˜, the Fisher Information, I(θ˜), is a d× d matrix
defined as the variance-covariance matrix of the score random variable S

˜
, that is

I(θ˜) = V arfX
[S
˜
(X; θ˜)] = EfX

[S
˜
(X; θ˜)S

˜
(X; θ˜)T]

with (i, j)th element equal to
EfX

[Si(X; θ˜)Sj(X; θ˜)]

The Fisher Information is a constant d× d matrix in which each of the elements is a function of θ˜.

Lemma Under certain regularity conditions, if the pmf/pdf is twice partially differentiable with re-
spect to the elements of θ˜, then

I(θ˜) = −EfX
[Ψ(X; θ˜)]

where Ψ(X; θ˜) is the d× d matrix of second partial derivatives with (i, j)th element equal to

∂2

∂θi∂θj
log fX(x|θ˜).

Proof In the case d = 1; from above
∫ {

d

dθ
log fX(x|θ˜)

}
fX(x|θ) dx = 0

so therefore, differentiating again wrt θ

∫ [{
d2

dθ2
log fX(x|θ˜) fX(x|θ)

}
+

{
d

dθ
log fX(x|θ˜)

d

dθ
fX(x|θ)

}]
dx = 0 (1)

But
d

dθ
log fX(x|θ˜) =

ḟX(x|θ)
fX(x|θ) ∴ ḟX(x|θ) =

d

dθ
fX(x|θ) = fX(x|θ) d

dθ
log fX(x|θ˜)

so therefore ∫
d

dθ
log fX(x|θ˜)

d

dθ
fX(x|θ) dx =

∫ {
d

dθ
log fX(x|θ˜)

}2

fX(x|θ) dx

and so substituting into equation (1) above, we have
∫ {

d2

dθ2
log fX(x|θ˜) fX(x|θ)

}
dx = −

∫ {
d

dθ
log fX(x|θ˜)

}2

fX(x|θ) dx

of equivalently

EfX

[
d2

dθ2
log fX(x|θ˜)

]
= −EfX

[{
d

dθ
log fX(x|θ˜)

}2
]

= EfX
[S(X; θ)2]

so that, as EfX
[S(X; θ)] = 0,

EfX

[
d2

dθ2
log fX(x|θ˜)

]
= −V arfX

[S(X; θ)].

Note that if a
˜

= (a1, . . . , ad)T, then

V arfX
[a
˜
TS

˜
(X; θ˜)] = a

˜
I(θ˜)a

˜
T
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Example : Binomial(n, θ)

f(x|θ) =
(

n

x

)
θx(1− θ)n−x x ∈ {0, 1, . . . , n}

so that
S(x; θ) =

d

dθ
log fX(x|θ) =

x

θ
− n− x

1− θ
=

x− nθ

θ(1− θ)
.

Hence

EfX
[S(X; θ)] = EfX

[
X − nθ

θ(1− θ)

]
=

EfX
[X]− nθ

θ(1− θ)
= 0

as X ∼ Binomial(n, θ) yields EfX
[X] = nθ. For the second derivative

d2

dθ2
log fX(x|θ) = − x

θ2
− n− x

(1− θ)2

so that

I(θ) = −EfX

[
d2

dθ2
log fX(x|θ)

]
=

EfX
[X]

θ2
+

n−EfX
[X]

(1− θ)2

and as EfX
[X] = nθ, we have

I(θ) =
nθ

θ2
+

n− nθ

(1− θ)2
=

1
θ(1− θ)

Example : Poisson(λ)

f(x|λ) =
e−λλx

x!
x ∈ {0, 1, . . .}

so that
S(x; λ) =

d

dλ
log fX(x|λ) =

x

λ
− 1

Hence

EfX
[S(X; λ)] = EfX

[
X

λ
− 1

]
=

EfX
[X]

λ
− 1 = 0

as X ∼ Poisson(λ) yields EfX
[X] = λ. For the second derivative

d2

dλ2
log fX(x|λ) = − x

λ2

so that

I(λ) = −EfX

[
d2

dλ2
log fX(x|λ)

]
=

EfX
[X]

λ2

and as EfX
[X] = λ, we have

I(λ) =
1
λ
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Results for the Exponential Family
If

fX(x|θ˜) = h(x)c(θ˜) exp





k∑

j=1

wj(θ˜)tj(x)





then, for l = 1, . . . , d,

Sl(x; θ˜) =
∂

∂θl
log fX(x|θ˜) =

∂

∂θl
log c(θ˜) +

k∑

j=1

ẇjl(θ˜)tj(x) =
ċl(θ˜)
c(θ˜)

+
k∑

j=1

ẇjl(θ˜)tj(x)

where

ċl(θ˜) =
∂c(θ˜)
∂θl

ẇjl(θ˜) =
∂wj(θ˜)

∂θl
.

But, for each l, EfX
[Sl(X; θ˜)] = 0, so therefore, for l = 1, . . . , d,

EfX




k∑

j=1

ẇjl(θ˜)tj(X)


 = − ċl(θ˜)

c(θ˜)
= − ∂

∂θl
log c(θ˜).

By a similar calculation

V arfX




k∑

j=1

ẇjl(θ˜)tj(X)


 = − ∂2

∂θ2
l

log c(θ˜)− EfX




k∑

j=1

ẅjll(θ˜)tj(X)




where

ẇjll(θ˜) =
∂2wj(θ˜)

∂θ2
l

Example : Binomial(n, θ)

f(x|θ) =
(

n

x

)
(1− θ)n exp

{
log

(
θ

1− θ

)
x

}

so that

w1(θ) = log
(

θ

1− θ

)
log c(θ) = n log(1− θ) S(x; θ) = − n

1− θ
+

x

θ(1− θ)
.

From the result above
EfX

[ẇ11(θ)t1(X)] = − ∂

∂θl
log c(θ˜)

that is

EfX

[
1

θ(1− θ)
X

]
=

n

1− θ
∴ EfX

[X] = nθ.

7



Note that in the natural (canonical) parameterization

log fX(x|η
˜
) = log h(x) + log c?(η

˜
) +

k∑

j=1

ηjtj(X)

so that, using the arguments above for l = 1, . . . , d,

EfX
[tl(X)] = − ∂

∂ηl
log c?(η

˜
) V arfX

[tl(X)] = − ∂2

∂η2
l

log c?(η
˜
)

4.2.3 Independent random variables from the Exponential Family

Suppose that X1, . . . , Xn are independent and identically distributed random variables, with pmf/pdf
fX(x|θ˜) in the Exponential Family. Then the joint pmf/pdf for X˜ = (X1, . . . , Xn)T takes the form

fX˜
(x˜|θ˜) =

n∏

i=1

fX(xi|θ˜) =
n∏

i=1

h(xi)c(θ˜) exp





k∑

j=1

wj(θ˜)tj(xi)



 = H(x˜)C(θ˜) exp





k∑

j=1

wj(θ˜)Tj(x˜)





where

H(x˜) =
n∏

i=1

h(xi) C(θ˜) = {c(θ˜)}n Tj(x˜) =
n∑

i=1

tj(xi).

4.2.4 Alternative construction of the Exponential Family

Suppose that f(x) is a pmf/pdf with corresponding mgf M(t) (presumed to exist in a neighbourhood
of zero), so that

M(t) =
∫

etxf(x) dx = exp{K(t)}
and K(t) = log M(t) is the cumulant generating function. Now suppose that f(x) = exp{g(x)}. Then

exp{K(t)} = M(t) =
∫

etxf(x) dx =
∫

etxeg(x) dx =
∫

etx+g(x) dx.

Hence, dividing through by exp{K(t)}, we have that
∫

etx+g(x)−K(t) dx = 1

and also that the integrand is non-negative. Thus, for all t for which M(t) exists,

f(x|t) = exp{tx + g(x)−K(t)} = f(x) exp{tx−K(t)}
is a valid pdf. If we set t = η, h(x) = f(x) = exp{g(x)} and c?(η) = exp{−K(t)}, then

f(x|η) = h(x)c?(η) exp{ηx}
and we see that f(x|η) is an exponential family member with natural parameter η. The pmf/pdf f(x|t)
is termed the exponential tilting of f(x), with expectation

− d

dt
log c?(t) = − d

dt
{−K(t)} = K̇(t)

and variance

− d2

dt2
log c?(t) = − d2

dt2
{−K(t)} = K̈(t).
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4.2.5 The Exponential Dispersion Model

Consider the model

f(x|θ˜, φ) = exp



d(x, φ) +

log c(θ˜)
r(φ)

+
1

r(φ)

k∑

j=1

wj(θ˜)tj(x)



 = h(x)c(θ˜) exp

{
w
˜
(θ˜)Tt

˜
(x)

}

where r(φ) > 0 is a function of dispersion parameter φ > 0.

In this model, using the previous results, we see that the expectation is unchanged compared to the
Exponential Family model by the presence of the term r(φ), but the variance is modified by a factor of
r(φ).

Example : Binomial(n, θ)

fX(x|θ) =
(

n

x

)
I{0,1,...,n}(x) exp

{
n log(1− θ) + log

(
θ

1− θ

)
x

}

Let Y = X/n, so that

fY (y|θ, φ) =
(

1/φ

y/φ

)
I{0,φ,2φ,...,1}(y/φ) exp

{
1
φ

[
log(1− θ) + y log

(
θ

1− θ

)]}

where φ = 1/n. Note that
EfY

[Y ] = θ = µ

say, and
V arfY

[Y ] = φθ(1− θ) = φV (µ)

where V (µ) = µ(1− µ) is the variance function.

Thus the exponential dispersion model allows separate modelling of mean and variance.

4.3 Convolution Families

The convolution of functions g and h is a function written g ◦ h, which is defined by

g ◦ h(y) =
∫ ∞

−∞
g(x)h(y − x) dx.

Now if X1 and X2 are independent random variables with marginal pdfs fX1 and fX2 respectively,
then the random variable Y = X1 + X2 has a pdf that can be determined using the multivariate
transformation result. If we use dummy variable Z = X1, then

Z = X1

Y = X1 + X2

}
⇐⇒

{
X1 = Z

X2 = Y − Z

which is a transformation with Jacobian 1. Thus

fY (y) =
∫ ∞

−∞
fZ,Y (z, y) dz =

∫ ∞

−∞
fX1,X2(z, y − z) dz =

∫ ∞

−∞
fX1(x)fX2(y − x) dx

so we can see that the pdf of Y is computed as the convolution of fX1 and fX2 .

A family of distributions, F , is closed under convolution if

f1, f2 ∈ F =⇒ f1 ◦ f2 ∈ F
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For independent random variables X1 and X2 with pdfs f1 and f2 in a family F , closure under convo-
lution implies that the random variable Y = X1 + X2 also has a pdf in F .

This concept is closely related to the idea of infinite divisibility, decomposibility, and self-decomposibility.

• Infinite Divisibility : A probability distribution for rv X is infinitely divisible if, for all positive
integers n, there exists a sequence of independent and identically distributed rvs Zn1, . . . , Znn

such that X and

Zn =
n∑

j=1

Znj

have the same distribution, that is, the characteristic function of X can be written

CX(t) = {CZ(t)}n

for some characteristic function CZ .
• Decomposability : A probability distribution for rv X is decomposable if

CX(t) = CX1(t)CX2(t)

for two characteristic functions CX1 and CX2 so that

X = X1 + X2

where X1 and X2 are independent rvs with characteristic functions CX1 and CX2 .
• Self-Decomposability : A probability distribution for rv X is self-decomposable if

CX(t) = {CX1(t)}2

for characteristic function CX1 so that

X = X1 + X2

where X1 and X2 are independent identically distributed rvs with characteristic function CX1 .

4.4 Hierarchical Models

A hierarchical model is a model constructed by considering a series of distributions at different levels
of a “hierarchy” that together, after marginalization, combine to yield the distribution of the observable
quantities.

Example : A three-level model
Consider the three-level hierarchical model:

LEVEL 3 : λ > 0 Fixed parameter

LEVEL 2 : N ∼ Poisson(λ)

LEVEL 1 : X|N = n, θ ∼ Binomial(n, θ)

Then the marginal pmf for X is given by

fX(x|θ, λ) =
∞∑

n=0

fX|N (x|n, θ, λ)fN (n|λ).

By elementary calculation, we see that X ∼ Poisson(λθ)

fX(x|θ, λ) =
(λθ)xe−λθ

x!
x = 0, 1, . . . .
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Example : A three-level model
Consider the three-level hierarchical model:

LEVEL 3 : α, β > 0 Fixed parameters

LEVEL 2 : Y ∼ Gamma(α, β)

LEVEL 1 : X|Y = y ∼ Poisson(y)

Then the marginal pdf for X is given by

fX(x|α, β) =
∫ ∞

0
fX|Y (x|y)fY (y|α, β) dy.

A general K-level hierarchical model can be specified in terms of K vector random variables:

LEVEL K : X˜ K
= (XK1, . . . , XKnK

)T

... :
...

LEVEL 2 : X˜ 2
= (X21, . . . , X2n2)

T

LEVEL 1 : X˜ 1
= (X11, . . . , X1n1)

T

The hierarchical model specifies the joint distribution via a series of conditional independence as-
sumptions, so that

fX˜1
,...,X˜K

(x˜1
, . . . , x˜K

) = fX˜K
(x˜k

)
K−1∏

k=1

fX˜k
|X˜k+1

(x˜k
|x˜k+1

)

where

fX˜k
|X˜k+1

(x˜k
|x˜k+1

) =
nk∏

j=1

fk(xkj |x˜k+1
)

that is, at level k in the hierarchy, the random variables are taken to be conditionally independent
given the values of variables at level k + 1.

The uppermost level, Level K, can be taken to be a degenerate model, with mass function equal to 1 at
a set of fixed values.

Example : A three-level model
Consider the three-level hierarchical model:

LEVEL 3 : θ, τ2 > 0 Fixed parameters

LEVEL 2 : M1, . . . , ML ∼ Normal(θ, τ2) Independent

LEVEL 1 : For l = 1, . . . , L :
Xl1, . . . , Xlnl

|Ml = ml ∼ Normal(ml, 1)
where all the Xlj are conditionally independent given M1, . . . ,ML

For random variables X, Y and Z, we write X ⊥ Y |Z if X and Y are conditionally independent given
Z, so that in the above model

Xl1j1 ⊥ Xl2j2 |M1, . . . , ML

for all l1, j1, l2, j2.
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Special Cases of Hierarchical Models

1. Finite Mixture Models

LEVEL 3 : L ≥ 1 (integer), π1, . . . , πl with 0 ≤ πl ≤ 1 and
L∑

l=1

πl = 1, and θ1, . . . , θL

LEVEL 2 : X ∼ fX(x|π˜, L) with X ≡ {1, 2, . . . , L} such that Pr[X = l] = πl

LEVEL 1 : Y |X = l ∼ fl(y|θl)

where fl is some pmf or pdf with parameters θl. Then

fY (y|π˜, θ˜, L) =
L∑

l=1

fY |X(y|x)fX(x) =
L∑

l=1

fl(y|θl)πl

This is a finite mixture distribution: the observed Y are drawn from L distinct sub-populations
characterized by pmf/pdf f1, . . . , fL and parameters θ1, . . . , θL, with sub-population proportions
π1, . . . , πL.

Note that if M1, . . . ,ML are the mgfs corresponding to f1, . . . , fL, then

MY (t) =
L∑

l=1

πlMl(t)

2. Random Sums

LEVEL 3 : θ˜, φ
˜

(fixed parameters)

LEVEL 2 : X ∼ fX(x|φ
˜
) with X ≡ {0, 1, 2, . . .}

LEVEL 1 : Y1, . . . , Yn|X = x ∼ fY (y|θ˜) (independent), and S =
x∑

i=1

Yi

Then, by the law of iterated expectation,

MS(t) = EfS

[
etS

]
= EfX

[
EfS|X

[
etS |X = x

]]

= EfX

[
EfY

˜
|X

[
exp

{
t

x∑

i=1

Yi

}
|X = x

]]

= EfX

[{MY (t)}X
]

= GX(MY (t))

where GX is the factorial mgf (or pgf) for X . By a similar calculation,

GS(t) = GX(GY (t)).

For example, if X ∼ Poisson(φ), then

GS(t) = exp {φ(GY (t)− 1)}
is the pgf of S. Expanding the pgf as a power series in t yields the pmf of S.
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Example : Branching Process

Consider a sequence of generations of an organism; let Si be the total number of individuals in
the ith generation, for i = 0, 1, 2, . . .. Suppose that fX is a pmf with support X ≡ {0, 1, 2, . . .}.

• Generation 0 : S0 ∼ fX(x|φ)

• Generation 1 : Given S0 = s0, let

S11, . . . , S1s0 |S0 = s0 such that S1j ∼ fX(x|φ), with S1j1 ⊥ S1j2 for all j1, j2

and set

S1 =
s0∑

j=1

S1j

is the total number of individuals in the 1st generation. S1j is the number of offspring of the
jth individual in the zeroth generation.

• Generation i : Given Si−1 = si−1, let

Si1, . . . , Sisi−1 |Si−1 = si−1 such that Sij ∼ fX(x|φ) (independent)

and set

Si =
si−1∑

j=1

Sij

Let Gi be the pgf of Si. Then, by recursion, we have

Gi(t) = Gi−1(GX(t)) = Gi−2(GX(GX(t))) = · · · = GX(GX(· · ·GX(GX(t)) · · · ))
that is, an i + 1-fold iterated calculation.

3. Location-Scale Mixtures

LEVEL 3 : θ˜ Fixed parameters

LEVEL 2 : M,V ∼ fM,V (m, v|θ˜)

LEVEL 1 : Y |M = m,V = v ∼ fY |M,V (y|m, v)

where

fY |M,V (y|m, v) =
1
v

f

(
y −m

v

)

that is a location-scale family distribution, mixed over different location and scale parameters
with mixing distribution fM,V .

Example : Scale Mixtures of Normal Distributions

LEVEL 3 : θ˜
LEVEL 2 : V ∼ fV (v|θ˜)

LEVEL 1 : Y |V = v ∼ fY |V (y|v) ≡ Normal(0, g(v))

for some positive function g.

For example, if

Y |V = v ∼ Normal(0, v−1) V ∼ Gamma

(
1
2
,
1
2

)
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then by elementary calculations, we find that

fY (y) =
1
π

1
1 + y2

y ∈ R ∴ Y ∼ Cauchy.

The scale mixture of normal distributions family includes the Student, Double Exponential and
Logistic as special cases.

Moments of location-scale mixtures can be computed using the law of iterated expectation. The
location-scale mixture construction allows the modelling of

• skewness through the mixture over different locations
• kurtosis through the mixture over different scales

Example : Location-Scale Mixtures of Normal Distributions

Suppose M and V are independent, with

M ∼ Exponential(1/2) V ∼ Gamma(2, 1/2)

and
Y |M = m,V = v ∼ Normal(m, 1/v)

Then the marginal distribution of Y is given by

fY (y) =
∫ ∞

0

∫ ∞

0
fY |M,V (y|m, v)fM (m)fV (v) dm dv

which can most readily be examined by simulation. The figure below depicts a histogram of
10000 values simulated from the model, and demonstrates the skewness of the marginal of Y .
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