556: Mathematical Statistics I

Multivariate Expectations: Covariance And Correlation

Recall that for vector random variable $\underset{\sim}{X}=\left(X_{1}, \ldots, X_{k}\right)^{\top}$, and vector function $\underset{\sim}{g}($.$) , we have that$

$$
E_{f_{\underset{X}{X}}}[\underset{\sim}{g}(\underset{\sim}{X})]=\int \cdots \int \underset{\sim}{g}(\underset{\sim}{x}) f_{\underset{\sim}{X}}^{X}(\underset{\sim}{x}) d \underset{\sim}{x}
$$

We can consider multivariate moments (or cross moments) by choosing a particular scalar g : for integers $r_{1}, r_{2}, \ldots, r_{k} \geq 0$,

$$
E_{f_{\sim}^{X}}[\underset{\sim}{g}(\underset{\sim}{X})]=E_{f_{\sim}^{X}}\left[X_{1}^{r_{1}} X_{2}^{r_{2}} \ldots X_{k}^{r_{k}}\right] .
$$

The multivariate version of generating functions can be used to compute such moments; recall that

$$
M_{\underset{\sim}{X}}(\underset{\sim}{t})=E_{f_{\underset{\sim}{X}}}\left[\exp \left\{\sum_{j=1}^{k} t_{j} X_{j}\right\}\right]
$$

If $r=r_{1}+r_{2}+\cdots+r_{k}$, where each r_{j} is a non-negative integer, we have that

$$
\frac{\partial^{r}}{\partial t_{1}^{r_{1}} \partial t_{2}^{r_{2}} \cdots \partial t_{k}^{r_{k}}}\left\{M_{X}(\underset{\sim}{t})\right\}_{\underset{\sim}{t=\mathbf{0}}}=E_{f_{\underset{X}{X}}}\left[X_{1}^{r_{1}} X_{2}^{r_{2}} \ldots X_{k}^{r_{k}}\right] .
$$

For example, if $k=2$, we have that

$$
\frac{\partial^{2}}{\partial t_{1} \partial t_{2}}\left\{M_{X_{1}, X_{2}}\left(t_{1}, t_{2}\right)\right\}_{t_{1}=0, t_{2}=0}=E_{f_{X_{1}, X_{2}}}\left[X_{1} X_{2}\right]
$$

COVARIANCE AND CORRELATION

- The covariance of two random variables X_{1} and X_{2} is denoted $\operatorname{Cov}_{f_{X_{1}, X_{2}}}\left[X_{1}, X_{2}\right]$, and is defined by

$$
\operatorname{Cov}_{f_{X_{1}, X_{2}}}\left[X_{1}, X_{2}\right]=E_{f_{X_{1}, X_{2}}}\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]=E_{f_{X_{1}, X_{2}}}\left[X_{1} X_{2}\right]-\mu_{1} \mu_{2}
$$

where $\mu_{i}=E_{f_{X_{i}}}\left[X_{i}\right]$ is the marginal expectation of X_{i}, for $i=1,2$.

- The correlation of X_{1} and X_{2} is denoted $\operatorname{Corr}_{f_{X_{1}, X_{2}}}\left[X_{1}, X_{2}\right]$, and is defined by

$$
\operatorname{Corr}_{f_{X_{1}, X_{2}}}\left[X_{1}, X_{2}\right]=\frac{\operatorname{Cov}_{f_{X_{1}, X_{2}}}\left[X_{1}, X_{2}\right]}{\sqrt{\operatorname{Var}_{f_{X_{1}}}\left[X_{1}\right] \operatorname{Var}_{f_{X_{2}}}\left[X_{2}\right]}}
$$

NOTES:

(i) If

$$
\operatorname{Cov}_{f_{X_{1}, X_{2}}}\left[X_{1}, X_{2}\right]=\operatorname{Corr}_{f_{X_{1}, X_{2}}}\left[X_{1}, X_{2}\right]=0
$$

then variables X_{1} and X_{2} are uncorrelated. Note that if random variables X_{1} and X_{2} are independent then

$$
\operatorname{Cov}_{f_{X_{1}, X_{2}}}\left[X_{1}, X_{2}\right]=E_{f_{X_{1}, X_{2}}}\left[X_{1} X_{2}\right]-E_{f_{X_{1}}}\left[X_{1}\right] E_{f_{X_{2}}}\left[X_{2}\right]=E_{f_{X_{1}}}\left[X_{1}\right] E_{f_{X_{2}}}\left[X_{2}\right]-E_{f_{X_{1}}}\left[X_{1}\right] E_{f_{X_{2}}}\left[X_{2}\right]=0
$$

and so X_{1} and X_{2} are also uncorrelated (note that the converse does not hold).
(ii) For random variables X_{1} and X_{2}, with (marginal) expectations μ_{1} and μ_{2} respectively, and (marginal) variances σ_{1}^{2} and σ_{2}^{2} respectively, if random variables Z_{1} and Z_{2} are defined

$$
Z_{1}=\frac{X_{1}-\mu_{1}}{\sigma_{1}} \quad Z_{2}=\frac{X_{2}-\mu_{2}}{\sigma_{2}}
$$

that is, Z_{1} and Z_{2} are standardized variables. Then

$$
\operatorname{Corr}_{f_{X_{1}, X_{2}}}\left[X_{1}, X_{2}\right]=\operatorname{Cov}_{f_{Z_{1}, Z_{2}}}\left[Z_{1}, Z_{2}\right] .
$$

(iii) Extension to k variables: covariances can only be calculated for pairs of random variables, but if k variables have a joint probability structure it is possible to construct a $k \times k$ matrix, $\mathbf{C}_{\mathbf{X}}$ say, of covariance values, whose (i, j) th element is

$$
\operatorname{Cov}_{f_{X_{i}, X_{j}}}\left[X_{i}, X_{j}\right]
$$

for $i, j=1, . ., k$, that captures the complete covariance structure in the joint distribution. If $i \neq j$, then

$$
\operatorname{Cov}_{f_{X_{j}, X_{i}}}\left[X_{j}, X_{i}\right]=\operatorname{Cov}_{{X_{X}, X_{j}}}\left[X_{i}, X_{j}\right]
$$

so $\mathbf{C}_{\mathbf{X}}$ is symmetric, and if $i=j$,

$$
\operatorname{Cov}_{f_{X_{i}, X_{i}}}\left[X_{i}, X_{i}\right] \equiv \operatorname{Var}_{f_{X_{i}}}\left[X_{i}\right]
$$

The matrix $\mathbf{C}_{\mathbf{X}}$ is referred to as the variance-covariance matrix, and we can write

$$
\mathbf{C}_{\mathbf{X}}=\operatorname{Var}_{f_{\sim}^{X}}[\underset{\sim}{X}] .
$$

(iv) If $\underset{\sim}{X}$ is a $k \times 1$ vector random variable with variance-covariance matrix $\mathbf{C}_{\mathbf{X}}$, let \mathbf{A} be a $d \times k$ matrix. Then $\underset{\sim}{Y}=\mathbf{A} \underset{\sim}{X}$ is a $d \times 1$ vector random variable, and

$$
\operatorname{Var}_{f_{\underline{Y}}}[\underset{\sim}{Y}]=\operatorname{Var}_{f_{\underline{X}}}[\mathbf{A} \underset{\sim}{X}]=\mathbf{A} \operatorname{Var}_{f_{\underline{X}}}[\underset{\sim}{X}] \mathbf{A}^{\top}
$$

so that

$$
\mathbf{C}_{\mathbf{Y}}=\mathbf{A} \mathbf{C}_{\mathbf{X}} \mathbf{A}^{\top}
$$

is the $d \times d$ variance-covariance matrix for $\underset{\sim}{Y}$.
(v) If random variable X is defined by $X=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{k} X_{k}$, for random variables X_{1}, \ldots, X_{k} and constants a_{1}, \ldots, a_{k}, then

$$
\begin{aligned}
E_{f_{X}}[X] & =\sum_{i=1}^{k} a_{i} E_{f_{X_{i}}}\left[X_{i}\right] \\
\operatorname{Var}_{f_{X}}[X] & =\sum_{i=1}^{k} a_{i}^{2} \operatorname{Var}_{f_{X_{i}}}\left[X_{i}\right]+2 \sum_{i=1}^{k} \sum_{j=1}^{i-1} a_{i} a_{j} \operatorname{Cov}_{f_{X_{i}, X_{j}}}\left[X_{i}, X_{j}\right]
\end{aligned}
$$

(vi) Combining the results above when $k=2$, and defining standardized variables Z_{1} and Z_{2} as in (ii), we have

$$
\begin{aligned}
0 \leq \operatorname{Var}_{f_{Z_{1}, Z_{2}}}\left[Z_{1} \pm Z_{2}\right] & =\operatorname{Var}_{f_{Z_{1}}}\left[Z_{1}\right]+\operatorname{Var}_{f_{Z_{2}}}\left[Z_{2}\right] \pm 2 \operatorname{Cov}_{f_{Z_{1}, Z_{2}}}\left[Z_{1}, Z_{2}\right] \\
& =1+1 \pm 2 \operatorname{Corr}_{f_{X_{1}, X_{2}}}\left[X_{1}, X_{2}\right]=2\left(1 \pm \operatorname{Corr}_{f_{X_{1}, X_{2}}}\left[X_{1}, X_{2}\right]\right)
\end{aligned}
$$

and hence

$$
-1 \leq \operatorname{Corr}_{f_{X_{1}, X_{2}}}\left[X_{1}, X_{2}\right] \leq 1
$$

