556: Mathematical Statistics I

 EXPECTATIONS

 EXPECTATIONS}

- Random variable X
- Mass/density function f_{X} with support \mathbb{X}.
- Expectation

$$
E_{f_{X}}[X]= \begin{cases}\sum_{x \in \mathbb{X}} x f_{X}(x) & X \text { discrete } \\ \int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{\mathbb{X}} x f_{X}(x) d x & X \text { continuous }\end{cases}
$$

In the discrete case, if X only takes values on (a subset of) the integers, we can also write

$$
E_{f_{X}}[X]=\sum_{x=-\infty}^{\infty} x f_{X}(x)
$$

- Extension: Let g be a real-valued function whose domain includes X. Then

$$
E_{f_{X}}[g(X)]=\left\{\begin{array}{cl}
\sum_{x=-\infty}^{\infty} g(x) f_{X}(x) & X \text { discrete } \\
\int_{-\infty}^{\infty} g(x) f_{X}(x) d x & X \text { continuous }
\end{array}\right.
$$

Note that the sum/integral may be divergent, so that the expectation is not finite.
All definitions, and the following properties, extend to the vector random variable case.

Properties

1 Linearity: Let g and h be real-valued functions whose domains include \mathbb{X}, and let a and b be constants.

$$
\begin{aligned}
E_{f_{X}}[a g(X)+b h(X)] & =\int[a g(x)+b h(x)] f_{X}(x) d x \\
& =a \int g(x) f_{X}(x) d x+b \int h(x) f_{X}(x) d x \\
& =a E_{f_{X}}[g(X)]+b E_{f_{X}}[h(X)]
\end{aligned}
$$

Hence, for example,

$$
E_{f_{X}}[a X+b]=a E_{f_{X}}[X]+b
$$

2 Let $\mu=E_{f_{X}}[X]$, and consider $g(x)=(x-\mu)^{2}$. Then

$$
\begin{aligned}
E_{f_{X}}[g(X)] & =\int(x-\mu)^{2} f_{X}(x) d x=\int x^{2} f_{X}(x) d x-2 \mu \int x f_{X}(x) d x+\mu^{2} \int f_{X}(x) d x \\
& =\int x^{2} f_{X}(x) d x-2 \mu^{2}+\mu^{2}=\int x^{2} f_{X}(x) d x-\mu^{2} \\
& =E_{f_{X}}\left[X^{2}\right]-\left\{E_{f_{X}}[X]\right\}^{2}
\end{aligned}
$$

Thus
(i) Variance: $\operatorname{Var}_{f_{X}}[X]=E_{f_{X}}\left[X^{2}\right]-\left\{E_{f_{X}}[X]\right\}^{2}$
(ii) Standard deviation $\sqrt{\operatorname{Var}_{f_{X}}[X]}$

3 Consider $g(x)=x^{r}$ for $r=1,2, \ldots$. Then in the continuous case

$$
E_{f_{X}}[g(X)]=E_{f_{X}}\left[X^{r}\right]=\int x^{r} f_{X}(x) d x
$$

and $E_{f_{X}}\left[X^{r}\right]$ is the r th moment of the distribution.
4 Consider $g(x)=(x-\mu)^{r}$ for $r=1,2, \ldots$. Then

$$
E_{f_{X}}[g(X)]=E_{f_{X}}\left[(X-\mu)^{r}\right]=\int(x-\mu)^{r} f_{X}(x) d x
$$

and $E_{f_{X}}\left[(X-\mu)^{r}\right]$ is the r th central moment of the distribution.
5 Consider $g(x)=a X+b$. Then

$$
\begin{aligned}
\operatorname{Var}_{f_{X}}[g(X)]=E_{f_{X}}\left[\left(a X+b-E_{f_{X}}[a X+b]\right)^{2}\right] & =E_{f_{X}}\left[\left(a X+b-a E_{f_{X}}[X]-b\right)^{2}\right] \\
& =E_{f_{X}}\left[\left(a^{2}\left(X-E_{f_{X}}[X]\right)^{2}\right]\right. \\
& =a^{2} \operatorname{Var}_{f_{X}}[X] .
\end{aligned}
$$

so

$$
\operatorname{Var}_{f_{X}}[a X+b]=a^{2} \operatorname{Var}_{f_{X}}[X] .
$$

6 Consider $g(x)=e^{t x}$, for constant $t \in(-h, h)$ for some $h>0$, and

$$
M_{X}(t)=E_{f_{X}}[g(X)]=E_{f_{X}}\left[e^{t X}\right] .
$$

Then $M_{X}(t)$ is the moment generating function.
7 Consider $K_{X}(t)=\log M_{X}(t)$. Then $K_{X}(t)$ is the cumulant generating function.
8 Consider $g(x)=e^{i t x}$, where $i=\sqrt{-1}$.

$$
C_{X}(t)=E_{f_{X}}[g(X)]=E_{f_{X}}\left[e^{i t X}\right] .
$$

Then $C_{X}(t)$ is the characteristic function.

In the discrete case, for each of these properties, we replace integrals by sums.
Note that in the vector random variable case, generating functions have vector arguments. For example, the joint mgf for vector r.v. $\underset{\sim}{X}=\left(X_{1}, \ldots, X_{k}\right)^{\top}$ is a function of $\underset{\sim}{t}=\left(t_{1}, \ldots, t_{k}\right)^{\top}$

$$
M_{\underset{\sim}{X}}(\underset{\sim}{t})=E_{f_{\underset{X}{X}}}\left[\exp \left\{\underset{\sim}{t^{\top}} \underset{\sim}{X}\right\}\right]=E_{f_{\underset{X}{X}}}\left[\exp \left\{\sum_{j=1}^{k} t_{j} X_{j}\right\}\right]
$$

