
MATH 556: PROBABILITY PRIMER

1 DEFINITIONS, TERMINOLOGY, NOTATION

1.1 EVENTS AND THE SAMPLE SPACE

Definition 1.1 An experiment is a one-off or repeatable process or procedure for which
(a) there is a well-defined set of possible outcomes
(b) the actual outcome is not known with certainty.

Definition 1.2 A sample outcome, ω, is precisely one of the possible outcomes of an experiment.

Definition 1.3 The sample space, Ω, of an experiment is the set of all possible outcomes.

NOTE : Ω is a set in the mathematical sense, so set theory notation can be used. For example, if the
sample outcomes are denoted ω1, . . . , ωk, say, then

Ω = {ω1, . . . , ωk} = {ωi : i = 1, . . . , k} ,

and ωi ∈ Ω for i = 1, . . . , k.

The sample space of an experiment can be

- a FINITE list of sample outcomes, {ω1, . . . , ωk}
- an INFINITE list of sample outcomes, {ω1, ω2, . . .}
- an INTERVAL or REGION of a real space,

{
ω : ω ∈ A ⊆ Rd

}

Definition 1.4 An event, E, is a designated collection of sample outcomes. Event E occurs if the
actual outcome of the experiment is one of this collection.

Special Cases of Events

The event corresponding to collection of all sample outcomes is Ω.

The event corresponding to a collection of none of the sample outcomes is denoted ∅.

i.e. The sets ∅ and Ω are also events, termed the impossible and the certain event respectively, and for
any event E, E ⊆ Ω.

1.1.1 OPERATIONS IN SET THEORY

Set theory operations can be used to manipulate events in probability theory. Consider events E, F ⊆
Ω. Then the three basic operations are

UNION E ∪ F “E or F or both occur”
INTERSECTION E ∩ F “both E and F occur”
COMPLEMENT E′ “E does not occur”
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Properties of Union/Intersection operators
Consider events E, F, G ⊆ Ω.

COMMUTATIVITY E ∪ F = F ∪ E
E ∩ F = F ∩ E

ASSOCIATIVITY E ∪ (F ∪G) = (E ∪ F ) ∪G
E ∩ (F ∩G) = (E ∩ F ) ∩G

DISTRIBUTIVITY E ∪ (F ∩G) = (E ∪ F ) ∩ (E ∪G)
E ∩ (F ∪G) = (E ∩ F ) ∪ (E ∩G)

DE MORGAN’S LAWS (E ∪ F )
′
= E

′ ∩ F
′

(E ∩ F )
′
= E

′ ∪ F
′

Union and intersection are binary operators, that is, they take only two arguments, and thus the brack-
eting in the above equations is necessary. For k ≥ 2 events, E1, E2, . . . , Ek,

k⋃

i=1

Ei = E1 ∪ . . . ∪ Ek and
k⋂

i=1

Ei = E1 ∩ . . . ∩ Ek

for the union and intersection of E1, E2, . . . , Ek, with a further extension for k infinite.

1.1.2 MUTUALLY EXCLUSIVE EVENTS AND PARTITIONS

Definition 1.5 Events E and F are mutually exclusive if E ∩ F = ∅, that is, if events E and F cannot
both occur. If the sets of sample outcomes represented by E and F are disjoint (have no common
element), then E and F are mutually exclusive.

Definition 1.6 Events E1, . . . , Ek ⊆ Ω form a partition of event F ⊆ Ω if
(a) Ei ∩ Ej = ∅ for i 6= j, i, j = 1, . . . , k

(b)
k⋃

i=1
Ei = F .

so that each element of the collection of sample outcomes corresponding to event F is in one and only
one of the collections corresponding to events E1, . . . , Ek.

In Figure 1, we have Ω =
6⋃

i=1
Ei. In Figure 2, we have F =

6⋃
i=1

(F ∩ Ei), but, for example, F ∩E6 = ∅.

1.2 THE PROBABILITY FUNCTION

Definition 1.7 For an event E ⊆ Ω, the probability that E occurs is written P (E).

Interpretation : P (.) is a set-function that assigns “weight” to collections of possible outcomes of an
experiment. There are many ways to think about precisely how this assignment is achieved;

CLASSICAL : “Consider equally likely sample outcomes ...”

FREQUENTIST : “Consider long-run relative frequencies ...”

SUBJECTIVE : “Consider personal degree of belief ...”

or merely think of P (.) as a set-function.
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Figure 1: Partition of Ω

Figure 2: Partition of F ⊂ Ω
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1.3 PROPERTIES OF P(.): THE AXIOMS OF PROBABILITY

Consider sample space Ω. Then probability function P (.) satisfies the following properties:

AXIOM 1 Let E ⊆ Ω. Then 0 ≤ P (E) ≤ 1.

AXIOM 2 P (Ω) = 1.

AXIOM 3 If E, F ⊆ Ω, with E ∩ F = ∅, then P (E ∪ F ) = P (E) + P (F ).

1.3.1 EXTENSIONS : ALGEBRAS AND SIGMA ALGEBRAS

Axiom 3 can be re-stated if we can consider an algebra A of subsets of Ω. A (countable) collection of
subsets, A, of sample space Ω, say A = {A1, A2, . . .}, is an algebra if

I Ω ∈ A
II A1, A2 ∈ A =⇒ A1 ∪A2 ∈ A

III A ∈ A =⇒ A′ ∈ A
NOTE : An algebra is a set of sets (events) with certain properties; in particular it is closed under a
finite number of union operations (II), that is if A1, . . . , Ak ∈ A, then

k⋃

i=1

Ai ∈ A.

If A is an algebra of subsets of Ω, then
(i) ∅ ∈ A
(ii) If A1, A2 ∈ A, then

A′1, A
′
2 ∈ A =⇒ A′1 ∪A′2 ∈ A =⇒ (

A′1 ∪A′2
)′ ∈ A =⇒ A1 ∩A2 ∈ A

so A is also closed under intersection.

Extension: A sigma-algebra (σ−algebra) is an algebra that is closed under countable union, that is, if
A1, . . . , Ak, . . . ∈ A, then

∞⋃

k=1

Ak ∈ A.

Now, if events A1, A2, . . . are disjoint elements ofA, then we can replace Axiom 3 by requiring that, for
n ≥ 1,

AXIOM 3∗ P

(
n⋃

i=1

Ai

)
=

n∑

i=1

P(Ai).

Furthermore, if A is a σ-algebra, then Axiom 3∗ can be replaced by

AXIOM 3† P

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

P(Ai).

Thus, if A is a σ-algebra, then

AXIOM 3† =⇒ AXIOM 3∗ =⇒ AXIOM 3

COUNTABLE ADDITIVITY =⇒ FINITE ADDITIVITY =⇒ ADDITIVITY
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1.3.2 COROLLARIES TO THE PROBABILITY AXIOMS

For events E, F ⊆ Ω

1 P (E′) = 1− P (E), and hence P (∅) = 0.

2 If E ⊆ F , then P (E) ≤ P (F ).

3 In general, P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ).

4 P (E ∩ F ′) = P (E)− P (E ∩ F ).

5 P (E ∪ F ) ≤ P (E) + P (F ).

6 P (E ∩ F ) ≥ P (E) + P (F )− 1.

NOTE : The general addition rule for probabilities and Boole’s Inequality extend to more than two
events. Let E1, . . . , En be events in Ω. Then

P

(
n⋃

i=1

Ei

)
=

∑

i

P (Ei)−
∑

i<j

P (Ei ∩ Ej) +
∑

i<j<k

P (Ei ∩ Ej ∩ Ek)− . . . + (−1)nP

(
n⋂

i=1

Ei

)

and

P

(
n⋃

i=1

Ei

)
≤

n∑

i=1

P (Ei).

To prove these results, construct the events F1 = E1 and

Fi = Ei ∩
(

i−1⋃

k=1

Ek

)′

for i = 2, 3, . . . , n. Then F1, F2, . . . , Fn are disjoint, and
n⋃

i=1
Ei =

n⋃
i=1

Fi,so

P

(
n⋃

i=1

Ei

)
= P

(
n⋃

i=1

Fi

)
=

n∑

i=1

P (Fi).

Now, by the corollary above

P (Fi) = P (Ei)− P

(
Ei ∩

(
i−1⋃
k=1

Ek

))
i = 2, 3, . . . , n.

= P (Ei)− P

(
i−1⋃
k=1

(Ei ∩ Ek)
)

and the result follows by recursive expansion of the second term for i = 2, 3, . . . , n.

NOTE : We will often deal with both probabilities of single events, and also probabilities for
intersection events. For convenience, and to reflect connections with distribution theory, we will use
the following terminology; for events E and F

P (E) is the marginal probability of E

P (E ∩ F ) is the joint probability of E and F
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1.4 CONDITIONAL PROBABILITY

Definition 1.8 For events E, F ⊆ Ω the conditional probability that F occurs given that E occurs is
written P(F |E), and is defined by

P (F |E) =
P (E ∩ F )

P (E)

if P(E) > 0.

NOTE: P (E ∩ F ) = P (E)P (F |E), and in general, for events E1, . . . , Ek,

P

(
k⋂

i=1

Ei

)
= P (E1)P (E2|E1)P (E2|E1 ∩ E2) . . . P (Ek|E1 ∩ E2 ∩ . . . ∩ Ek−1).

This result is known as the CHAIN or MULTIPLICATION RULE.

Definition 1.9 Events E and F are independent if

P (E|F ) = P (E) so that P (E ∩ F ) = P (E)P (F )

Extension : Events E1, . . . , Ek are independent if, for every subset of events of size l ≤ k, indexed by
{i1, . . . , il}, say,

P




l⋂

j=1

Eij


 =

l∏

j=1

P (Eij ).

1.5 THE THEOREM OF TOTAL PROBABILITY

THEOREM

Let E1, . . . , Ek be a partition of Ω, and let F ⊆ Ω. Then

P (F ) =
k∑

i=1

P (F |Ei)P (Ei)

PROOF
E1, . . . , Ek form a partition of Ω, and F ⊆ Ω, so

F = (F ∩ E1) ∪ . . . ∪ (F ∩ Ek)

=⇒ P (F ) =
k∑

i=1
P (F ∩ Ei) =

k∑
i=1

P (F |Ei)P (Ei)

(by AXIOM 3∗, asEi ∩ Ej = ∅).

Extension: If we assume that Axiom 3† holds, that is, that P is countably additive, then the theorem
still holds, that is, if E1, E2, . . . are a partition of Ω, and F ⊆ Ω, then

P (F ) =
∞∑

i=1

P (F ∩ Ei) =
∞∑

i=1

P (F |Ei)P (Ei)

if P(Ei) > 0 for all i.
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1.6 BAYES THEOREM

THEOREM

Suppose E, F ⊆ Ω, with P(E),P(F ) > 0. Then

P (E|F ) =
P (F |E)P (E)

P (F )

PROOF

P (E|F )P (F ) = P (E ∩ F ) = P (F |E)P (E), so P (E|F )P (F ) = P (F |E)P (E).

Extension: If E1, . . . , Ek are disjoint, with P(Ei) > 0 for i = 1, . . . , k, and form a partition of F ⊆ Ω,
then

P (Ei|F ) =
P (F |Ei)P (Ei)

k∑

i=1

P (F |Ei)P (Ei)

The extension to the countably additive (infinite) case also holds.

NOTE: in general, P (E|F ) 6= P (F |E)

1.7 COUNTING TECHNIQUES

Suppose that an experiment has N equally likely sample outcomes. If event E corresponds to a collec-
tion of sample outcomes of size n(E), then

P (E) =
n(E)
N

so it is necessary to be able to evaluate n(E) and N in practice.

1.7.1 THE MULTIPLICATION PRINCIPLE

If operations labelled 1, . . . , r can be carried out in n1, . . . , nr ways respectively, then there are

r∏

i=1

ni = n1 × . . .× nr

ways of carrying out the r operations in total.

Example 1.1 If each of r trials of an experiment has N possible outcomes, then there are N r possible
sequences of outcomes in total. For example:

(i) If a multiple choice exam has 20 questions, each of which has 5 possible answers, then there are
520 different ways of completing the exam.

(ii) There are 2m subsets of m elements (as each element is either in the subset, or not in the subset,
which is equivalent to m trials each with two outcomes).
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1.7.2 SAMPLING FROM A FINITE POPULATION

Consider a collection of N items, and a sequence of operations labelled 1, . . . , r such that the ith op-
eration involves selecting one of the items remaining after the first i− 1 operations have been carried
out. Let ni denote the number of ways of carrying out the ith operation, for i = 1, . . . , r. Then there
are two distinct cases;

(a) Sampling with replacement : an item is returned to the collection after selection. Then ni = N
for all i, and there are N r ways of carrying out the r operations.

(b) Sampling without replacement : an item is not returned to the collection after selected. Then
ni = N − i + 1, and there are N(N − 1) . . . (N − r + 1) ways of carrying out the r operations.

e.g. Consider selecting 5 cards from 52. Then

(a) leads to 525 possible selections, whereas
(b) leads to 52× 51× 50× 49× 48 possible selections

NOTE : The order in which the operations are carried out may be important
e.g. in a raffle with three prizes and 100 tickets, the draw {45, 19, 76} is different from {19, 76, 45}.

NOTE : The items may be distinct (unique in the collection), or indistinct (of a unique type in the
collection, but not unique individually).
e.g. The numbered balls in a lottery, or individual playing cards, are distinct. However balls in the
lottery are regarded as “WINNING” or “NOT WINNING”, or playing cards are regarded in terms of
their suit only, are indistinct.

1.7.3 PERMUTATIONS AND COMBINATIONS

Definition 1.10 A permutation is an ordered arrangement of a set of items.
A combination is an unordered arrangement of a set of items.

RESULT 1 The number of permutations of n distinct items is n! = n(n− 1) . . . 1.

RESULT 2 The number of permutations of r from n distinct items is

Pn
r =

n!
(n− r)!

= n(n− 1)× . . .× (n− r + 1) (by the Multiplication Principle).

If the order in which items are selected is not important, then

RESULT 3 The number of combinations of r from n distinct items is

Cn
r =

(
n

r

)
=

n!
r!(n− r)!

(asPn
r = r!Cn

r ).

-recall the Binomial Theorem, namely

(a + b)n =
n∑

i=0

(
n

i

)
aibn−i.

Then the number of subsets of m items can be calculated as follows; for each 0 ≤ j ≤ m, choose a
subset of j items from m. Then

Total number of subsets =
m∑

j=0

(
m

j

)
= (1 + 1)m = 2m.
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If the items are indistinct, but each is of a unique type, say Type I, . . ., Type κ say, (the so-called Urn
Model) then

RESULT 4 The number of distinguishable permutations of n indistinct objects, comprising ni items of
type i for i = 1, . . . , κ is

n!
n1!n2! . . . nκ!

Special Case : if κ = 2, then the number of distinguishable permutations of the n1 objects of type I, and
n2 = n− n1 objects of type II is

Cn
n2

=
n!

n1!(n− n1)!

Also, there are Cn
r ways of partitioning n distinct items into two “cells”, with r in one cell and n− r in

the other.

1.7.4 PROBABILITY CALCULATIONS

Recall that if an experiment has N equally likely sample outcomes, and event E corresponds to a
collection of sample outcomes of size n(E), then

P (E) =
n(E)
N

Example 1.2 A True/False exam has 20 questions. Let E = “16 answers correct at random”. Then

P (E) =
Number of ways of getting 16 out of 20 correct

Total number of ways of answering 20 questions
=

(
20
16

)

220
= 0.0046

Example 1.3 Sampling without replacement. Consider an Urn Model with 10 Type I objects and 20 Type
II objects, and an experiment involving sampling five objects without replacement. Let E=“precisely 2
Type I objects selected” We need to calculate N and n(E) in order to calculate P(E). In this case N is
the number of ways of choosing 5 from 30 items, and hence

N =
(

30
5

)

To calculate n(E), we think of E occurring by first choosing 2 Type I objects from 10, and then
choosing 3 Type II objects from 20, and hence, by the multiplication rule,

n(E) =
(

10
2

)(
20
3

)

Therefore

P (E) =

(
10
2

)(
20
3

)

(
30
5

) = 0.360
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This result can be obtained using a conditional probability argument; consider event F ⊆ E, where F
= “sequence of objects 11222 obtained”. Then

F =
5⋂

i=1
Fij

where Fij = “type j object obtained on draw i” i = 1, . . . , 5, j = 1, 2. Then

P (F ) = P (F11)P (F21|F11) . . . P (F52|F11, F21, F32, F42) =
10
30

9
29

20
28

19
27

18
26

Now consider event G where G = “sequence of objects 12122 obtained”. Then

P (G) =
10
30

20
29

9
28

19
27

18
26

i.e. P (G) = P (F ). In fact, any sequence containing two Type I and three Type II objects has this

probability, and there are
(

5
2

)
such sequences. Thus, as all such sequences are mutually exclusive,

P (E) =
(

5
2

)
10
30

9
29

20
28

19
27

18
26

=

(
10
2

)(
20
3

)
(
30
5

) .

Example 1.4 Sampling with replacement. Consider an Urn Model with 10 Type I objects and 20 Type II
objects, and an experiment involving sampling five objects with replacement. Let E = “precisely 2
Type I objects selected”. Again, we need to calculate N and n(E) in order to calculate P(E). In this
case N is the number of ways of choosing 5 from 30 items with replacement, and hence

N = 305

To calculate n(E), we think of E occurring by first choosing 2 Type I objects from 10, and 3 Type II
objects from 20 in any order. Consider such sequences of selection

Sequence Number of ways

1 1 2 2 2 10× 10× 20× 20× 20
1 2 1 2 2 10× 20× 10× 20× 20

...
...

etc., and thus a sequence with 2 Type I objects and 3 Type II objects can be obtained in 102203 ways.

As before there are
(

5
2

)
such sequences, and thus

P (E) =

(
5
2

)
102203

305
= 0.329.

Again, this result can be obtained using a conditional probability argument; consider event F ⊆ E,
where F = “sequence of objects 11222 obtained”. Then

P (F ) =
(

10
30

)2 (
20
30

)3

as the results of the draws are independent. This result is true for any sequence containing two Type I

and three Type II objects, and there are
(

5
2

)
such sequences that are mutually exclusive, so

P (E) =
(

5
2

)(
10
30

)2 (
20
30

)3
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