MATH 556: PROBABILITY PRIMER

1 DEFINITIONS, TERMINOLOGY, NOTATION

1.1 EVENTS AND THE SAMPLE SPACE

Definition 1.1 An experiment is a one-off or repeatable process or procedure for which
(a) there is a well-defined set of possible outcomes
(b) the actual outcome is not known with certainty.

Definition 1.2 A sample outcome, ω, is precisely one of the possible outcomes of an experiment.

Definition 1.3 The sample space, Ω, of an experiment is the set of all possible outcomes.

NOTE : Ω is a set in the mathematical sense, so set theory notation can be used. For example, if the sample outcomes are denoted $\omega_{1}, \ldots, \omega_{k}$, say, then

$$
\Omega=\left\{\omega_{1}, \ldots, \omega_{k}\right\}=\left\{\omega_{i}: i=1, \ldots, k\right\}
$$

and $\omega_{i} \in \Omega$ for $i=1, \ldots, k$.
The sample space of an experiment can be

- a FINITE list of sample outcomes, $\left\{\omega_{1}, \ldots, \omega_{k}\right\}$
- an INFINITE list of sample outcomes, $\left\{\omega_{1}, \omega_{2}, \ldots\right\}$
- an INTERVAL or REGION of a real space, $\left\{\omega: \omega \in A \subseteq \mathbb{R}^{d}\right\}$

Definition 1.4 An event, E, is a designated collection of sample outcomes. Event E occurs if the actual outcome of the experiment is one of this collection.

Special Cases of Events

The event corresponding to collection of all sample outcomes is Ω.
The event corresponding to a collection of none of the sample outcomes is denoted \emptyset.
i.e. The sets \emptyset and Ω are also events, termed the impossible and the certain event respectively, and for any event $E, E \subseteq \Omega$.

1.1.1 OPERATIONS IN SET THEORY

Set theory operations can be used to manipulate events in probability theory. Consider events $E, F \subseteq$ Ω. Then the three basic operations are

UNION	$E \cup F$	" E or F or both occur"
INTERSECTION	$E \cap F$	"both E and F occur"
COMPLEMENT	E^{\prime}	" E does not occur"

Properties of Union/Intersection operators

Consider events $E, F, G \subseteq \Omega$.

$$
\begin{array}{ll}
\text { COMMUTATIVITY } & E \cup F=F \cup E \\
& E \cap F=F \cap E \\
\text { ASSOCIATIVITY } & E \cup(F \cup G)=(E \cup F) \cup G \\
& E \cap(F \cap G)=(E \cap F) \cap G \\
\text { DISTRIBUTIVITY } & E \cup(F \cap G)=(E \cup F) \cap(E \cup G) \\
& E \cap(F \cup G)=(E \cap F) \cup(E \cap G) \\
\text { DE MORGAN'S LAWS } & (E \cup F)^{\prime}=E^{\prime} \cap F^{\prime} \\
& (E \cap F)^{\prime}=E^{\prime} \cup F^{\prime}
\end{array}
$$

Union and intersection are binary operators, that is, they take only two arguments, and thus the bracketing in the above equations is necessary. For $k \geq 2$ events, $E_{1}, E_{2}, \ldots, E_{k}$,

$$
\bigcup_{i=1}^{k} E_{i}=E_{1} \cup \ldots \cup E_{k} \quad \text { and } \quad \bigcap_{i=1}^{k} E_{i}=E_{1} \cap \ldots \cap E_{k}
$$

for the union and intersection of $E_{1}, E_{2}, \ldots, E_{k}$, with a further extension for k infinite.

1.1.2 MUTUALLY EXCLUSIVE EVENTS AND PARTITIONS

Definition 1.5 Events E and F are mutually exclusive if $E \cap F=\emptyset$, that is, if events E and F cannot both occur. If the sets of sample outcomes represented by E and F are disjoint (have no common element), then E and F are mutually exclusive.

Definition 1.6 Events $E_{1}, \ldots, E_{k} \subseteq \Omega$ form a partition of event $F \subseteq \Omega$ if
(a) $E_{i} \cap E_{j}=\emptyset$ for $i \neq j, i, j=1, \ldots, k$
(b) $\bigcup_{i=1}^{k} E_{i}=F$.
so that each element of the collection of sample outcomes corresponding to event F is in one and only one of the collections corresponding to events E_{1}, \ldots, E_{k}.

In Figure 1, we have $\Omega=\bigcup_{i=1}^{6} E_{i}$. In Figure 2, we have $F=\bigcup_{i=1}^{6}\left(F \cap E_{i}\right)$, but, for example, $F \cap E_{6}=\emptyset$.

1.2 THE PROBABILITY FUNCTION

Definition 1.7 For an event $E \subseteq \Omega$, the probability that E occurs is written $P(E)$.
Interpretation : $P($.$) is a set-function that assigns "weight" to collections of possible outcomes of an$ experiment. There are many ways to think about precisely how this assignment is achieved;

CLASSICAL : "Consider equally likely sample outcomes ..."
FREQUENTIST : "Consider long-run relative frequencies ..."
SUBJECTIVE : "Consider personal degree of belief ..."
or merely think of $P($.$) as a set-function.$

Figure 1: Partition of Ω

Figure 2: Partition of $F \subset \Omega$

1.3 PROPERTIES OF P(.): THE AXIOMS OF PROBABILITY

Consider sample space Ω. Then probability function $P($.$) satisfies the following properties:$
AXIOM 1 Let $E \subseteq \Omega$. Then $0 \leq P(E) \leq 1$.
AXIOM $2 \quad P(\Omega)=1$.
$\underline{\text { AXIOM } 3}$ If $E, F \subseteq \Omega$, with $E \cap F=\emptyset$, then $P(E \cup F)=P(E)+P(F)$.

1.3.1 EXTENSIONS : ALGEBRAS AND SIGMA ALGEBRAS

Axiom 3 can be re-stated if we can consider an algebra \mathcal{A} of subsets of Ω. A (countable) collection of subsets, \mathcal{A}, of sample space Ω, say $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots\right\}$, is an algebra if

I $\Omega \in \mathcal{A}$
II $A_{1}, A_{2} \in \mathcal{A} \Longrightarrow A_{1} \cup A_{2} \in \mathcal{A}$
III $A \in \mathcal{A} \Longrightarrow A^{\prime} \in \mathcal{A}$
NOTE : An algebra is a set of sets (events) with certain properties; in particular it is closed under a finite number of union operations (II), that is if $A_{1}, \ldots, A_{k} \in \mathcal{A}$, then

$$
\bigcup_{i=1}^{k} A_{i} \in \mathcal{A}
$$

If \mathcal{A} is an algebra of subsets of Ω, then
(i) $\emptyset \in \mathcal{A}$
(ii) If $A_{1}, A_{2} \in \mathcal{A}$, then

$$
A_{1}^{\prime}, A_{2}^{\prime} \in \mathcal{A} \quad \Longrightarrow \quad A_{1}^{\prime} \cup A_{2}^{\prime} \in \mathcal{A} \quad \Longrightarrow \quad\left(A_{1}^{\prime} \cup A_{2}^{\prime}\right)^{\prime} \in \mathcal{A} \quad \Longrightarrow \quad A_{1} \cap A_{2} \in \mathcal{A}
$$

so \mathcal{A} is also closed under intersection.
Extension: A sigma-algebra (σ-algebra) is an algebra that is closed under countable union, that is, if $A_{1}, \ldots, A_{k}, \ldots \in \mathcal{A}$, then

$$
\bigcup_{k=1}^{\infty} A_{k} \in \mathcal{A}
$$

Now, if events A_{1}, A_{2}, \ldots are disjoint elements of \mathcal{A}, then we can replace Axiom 3 by requiring that, for $n \geq 1$,
$\underline{\text { AXIOM 3 }^{*}} \mathrm{P}\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mathrm{P}\left(A_{i}\right)$.
Furthermore, if \mathcal{A} is a σ-algebra, then Axiom 3^{*} can be replaced by
$\underline{\text { AXIOM }^{\dagger}} \mathrm{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mathrm{P}\left(A_{i}\right)$.
Thus, if \mathcal{A} is a σ-algebra, then

$$
\text { AXIOM } 3^{\dagger} \quad \Longrightarrow \quad \text { AXIOM } 3^{*} \quad \Longrightarrow \quad \text { AXIOM } 3
$$

COUNTABLE ADDITIVITY $\quad \Longrightarrow \quad$ FINITE ADDITIVITY $\quad \Longrightarrow$ ADDITIVITY

1.3.2 COROLLARIES TO THE PROBABILITY AXIOMS

For events $E, F \subseteq \Omega$
$1 P\left(E^{\prime}\right)=1-P(E)$, and hence $P(\emptyset)=0$.
2 If $E \subseteq F$, then $P(E) \leq P(F)$.
3 In general, $P(E \cup F)=P(E)+P(F)-P(E \cap F)$.
$4 P\left(E \cap F^{\prime}\right)=P(E)-P(E \cap F)$.
$5 P(E \cup F) \leq P(E)+P(F)$.
$6 P(E \cap F) \geq P(E)+P(F)-1$.
NOTE : The general addition rule for probabilities and Boole's Inequality extend to more than two events. Let E_{1}, \ldots, E_{n} be events in Ω. Then

$$
P\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{i} P\left(E_{i}\right)-\sum_{i<j} P\left(E_{i} \cap E_{j}\right)+\sum_{i<j<k} P\left(E_{i} \cap E_{j} \cap E_{k}\right)-\ldots+(-1)^{n} P\left(\bigcap_{i=1}^{n} E_{i}\right)
$$

and

$$
P\left(\bigcup_{i=1}^{n} E_{i}\right) \leq \sum_{i=1}^{n} P\left(E_{i}\right) .
$$

To prove these results, construct the events $F_{1}=E_{1}$ and

$$
F_{i}=E_{i} \cap\left(\bigcup_{k=1}^{i-1} E_{k}\right)^{\prime}
$$

for $i=2,3, \ldots, n$. Then $F_{1}, F_{2}, \ldots, F_{n}$ are disjoint, and $\bigcup_{i=1}^{n} E_{i}=\bigcup_{i=1}^{n} F_{i}$,so

$$
P\left(\bigcup_{i=1}^{n} E_{i}\right)=P\left(\bigcup_{i=1}^{n} F_{i}\right)=\sum_{i=1}^{n} P\left(F_{i}\right) .
$$

Now, by the corollary above

$$
\begin{aligned}
P\left(F_{i}\right) & =P\left(E_{i}\right)-P\left(E_{i} \cap\left(\bigcup_{k=1}^{i-1} E_{k}\right)\right) \quad i=2,3, \ldots, n . \\
& =P\left(E_{i}\right)-P\left(\bigcup_{k=1}^{i-1}\left(E_{i} \cap E_{k}\right)\right)
\end{aligned}
$$

and the result follows by recursive expansion of the second term for $i=2,3, \ldots, n$.

NOTE : We will often deal with both probabilities of single events, and also probabilities for intersection events. For convenience, and to reflect connections with distribution theory, we will use the following terminology; for events E and F

$$
\begin{aligned}
& P(E) \text { is the marginal probability of } E \\
& P(E \cap F) \text { is the joint probability of } E \text { and } F
\end{aligned}
$$

1.4 CONDITIONAL PROBABILITY

Definition 1.8 For events $E, F \subseteq \Omega$ the conditional probability that F occurs given that E occurs is written $\mathrm{P}(F \mid E)$, and is defined by

$$
P(F \mid E)=\frac{P(E \cap F)}{P(E)}
$$

if $\mathrm{P}(E)>0$.
NOTE: $P(E \cap F)=P(E) P(F \mid E)$, and in general, for events E_{1}, \ldots, E_{k},

$$
P\left(\bigcap_{i=1}^{k} E_{i}\right)=P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{2} \mid E_{1} \cap E_{2}\right) \ldots P\left(E_{k} \mid E_{1} \cap E_{2} \cap \ldots \cap E_{k-1}\right)
$$

This result is known as the CHAIN or MULTIPLICATION RULE.

Definition 1.9 Events E and F are independent if

$$
P(E \mid F)=P(E) \text { so that } P(E \cap F)=P(E) P(F)
$$

Extension : Events E_{1}, \ldots, E_{k} are independent if, for every subset of events of size $l \leq k$, indexed by $\left\{i_{1}, \ldots, i_{l}\right\}$, say,

$$
P\left(\bigcap_{j=1}^{l} E_{i_{j}}\right)=\prod_{j=1}^{l} P\left(E_{i_{j}}\right) .
$$

1.5 THE THEOREM OF TOTAL PROBABILITY

THEOREM

Let E_{1}, \ldots, E_{k} be a partition of Ω, and let $F \subseteq \Omega$. Then

$$
P(F)=\sum_{i=1}^{k} P\left(F \mid E_{i}\right) P\left(E_{i}\right)
$$

PROOF

E_{1}, \ldots, E_{k} form a partition of Ω, and $F \subseteq \Omega$, so

$$
\begin{aligned}
F & =\left(F \cap E_{1}\right) \cup \ldots \cup\left(F \cap E_{k}\right) \\
\Longrightarrow P(F) & =\sum_{i=1}^{k} P\left(F \cap E_{i}\right)=\sum_{i=1}^{k} P\left(F \mid E_{i}\right) P\left(E_{i}\right)
\end{aligned}
$$

(by AXIOM 3^{*}, as $E_{i} \cap E_{j}=\emptyset$).
Extension: If we assume that Axiom 3^{\dagger} holds, that is, that P is countably additive, then the theorem still holds, that is, if E_{1}, E_{2}, \ldots are a partition of Ω, and $F \subseteq \Omega$, then

$$
P(F)=\sum_{i=1}^{\infty} P\left(F \cap E_{i}\right)=\sum_{i=1}^{\infty} P\left(F \mid E_{i}\right) P\left(E_{i}\right)
$$

if $\mathrm{P}\left(E_{i}\right)>0$ for all i.

1.6 BAYES THEOREM

THEOREM

Suppose $E, F \subseteq \Omega$, with $\mathrm{P}(E), \mathrm{P}(F)>0$. Then

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F)}
$$

PROOF

$$
P(E \mid F) P(F)=P(E \cap F)=P(F \mid E) P(E), \text { so } P(E \mid F) P(F)=P(F \mid E) P(E)
$$

Extension: If E_{1}, \ldots, E_{k} are disjoint, with $\mathrm{P}\left(E_{i}\right)>0$ for $i=1, \ldots, k$, and form a partition of $F \subseteq \Omega$, then

$$
P\left(E_{i} \mid F\right)=\frac{P\left(F \mid E_{i}\right) P\left(E_{i}\right)}{\sum_{i=1}^{k} P\left(F \mid E_{i}\right) P\left(E_{i}\right)}
$$

The extension to the countably additive (infinite) case also holds.
NOTE: in general, $P(E \mid F) \neq P(F \mid E)$

1.7 COUNTING TECHNIQUES

Suppose that an experiment has N equally likely sample outcomes. If event E corresponds to a collection of sample outcomes of size $n(E)$, then

$$
P(E)=\frac{n(E)}{N}
$$

so it is necessary to be able to evaluate $n(E)$ and N in practice.

1.7.1 THE MULTIPLICATION PRINCIPLE

If operations labelled $1, \ldots, r$ can be carried out in n_{1}, \ldots, n_{r} ways respectively, then there are

$$
\prod_{i=1}^{r} n_{i}=n_{1} \times \ldots \times n_{r}
$$

ways of carrying out the r operations in total.

Example 1.1 If each of r trials of an experiment has N possible outcomes, then there are N^{r} possible sequences of outcomes in total. For example:
(i) If a multiple choice exam has 20 questions, each of which has 5 possible answers, then there are 5^{20} different ways of completing the exam.
(ii) There are 2^{m} subsets of m elements (as each element is either in the subset, or not in the subset, which is equivalent to m trials each with two outcomes).

1.7.2 SAMPLING FROM A FINITE POPULATION

Consider a collection of N items, and a sequence of operations labelled $1, \ldots, r$ such that the i th operation involves selecting one of the items remaining after the first $i-1$ operations have been carried out. Let n_{i} denote the number of ways of carrying out the i th operation, for $i=1, \ldots, r$. Then there are two distinct cases;
(a) Sampling with replacement : an item is returned to the collection after selection. Then $n_{i}=N$ for all i, and there are N^{r} ways of carrying out the r operations.
(b) Sampling without replacement : an item is not returned to the collection after selected. Then $n_{i}=N-i+1$, and there are $N(N-1) \ldots(N-r+1)$ ways of carrying out the r operations.
e.g. Consider selecting 5 cards from 52. Then
(a) leads to 52^{5} possible selections, whereas
(b) leads to $52 \times 51 \times 50 \times 49 \times 48$ possible selections

NOTE : The order in which the operations are carried out may be important
e.g. in a raffle with three prizes and 100 tickets, the draw $\{45,19,76\}$ is different from $\{19,76,45\}$.

NOTE : The items may be distinct (unique in the collection), or indistinct (of a unique type in the collection, but not unique individually).
e.g. The numbered balls in a lottery, or individual playing cards, are distinct. However balls in the lottery are regarded as "WINNING" or "NOT WINNING", or playing cards are regarded in terms of their suit only, are indistinct.

1.7.3 PERMUTATIONS AND COMBINATIONS

Definition 1.10 A permutation is an ordered arrangement of a set of items.
A combination is an unordered arrangement of a set of items.
RESULT 1 The number of permutations of n distinct items is $n!=n(n-1) \ldots 1$.
RESULT 2 The number of permutations of r from n distinct items is

$$
P_{r}^{n}=\frac{n!}{(n-r)!}=n(n-1) \times \ldots \times(n-r+1) \quad(\text { by the Multiplication Principle }) .
$$

If the order in which items are selected is not important, then
RESULT 3 The number of combinations of r from n distinct items is

$$
C_{r}^{n}=\binom{n}{r}=\frac{n!}{r!(n-r)!} \quad\left(\text { as } P_{r}^{n}=r!C_{r}^{n}\right)
$$

-recall the Binomial Theorem, namely

$$
(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}
$$

Then the number of subsets of m items can be calculated as follows; for each $0 \leq j \leq m$, choose a subset of j items from m. Then

$$
\text { Total number of subsets }=\sum_{j=0}^{m}\binom{m}{j}=(1+1)^{m}=2^{m} .
$$

If the items are indistinct, but each is of a unique type, say Type I, ..., Type κ say, (the so-called Urn Model) then

RESULT 4 The number of distinguishable permutations of n indistinct objects, comprising n_{i} items of type i for $i=1, \ldots, \kappa$ is

$$
\frac{n!}{n_{1}!n_{2}!\ldots n_{\kappa}!}
$$

Special Case : if $\kappa=2$, then the number of distinguishable permutations of the n_{1} objects of type I, and $n_{2}=n-n_{1}$ objects of type II is

$$
C_{n_{2}}^{n}=\frac{n!}{n_{1}!\left(n-n_{1}\right)!}
$$

Also, there are C_{r}^{n} ways of partitioning n distinct items into two "cells", with r in one cell and $n-r$ in the other.

1.7.4 PROBABILITY CALCULATIONS

Recall that if an experiment has N equally likely sample outcomes, and event E corresponds to a collection of sample outcomes of size $n(E)$, then

$$
P(E)=\frac{n(E)}{N}
$$

Example 1.2 A True/False exam has 20 questions. Let $E=$ " 16 answers correct at random". Then

$$
P(E)=\frac{\text { Number of ways of getting } 16 \text { out of } 20 \text { correct }}{\text { Total number of ways of answering } 20 \text { questions }}=\frac{\binom{20}{16}}{2^{20}}=0.0046
$$

Example 1.3 Sampling without replacement. Consider an Urn Model with 10 Type I objects and 20 Type II objects, and an experiment involving sampling five objects without replacement. Let $\mathrm{E}=$ "precisely 2 Type I objects selected" We need to calculate N and $n(E)$ in order to calculate $\mathrm{P}(E)$. In this case N is the number of ways of choosing 5 from 30 items, and hence

$$
N=\binom{30}{5}
$$

To calculate $n(E)$, we think of E occurring by first choosing 2 Type I objects from 10, and then choosing 3 Type II objects from 20, and hence, by the multiplication rule,

$$
n(E)=\binom{10}{2}\binom{20}{3}
$$

Therefore

$$
P(E)=\frac{\binom{10}{2}\binom{20}{3}}{\binom{30}{5}}=0.360
$$

This result can be obtained using a conditional probability argument; consider event $F \subseteq E$, where F = "sequence of objects 11222 obtained". Then

$$
F=\bigcap_{i=1}^{5} F_{i j}
$$

where $F_{i j}=$ "type j object obtained on draw i " $i=1, \ldots, 5, j=1,2$. Then

$$
P(F)=P\left(F_{11}\right) P\left(F_{21} \mid F_{11}\right) \ldots P\left(F_{52} \mid F_{11}, F_{21}, F_{32}, F_{42}\right)=\frac{10}{30} \frac{9}{29} \frac{20}{28} \frac{19}{27} \frac{18}{26}
$$

Now consider event G where $G=$ "sequence of objects 12122 obtained". Then

$$
P(G)=\frac{10}{30} \frac{20}{29} \frac{9}{28} \frac{19}{27} \frac{18}{26}
$$

i.e. $P(G)=P(F)$. In fact, any sequence containing two Type I and three Type II objects has this probability, and there are $\binom{5}{2}$ such sequences. Thus, as all such sequences are mutually exclusive,

$$
P(E)=\binom{5}{2} \frac{10}{30} \frac{9}{29} \frac{20}{28} \frac{19}{27} \frac{18}{26}=\frac{\binom{10}{2}\binom{20}{3}}{\binom{30}{5}} .
$$

Example 1.4 Sampling with replacement. Consider an Urn Model with 10 Type I objects and 20 Type II objects, and an experiment involving sampling five objects with replacement. Let $E=$ "precisely 2 Type I objects selected". Again, we need to calculate N and $n(E)$ in order to calculate $\mathrm{P}(E)$. In this case N is the number of ways of choosing 5 from 30 items with replacement, and hence

$$
N=30^{5}
$$

To calculate $n(E)$, we think of E occurring by first choosing 2 Type I objects from 10, and 3 Type II objects from 20 in any order. Consider such sequences of selection

$$
\begin{array}{cc}
\text { Sequence } & \text { Number of ways } \\
11222 & 10 \times 10 \times 20 \times 20 \times 20 \\
12122 & 10 \times 20 \times 10 \times 20 \times 20 \\
\vdots & \vdots
\end{array}
$$

etc., and thus a sequence with 2 Type I objects and 3 Type II objects can be obtained in $10^{2} 20^{3}$ ways. As before there are $\binom{5}{2}$ such sequences, and thus

$$
P(E)=\frac{\binom{5}{2} 10^{2} 20^{3}}{30^{5}}=0.329
$$

Again, this result can be obtained using a conditional probability argument; consider event $F \subseteq E$, where $F=$ "sequence of objects 11222 obtained". Then

$$
P(F)=\left(\frac{10}{30}\right)^{2}\left(\frac{20}{30}\right)^{3}
$$

as the results of the draws are independent. This result is true for any sequence containing two Type I and three Type II objects, and there are $\binom{5}{2}$ such sequences that are mutually exclusive, so

$$
P(E)=\binom{5}{2}\left(\frac{10}{30}\right)^{2}\left(\frac{20}{30}\right)^{3}
$$

