MATH 556 - PRACTICE EXAM QUESTIONS

1. The joint pdf for continuous random variables X, Y with ranges $\mathbb{X} \equiv \mathbb{Y} \equiv R^{+}$is given by

$$
f_{X, Y}(x, y)=c_{1} \exp \left\{-\frac{1}{2}(x+y)\right\} \quad x, y>0
$$

and zero otherwise, for some normalizing constant c_{1}.
Consider continuous random variable U defined by

$$
U=\frac{1}{2}(X-Y) .
$$

Find the pdf of U, f_{U}.
2. In biology, a (2-D) confocal microscopy image of a cell nucleus is well represented by an ellipse with parameters $a>b$. Within the cell nucleus are found localized protein bodies (called PMLs), and a key biological question relates to the spatial distribution of the PMLs in the nucleus.
Suppose that the (x, y) coordinates of a PML body in the image of a nucleus (suitably rotated and standardized for magnitude) are continuous random variables X and Y with joint pdf

$$
f_{X, Y}(x, y)=c_{2} \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}<1
$$

and zero otherwise for some normalizing constant c_{2} (that is, the pdf is constant on interior of the ellipse, and zero otherwise).
(a) Find the marginal pdfs for X and Y implied by this joint model.
(b) Show that the covariance between X and Y is zero, and hence that the two variables are uncorrelated.
(c) Are X and Y independent? Justify your answer.
3. (a) Compute, from first principles, the correlation

$$
\operatorname{Corr}_{f_{X, Y}}[X, Y]
$$

when

$$
X \sim \operatorname{Normal}(0,1)
$$

and $Y=X^{2}$.
Are X and Y independent? Justify your answer.
Hint: If $Y=X^{2}$, the rules of expectation dictate that for a general function h

$$
E_{f_{X, Y}}[h(X, Y)] \equiv E_{f_{X}}\left[h\left(X, X^{2}\right)\right]
$$

(b) Suppose that X_{1} and X_{2} are independent standard normal random variables. Define random variables Y_{1} and Y_{2} by the multivariate linear transformation

$$
Y=A X+b
$$

where $X=\left(X_{1}, X_{2}\right)^{T}$ and $Y=\left(Y_{1}, Y_{2}\right)^{T}$ are the column vector random variables, A is the 2×2 matrix

$$
A=\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]
$$

and $b=(1,2)^{T}$ is a constant column vector.
(i) The marginal distribution of Y_{1}.
(ii) The covariance and correlation between Y_{1} and Y_{2}.
4. (a) Suppose that X_{1} and X_{2} are independent and identically distributed continuous random variables with cumulative distribution function

$$
F_{X}(x)=\frac{x}{1+x} \quad x>0
$$

with $F_{X}(x)=0$ for $x \leq 0$.
Find $P\left[X_{1} X_{2}<1\right]$.
(b) Suppose that Z_{1} and Z_{2} are independent $\operatorname{Normal}(0,1)$ random variables. Let

$$
Y_{1}=\frac{Z_{1}}{\sqrt{Z_{1}^{2}+Z_{2}^{2}}} \quad Y_{2}=\sqrt{Z_{1}^{2}+Z_{2}^{2}}
$$

Find the marginal probability density function of Y_{1}.
Are Y_{1} and Y_{2} independent ? Justify your answer.
5. (a) Show how an exponential family distribution can be constructed by tilting a pdf f_{X}.
(b) Let f_{Y} be a pdf for random variable Y, and let $s(Y)$ be a transformed version of Y such that $\operatorname{Var}_{f_{S}}[s(Y)]>0$. Let the set \mathcal{N} be defined by

$$
\mathcal{N} \equiv\left\{\theta \in \mathbb{R}: K_{S}(\theta)=\log \left[\int e^{s(y) \theta} f_{Y}(y) d y\right]<\infty\right\}
$$

(i) Show that $0 \in \mathcal{N}$.
(ii) Using Hölder's Inequality, show that \mathcal{N} is a convex set, that is, if $0 \leq \alpha \leq 1$ and $\theta_{1}, \theta_{2} \in \mathcal{N}$, then

$$
\alpha \theta_{1}+(1-\alpha) \theta_{2} \in \mathcal{N} .
$$

(iii) Show that $K_{S}(\theta)$ is a convex function on \mathcal{N}, that is, if $0 \leq \alpha \leq 1$ and $\theta_{1}, \theta_{2} \in \mathcal{N}$, then

$$
K_{S}\left(\alpha \theta_{1}+(1-\alpha) \theta_{2}\right) \leq \alpha K_{S}\left(\theta_{1}\right)+(1-\alpha) K_{S}\left(\theta_{2}\right)
$$

6. (a) Suppose $X_{1}, \ldots, X_{n}, \ldots$ are a sequence of random variables with cumulative distribution functions defined by

$$
F_{X_{n}}(x)=\left(\frac{1}{1+e^{-x}}\right)^{n} \quad x \in \mathbb{R} .
$$

Find the limiting distributions as $n \longrightarrow \infty$ (if they exist) of the random variables
(i) X_{n},
(ii) $U_{n}=X_{n}-\log n$.

Using the result in (ii), find an approximation to the probability

$$
P\left[X_{n}>k\right]
$$

for large n.
(b) In a dice rolling game, a fair die (with all six scores having equal probability) is rolled repeatedly and independently under identical conditions. On each roll, the player wins six points if the score is a 6 , loses one point if the score is either $2,3,4$ or 5 , and loses two points if the score is 1 .

Let T_{n} denote the points total obtained after n rolls of the die. The player begins the game with a points total equal to zero, that is $T_{0}=0$.
(i) Find the expectation and variance of the points total after 100 rolls of the die.
(ii) Find an approximation to the distribution of the points total after n rolls, for large n.
(iii) Describe the behaviour of the sample average points total, $M_{n}=T_{n} / n$, as $n \longrightarrow \infty$.
7. (a) (i) Suppose that random variable X has a Poisson distribution with parameter λ. Show that standardized random variable,

$$
Z_{\lambda}=\frac{X-\lambda}{\sqrt{\lambda}} \xrightarrow{d} Z \sim N(0,1)
$$

as $\lambda \rightarrow \infty$.
(ii) Suppose that $X_{1}, \ldots X_{n} \sim \operatorname{Poisson}\left(\lambda_{X}\right)$ and $Y_{1}, \ldots Y_{n} \sim \operatorname{Poisson}\left(\lambda_{Y}\right)$, with all variables mutually independent. Find μ such that the random variable M defined by

$$
M=\bar{X}+\bar{Y}
$$

satisfies

$$
M \xrightarrow{p} \mu
$$

where

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad \bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

are the sample mean random variables for the two samples respectively.
(b) Suppose that $X_{1}, \ldots, X_{n} \sim \operatorname{Exponential}(\lambda)$. The cdf of the random variable $T_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ is given by

$$
F_{T_{n}}(t)=\left\{F_{X}(t)\right\}^{n} .
$$

where F_{X} is the cdf of X_{1}, \ldots, X_{n}.
(i) Find $F_{T_{n}}(t)$ explicitly.
(ii) Discuss the form of the limiting distribution of T_{n} as $n \longrightarrow \infty$.
(iii) Find the form of the limiting distribution of random variable U_{n}, defined by

$$
U_{n}=\lambda T_{n}-\log n
$$

as $n \longrightarrow \infty$.
8. Suppose that X_{1}, X_{2}, \ldots are i.i.d Cauchy random variables with pdf

$$
f_{X}(x)=\frac{1}{\pi} \frac{1}{1+x^{2}} \quad x \in \mathbb{R}
$$

and characteristic function $C_{X}(t)=\exp \{-|t|\}$.
(a) Find the distribution of the random variable T_{n} defined by

$$
T_{n}=\sum_{i=1}^{n} X_{i} .
$$

(b) Describe the behaviour of the sample mean statistic

$$
\bar{X}_{n}=\frac{T_{n}}{n}
$$

as $n \longrightarrow \infty$, quoting any theorems that you rely on.
(c) Show that the Cauchy distribution can be constructed as a scale mixture of a normal distribution with a Gamma mixing distribution.

