MATH 556 - MID-TERM EXAMINATION 2007

Marks can be obtained by answering all questions. All questions carry equal marks.

1. (a) Discrete random variable X has $\operatorname{pmf} f_{X}$ given by

$$
f_{X}(x)=\frac{-1}{\log (1-\phi)} \frac{\phi^{x}}{x} \quad x=1,2,3, \ldots
$$

and zero otherwise, for parameter ϕ, where $0<\phi<1$.
(i) Find the moment generating function (mgf) for $X, M_{X}(t)$.
(ii) Find the expectation of X.
(b) Continuous random variable X has pdf f_{X} given by

$$
f_{X}(x)= \begin{cases}0 & x<0 \\ \theta x & 0 \leq x<1 \\ \theta e^{-2(x-1)} & x \geq 1\end{cases}
$$

for some parameter θ.
Find the value of θ, and the corresponding cdf, F_{X}.
2. In answering this question, you may quote results from the formula sheet.
(a) The joint pmf or pdf of random variables X and Y can be specified in the following way:

$$
f_{X, Y}(x, y)=f_{X \mid Y}(x \mid y) f_{Y}(y) .
$$

(i) Find the marginal pmf of X if

$$
X \mid Y=y \sim \operatorname{Binomial}(n, y)
$$

for positive integer n, and continuous random variable Y has a $\operatorname{Uniform}(0,1)$ marginal distribution.
(ii) Find the marginal pdf of X if

$$
X \mid Y=y \sim \text { Exponential }(y)
$$

and $Y \sim \operatorname{Exponential}(\beta)$ for parameter $\beta>0$.
(b) Suppose that random variables Z_{1}, \ldots, Z_{n} are independent and identically distributed, having a $\operatorname{Normal}(0,1)$ distribution.
(i) Identify the distribution of $Y_{1}=Z_{1}^{2}$. Show your working.
(ii) Identify the distribution of S_{n} where

$$
S_{n}=\sum_{i=1}^{n} Z_{i}^{2}
$$

Justify your answer.
3. (a) Suppose that U_{1} and U_{2} are independent and identically distributed random variables having a Uniform $(0,1)$ distribution. By direct consideration of the cdf, or otherwise, find the pdf of random variable

$$
X=U_{1} U_{2} .
$$

Hint: consider an appropriate region of $[0,1] \times[0,1]$, and the ranges of integration carefully.
(b) If X_{1} and X_{2} are independent random variables, find the covariance between random variables

$$
Y_{1}=X_{1}+X_{2} \quad Y_{2}=X_{1}-X_{2}
$$

Are Y_{1} and Y_{2} independent ? Justify your answer.
Recall that the covariance between Y_{1} and Y_{2} is given by

$$
\operatorname{Cov}_{{Y_{1}}^{1}, f_{Y_{2}}}\left[Y_{1}, Y_{2}\right]=E_{f_{Y_{1}}, f_{Y_{2}}}\left[\left(Y_{1}-\mu_{1}\right)\left(Y_{2}-\mu_{2}\right)\right]
$$

where μ_{1} and μ_{2} are the expectations of Y_{1} and Y_{2} respectively.
4. Suppose that $C_{1}(t)$ and $C_{2}(t)$ are the characteristic functions for continuous random variables with pdfs f_{1} and f_{2}, and that $0<\alpha<1$.
(a) Show that

$$
C_{X}(t)=\alpha C_{1}(t)+(1-\alpha) C_{2}(t)
$$

is the characteristic function for a continuous random variable, X say, and find the corresponding pdf of X, f_{X}.
(b) Find the characteristic function of random variable $Y=-3 X+2$.
(c) Identify continuous random variables Z_{1} and Z_{2} with characteristic functions

$$
C_{Z_{1}}(t)=\left\{C_{X}(t)\right\}^{2} \quad C_{Z_{2}}(t)=\left|C_{X}(t)\right|^{2}
$$

where $\left|C_{X}(t)\right|$ is the modulus of the complex-valued function $C_{X}(t)$.
Hint: for any complex number $z=r e^{i \omega}$, say,

$$
|z|^{2}=z \bar{z}
$$

where $\bar{z}=r e^{-i \omega}$ is the complex conjugate of z.
(d) Find the distribution (pmf, pdf or cdf) of random variable Y with the following characteristic function:

$$
C_{Y}(t)=\frac{1+e^{2 i t}+e^{-2 i t}}{3} \quad t \in \mathbb{R}
$$

